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Abstract
Our paper is devoted to the study and design of novel chaotic systems to use in various applications. In 
our paper, we offer to use coordinate transformations to design a chaotic system and define its motions 
using algebraic-differential state space equations. We consider the known chaotic systems and apply some 
coordinate transformations to them. In this case, the system differential equations are used to define the 
known system, and observability algebraic equations depend on the used coordinate transformation. Our 
paper considers the transformation from cartesian coordinates into bipolar ones and vice versa. The direct 
transformation  from  cartesian  coordinates  in  bipolar  is  based  on  using  two  lengths  from  the 
representative point, which define a system motion to some different base points. This transformation can 
be used when one interprets chaotic system state variables as coordinates in the orthogonal axes. This 
transformation is defined by quadratic polynomials, which usage is relatively trivial. On the contrary, the 
inversed transformation from bipolar to cartesian coordinates is complex enough, and its implementation 
can require a lot of computational resources. This drawback can be avoided by using interval methods,  
which allow us to define transformation equations using piecewise linear functions. In this case, one can 
consider the observability equations in the simplest linear-like form, which can be easily used to solve 
both direct and inverse transformation problems. We show the use of our approach by considering a well-
known Mackey-Glass system and transforming it into bipolar coordinates by using exact and interval 
solutions  of  transformation  equations.  The  performed  research  shows  the  similarity  of  the  obtained 
results, which proves the correctness of the used approach and methods.
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1. Introduction

The rapid growth of analog and digital communications in different areas of human activities has 
necessitated  the  development  of  highly  secure  transmission  methods  to  protect  information 
exchange  from  various  unauthorized  accesses  and  cyberattacks  [1-3].  The  problem  becomes 
important due to the rise of the Internet of Things paradigm [4-6], which allows access for many 
users to some sensors or actuators [7]. The unauthorized person can harm such systems and cause 
damages in industrial and other applications [8-10].

Nowadays, different traditional cryptographic techniques are widely used, based on symmetric 
(AES,  DES) [11-13] and asymmetric (RSA, ECC) encryption [14-17].  The main feature of  these 
techniques is the computational complexity of mathematical problems, which are considered the 
basis  for  encryption  algorithms.  However,  the  increasing  computational  power  of  modern 
adversaries,  which can use different application-specific integrated circuits  to operate with the 
conventional  encryption  algorithm,  and  the  potential  emergence  of  quantum computers  make 
conventional encryption methods vulnerable [18-19]. 

As  a  result,  researchers  turn  their  attention  to  alternative  approaches  to  improve  data 
communication security. The use of chaotic systems is one of them [20-22].
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It is well-known that chaotic systems are dynamical systems that motions are sensitive to initial 
conditions. Also, one can find the aperiodicity and high complexity of such systems. These facts 
make  chaotic  systems  well-suited  to  use  in  secure  communication  applications  to  generate 
unpredictable signals that can be used for data encryption, key generation, and establishing secure 
data transmission channels with high resistance to brute-force attacks. [23-25]

Moreover, since chaotic systems can be implemented using digital and analog devices, they can 
be used in various transmission environments and establish secured optical, radio-frequency, and 
acoustic data communication channels. [26-27]

Many papers are devoted to studying known and designing novel chaotic systems. The main 
drawback  of  known  papers  is  the  very  subjective  design  of  chaotic  systems.  Authors  start 
considering a system without explaining why and how this system is designed. This fact makes 
system improvement a pretty challenging process. [28-30]

We offer to avoid this drawback by applying some coordinate transformation to known chaotic 
systems and designing a novel system with known features on their basis.

Our paper is  organized as  follows.  At  first,  we consider  the generalized first-order delayed 
nonlinear system and apply to it coordinate transformation, which defines its motion in the bipolar 
coordinates. Then, we consider an inverse transformation and show its complexity. Third, we show 
the use of interval methods to simplify the chaotic system transformation. We consider using our 
approach  by  transferring  a  well-known  Mackey-Glass  system  with  exact  and  interval 
transformations.

2. Method

2.1. The Exact Direct and Inverse Transformations Between the Cartesian and 
Bipolar Coordinates

It is a well-known fact that motion of some dynamical system can be studied by using its phase 
portrait (Figure 1).

Figure 1: System phase portrait

In  general  case  this  phase  portrait  represents  2D  projection  of  system motions  which  are 
produced as solution of nonlinear differential equations. In our paper we consider a first-order 
delayed nonlinear dynamical system which motion is given as follows

ẋ=f (x , x tau) (1)

where x is a system generalized state variable, f(.) is some nonlinear function and τ is a system time 
delay.



We assume that all system motions are localized in first quadrant of system phase plane as it is  
shown in Figure 1 and we consider the horizontal axis as axis where current values of system state 
variable are placed and vertical axis is used as position of delayed values of the state variable. It is 
clear that both of these coordinates are defined in relation to axes origin and it is necessary to have 
the possibility to define a distance between the origin and corresponding projection of system 
representative point A to find the system coordinate. 

At  the  same  time  the  analysis  of  system  phase  portrait  and  applying  various  coordinate 
transformations to it gives us the possibility to design novel dynamical systems. We claim that 
such an approach is based on the possibility of different interpretation of system state variables. 
Due  to  the  using  of  coordinate  transformations  the  resulted  system  can  produce  the  desired 
motions in the given phase plane’s domain.

In our paper we offer to consider the system motion in bipolar coordinates.  In this case the 
position of system representative point A can be defined by using distances d1 and d2 from some 
base points P1 and P2 to the considered representative point. Here we assume that coordinates xP1, 
xP2, yP1, yP2 of P1 and P2 points are known.

If one take into account Figure 1 he can write down expressions which define the distances 
between points in such a way

d1
2=(x A−xP1)

2+( y A− yP1)
2 ;d2

2=(x A−xP2)
2+( y A− yP2)

2 , x A=x ; y A=x τ (2)

From the control theory viewpoint one can consider (2) as polynomial observability equations 
for  system (1).  These equations allow us to solve both direct  and inverse problems of  system 
coordinate transformation. The direct problem gives us the possibility to define system position in 
bipolar coordinates with pair of distances d1 and d2 by using known system state variable and base 
points. It is clear that due to the quadratic functions in (2) the solution of the direct problem allows 
to produce direct d1p, d2p, and inverse d1m, d2m system outputs 

d1 p=√(xA−xP1)
2+( y A− yP1)

2 ;d1m=−√(xA−xP1)
2+( y A− yP1)

2 ;

d2 p=√(xA−xP2)
2+( y A− yP2)

2 ;d1m=−√(xA−xP2)
2+( y A− yP2)

2

(3)

which can be used in various applications.
If one solves (2) for system coordinates in the cartesian plane he obtains the solution of inverse 

problem  and  define  the  position  of  system  representative  point  as  function  of  base  points 
coordinates and distances between these points and representative point
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One can consider (4) as observability equation for the nonlinear system (1) in the case when 
system state variables are considered as distances d1 and d2 between points in the phase plane. Due 
to the solution of system quadratic equations one gets several signals in this case as well. It is  
necessary to say that the use of quadratic dependencies like (2) to define representative point’s 
position  cause  a  quite  complex  solution  of  inverse  problem  which  requires  some  calculation 
resources to define a system position during its study and implementation. 

It is necessary to say that the solution of inverse problem can be used to redefine (1) in terms d1 

and d2 only by substituting (4) into (1). Such an approach allows us to exclude from a consideration 
the observability equations (3). At the same time the resulting motion equation can become a quite 
complex and hardly have a practical usage.

2.2. The Interval Direct and Inverse Transformations Between the Cartesian and 
Bipolar Coordinates

We offer to avoid the above-mentioned drawback by replacing the exact nonlinear functions in the 
right-hand  expressions  of  (2)  with  intervals  of  their  possible  values.  Due  to  the  similarity  of 
summands in (2) we use the simplified transformation of nonlinear function into the interval form 
by replacing each nonlinear  summand with  intervals  of  their  possible  values.  In  this  case  we 
consider  the  nonlinear  function  as  one  variable  functions.  Although,  one  can  use  the  same 
approach in the most general case of multivariable functions by studying their boundaries in the 
state space.

Let us consider the proposed approach by using the following quadratic nonlinear function 

f 1(x)=(x−xP)
2 (5)

This function can be bounded by some piecewise linear functions f1max(x) and f1min(x) 

f 1min(x)={a11min x+b11min if x1min≤ x<x11;
a1nmin x+b1nmin if x1n<x ≤ x1max ,

f 1max(x)={a11max x+b11max if x1min≤ x<x11;
a1nmax x+b1nmax if x1n<x ≤ x1max ,

(6)



here aijmin, aijmax, bijmin, bijmax are piecewise linear factors, xij are fracture points where piecewise linear 
function  change  its  parameters,  n  and  m are  numbers  of  fracture  points  in  upper  and  lower 
boundaries.

It should be mentioned that in the most general case the fracture points for lower and upper 
boundaries can be different. One can define these points as the solution of optimization problem

I=∫
xmin

xmax

( f 1min(x)−f 1(x))
2+( f 1max(x)−f 1(x))

2dx→min
(7)

for the given numbers n and m of the fracture points.
Since the considered boundary functions are piecewise linear one, (7) can be rewritten as follows 

I=∑
i=0

n

∫
x i

x i+1

( f 1min(x)−f 1(x))
2dx+∑

i=0

n

∫
x i

x i+1

( f 1max(x)−f 1(x))
2dx→min

(8)

here x0=xmin  and xm+1=xmax.

In other word the problem of definition of fracture points can be considered as the problem of 
minimization the square of domains between the considered function and its boundaries.

We use (6) as boundaries to define the interval of possible values of function f(x) 

f 1(x)∈ f 1(x); f 1(x)=[ f 1min(x) , f 1max(x)] (9)

The graphical representation of our approach is shown in Figure. 2.

Figure 2: Piecewise boundaries for the quadratic nonlinearity

As one can see the considered nonlinear function belongs to the defined interval and it does not 
exceed interval (7) for any values from the interval of possible values of system state variable. 

This fact proves the correctness of the used approach to replace the nonlinear function with the 
linear or piecewise linear intervals which define the domain where the initial nonlinear function is 
defined.

Substitution (6) into (9) gives us the possibility to define the domain f1(x) in terms of function 
argument x and approximation parameters ai and bi 

f 1=a1 x1+b1=[a1min , a1max ]x1+[b1min , b1max ] ,
a1min=∪i=1

n1 a1 imin ; a1max=∪i=1
m1 a1 imax ; b1min=∪i=1

n1 b1 imin ; b1max=∪i=1
m1 b1 imax , ,

a1 imin=[a1 imin , a1(i+1)min] , b1 imin=[b1 imin , b1(i+1)min] ,
a1 imax=[a1 imax , a1(i+1)max ] , b1 imax=[b1 imax , b1(i+1)max ] .

(10)



Thus,  the  use  of  interval  methods  gives  us  the  possibility  to  redefine  the  initial  nonlinear 
function in the linear-like interval form which can be easy used to solve various mathematical 
problems.

It is clear that the above-given transformations can be performed for the second summand in (2) 
as well

f 2(x)∈f 2(x) , f 2=a2 x2+b2=[a2min , a2max ]x2+[b2min , b2max ] ,
a2min=∪i=1

n2 a2 imin ; a2max=∪i=1
m2 a2 imax ; b2min=∪i=1

n2 b2 imin ; b2max=∪i=1
m2 b2 imax , ,

a2 imin=[a2 imin , a2(i+1)min] , b2 imin=[b2 imin , b2(i+1)min] ,
a2 imax=[a2 imax , a2(i+1)max ] , b2 imax=[b2 imax , b2(i+1)max ] .

(11)

We define boundaries f2min(x) and f2max(x) by using expression which is similar to (6) but defined 
by its own piecewise linear approximation factors. Also, we assume that number of fracture points 
ni and mi are different for different boundaries.

If one substitutes (11) and (10) into (2) he can rewrite the last equations as follows

d1
2=[d1min

2 , d1max
2 ]=a11 xA+a12 y A+b11+b12 ;

d2
2=[d2min

2 , d2max
2 ]=a21 xA+a22 y A+b21+b22 .

(12)

here interval factors aij and bij are caused by using coordinates of different base points.
We call  (12)  as  interval  direct  observability  equations  which  allows  to  define  the  distance 

between the system representative point and some base point. Analysis of right-hand expressions 
in (12) shows these expressions are linear for system state variables.

Similar to (3) one can consider the solution (12) for d i as the source of two inverted signals. 
Contrary to (3) one should take into consideration that these signals are defined in the interval 
form and rather define domain where signals are localized than the signals. Although the length of 
this domain can be considered neglectable small in case of small intervals (11) and (12). In this case 
(12) can be considered as almost exact solution of the direct problem.

In the most general case, one can use different ways to localize the considered signals. In our 
paper we offer to use sliding mode approach to perform such an operation

d i=±(
(d imin+d imax)

2
+
(d imax−d imin)

2
g([S ])sign(S)).

(13)

here S is equation of some sliding plane which define the switching between upper and lower 
boundaries  of  the  defined distance and g(.)  is  some odd function which allows to  control  the 
amplitude of sliding mode oscillations.

Thus, the use of interval methods allows us to simplify the solution of the direct problem by 
using linear expressions in system observability equations. This approach gives the possibility to 
reduce the calculation resources, which are necessary to spend, to define the considered system 
outputs in case of using low and middle-range MCU without hardware multiplication support.

We think that the main benefits of using (12) instead of (2) is the possibility to solve the inverse 
problem in a quite simple way

xA=
a22 d1

2−a12 d2
2+(b21+b22)a12−(b11+b12)a22
a11a22−a12 a21

;

y A=
a11d2

2−a21d1
2−(b21+b22)a11+(b11+b12)a21
a11a22−a12 a21

.

.

(14)

Comparison of (14) and (4) proves our claiming about simplification of the inverse problem’s 
solution. Although, it is clear that the determination of system state variables according to (14) 
requires to know the intervals  aij and  bij. That is why one should define the intervals of system 
state variable [xi,  xi+1] and [yi,yi+1] in which equations (12) have different signs. Approximation 



factors for these intervals can be used in (14) to define system state variables by known distances 
from the base points.

3. Results and Discussion

3.1. Exact Mackey-Glass System in the Bipolar Coordinates

We show the use of our approach to define system dynamic in bipolar coordinates by considering a 
well-known Mackey-Glass equation

ẋ A=−γ x A+β
y A
1

+ y A
n , y A=x A τ .

(15)

here γ  and β are system factors, n means some power, x A is a state variable that shows position of 
representative point A in the horizontal axis of system phase plane (Figure. 3), we use the shifted in 
τ  sec value of the state variable to define the system vertical position in phase plane.

Under some parameters and initial conditions (15) define chaotic system motions (Figure.4) and 
can be considered as the mathematical basis to design a chaotic generator.

Figure 3:  Mackey-Glass system phase plane Figure 4:  Mackey-Glass motion trajectory 

Here we study system with following parameters γ=1, β=2, τ=4, n=10, x(0)=1.
Since the Mackey-Glass system is a well-studied dynamical system its usage as true random 

generator  in  various  applications  which are  connected  with  secured data  transmission can be 
compromised and cause data leakage. 

That is why we offer to use some novel coordinate basis where motion of this system is not 
known yet. We consider bipoloar coordinate system and assume that in the system phase plane 
two base points P1 and P2 are defined (Figure.3).

In this case usage (3) allows us to perform direct transformation from cartesian coordinates into 
bipolar one. It is possible to claim that such a transformation defines motions of the novel chaotic 
systems by using (15) and (3). Systems motions as wells as its phase portrait are shown in Figure.5 
and Figure.6.

Analysis of the given in Figure.5 -Figure.6 simulation results for Mackey-Glass system in bipolar 
coordinates  proves  the  possibility  to  design novel  chaotic  system by applying some nonlinear 
coordinate transformations to known chaotic system. Such a coordinate transformations lead to to 
considering nonlinear observability equations which define only system output but do not change 
its  inner  dynamic.  Thus,  if  the  initial  system  moves  through  the  chaotic  trajectories,  the 
transformed one also have a chaotic nature.

At the same time, the usage of proposed approach, which is based on the determination of 
distance  between system representative  point  and  some base  points,  allows  us  to  define  new 
system outputs which number equals to number of base points which are used to define system 
coordinates. Thus, one can use this fact to increase the number of system outputs which produce 



chaotic oscillations. Comparison the oscillations in Figure.4 and Figure.6 allows us to claim that the 
use of nonlinear transformations allows us to change the form and frequency of oscillations as well 
as system attractors. 

Figure 5:  Mackey-Glass attractor in bipolar Figure 6:    
Mackey-Glass trajectories in coordinates bipolar coordinates

The one more feature of the considered approach is the use of quadratic polynomials which 
solution allows to define both positive and negative values for the system coordinates. Since these 
coordinates are considered as distances between points, we call the case of positive distances as the 
main one and cases with one or two negative coordinates are considered as secondary. This fact 
defines four possible system attractors which are shown in Figure.6 and one can use different 
switching techniques to switch from one attractor to another and design variable structure chaotic 
systems which design is out of our paper’s scope.

In  Figure.5  and Figure.6  we show the  simulation results  for  the  chaotic  system with  fixed 
coordinates of the base points. We see one more way to improve system features by considering its 
motions relatively to moved base points. It is clear that the base points’ motions can be defined by 
using different laws and it also require a detailed study which is a topic of our future research. 

Here we show the principle of changing system dynamic by considering coordinates of base 
points as the values of system state variable xA which are taken in different time moments. In 
Figure.7 and Figure.8  simulation results  are  shown for  the  case  when xP1=xA1,  yP1=xA2,  xP2=xA3, 
yP2=xA4, here number near xA variable means number of seconds to shift the signal.

Figure 7:  Mackey-Glass attractor in Figure  8:    Mackey-Glass  trajectories in 
bipolar coordinates with moved base points bipolar coordinates with moved base points 

Analysis of the given in Figure.7 and Figure.8 curves shows that the positions of base points 
make great effect in system dynamic and allows to design one more novel chaotic system which 
attractor  is  localized  in  the  given quadrant  and has  form different  from the  above-considered 
attractors. 



All above-studied models are designed for the case when system state variables are considered 
as coordinates in some cartesian system. At the same time, one can consider state variables of any 
dynamical system without any references to coordinate systems. For example, one can interpret 
system state variables as given in the bipolar coordinate system. In this case transformation of 
Mackey-Glass system dynamic is performed by using the inversed observability equations (4). 

Simulation results for the Mackey-Glass system with observability equations (4) are shown in 
Figure.9 and Figure.10

Figure 9: Transformed Mackey-Glass system Figure  10:    Transformed  Mackey-Glass 
attractor system trajectories  

Analysis  of  the  given in  Figure.9  and Figure.10  simulation results  proves  the  possibility  to 
change a system output trajectory as well as its phase portrait by using nonlinear observability 
equations. Similar to previous considered systems, dynamical system from Figure.9 and Figure.10 
defines two pair of output signals. Each pair are defined by direct and inversed signals which can 
be used in various applications. At the same time, one should take into account that combinations 
of distances d1 and d2 should correspond the base point coordinates. In other words, not all bipolar 
coordinates  d1 and  d2 can  be  transformed  into  the  cartesian  one.  The  possibility  to  perform 
transformation can be found from (4) which should take real values. The complex values of system 
output show that such a combination of bipolar coordinates cannot be transformed into cartesian 
ones.

All above-studied systems have symmetric attractors and can be used as the basis to design 
more complex chaotic systems. However, if one assumes that base points are moved in the phase 
plane and their motion is defined according above-shown interrelations, one can get more complex 
chaotic motion (Figure.11 and Figure.12)

Figure 11: Transformed Mackey-Glass system Figure  12:    Transformed  Mackey-Glass 
attractor with chaotically moved base points system trajectories  with chaotically  moved  

base points



The given in Figure.11 and Figure.12 simulation results shows that in the most common case the 
produced  system  outputs  in  each  pair  can  be  asymmetrical  ones.  As  the  result  attractors 
overlapping can be found. One can use this fact to design highly nonlinear multichannel chaotic 
system which outputs are non-inverse and produced according non-harmonic dependencies.

3.2. Interval Mackey-Glass System in the Bipolar Coordinates

Due to the complexity of  the above-used transformations,  now we consider  the Mackey-Glass 
system and its coordinate transformations in the interval form.

It is clear that the main feature of the considered system, which cause the chaotic dynamic, is 
nonlinear function of delayed state variable. 

Let us rewrite this function in the interval form (9) and define boundary functions as follows

f 1min( y A)={
y A if 0< y A<0.68

0.43 y A+0.3 if 0.68< y A<0.8 ;
−0.43 y A+1.08 if 0.8< y A<0.89 ;
−1.86 y A+2.35 if 0.89< y A<1.18 ;
−0.54 y A+0.79 if 1.18< y A<1.44 ;
−0.01 y A+0.031 if 1.44< y A<1.9 ,

f 1max( y A)={
y A if 0< y A<0.65

0.58 y A+0.26 if 0.65< y A<0.78 ; ;
−0.41 y A+1.04 if 0.78< y A<0.88 ;
−1.66 y A+2.15 if 0.88< y A<1.19 ;
−0.61 y A+0.91 if 1.19< y A<1.4 ;
−0.08 y A+0.161 if 1.4< y A<1.9 ,

.

(15)

Graphically these functions are given in Figure.13

Figure 13: Piecewise-linear interval approximation of the Mackey-Glass nonlinearity

Simulation results for such a system are shown in Figure.14 and Figure 15.
As one can see the use of interval methods allows us to define interval signal which is bounded 

by lower and upper boundary system trajectories. At the same time, the system attractor as well as 
its oscillations are similar to the initial nonlinear system. This fact allows us to claim correctness of 
the performed transformation from exact to interval system. Such a transformation extended the 
class of chaotic systems and allows to consider the systems which produce an infinite set of signals 
from the filled domain (Figure.15). One can use various methods to select one or several exact 
signals from this set.



If  take into account the coordinates of the base points he can perform the piecewise linear 
interval  approximation (2)  and transform the nonlinear  observability  equations  into linear-like 
interval form (10). 

Figure 14: Piecewise linear Mackey-Glass Figure 15: Piecewise linear Mackey-Glass 
system interval attractor  system interval motion trajectories

Simulation results for interval Mackey-Glass system (15) with boundaries (16) and observability 
equations (10) are shown in Figure.16 and Figure.17

Figure 16: Piecewise linear Mackey-Glass Figure 17: Piecewise linear Mackey-Glass 
system interval attractor in bipolar coordinates system  interval  trajectories  in  bipolar 
coordinates

Comparison  of  attractors  in  Figure  16  and  Figure.5  show  their  similarity  that  prove  the 
possibility to use the interval methods to design and study systems with chaotic dynamic. Contrary 
to the classical approach which is based on the use of nonlinear transformation equations the use 
of piecewise linear interval equations allows to simplify the mathematical model of the considered 
system and reduce the  computational  resources  which are  used to  simulate  system in bipolar 
coordinates with fixed base points.  It  is clear that it  becomes possible because of the one-time 
solving optimization problem (8) which can be done before simulation starting. At the same time, 
in case of the use moved base points piecewise linear approximation should be performed for all 
base points coordinates. 

Nevertheless, the all-above-given features of system with interval piecewise linear observability 
equation, the main benefit of such systems is the possibility to perform inverse transformation 
from bipolar coordinates into cartesian ones without performing complex calculations. In Figure.18 
and Figure 19 we show the simulation results for the case when the system state variables are 
considered as bipolar coordinates and then applying (14) allows us to solve the inverse problem.

Comparison attractors in Figure.9 and Figure. 18 shows the similar patterns which proves the 
correctness of performed transformation. Moreover, the considering interval model allows us to 



study the attractor’s deformation which are caused by motions in various system boundaries. This 
study allows us to claim that real  system attractor is  in the domain where both minimal and 
maximal attractors are defined. Also, one can see that approaching the upper boundary compresses 
the system attractor.

Figure 18: Piecewise linear Mackey-Glass Figure 19: Piecewise linear Mackey-Glass
system interval attractor in cartesian coordinates  system  interval  motion   in  cartesian 
coordinates

4. Conclusion

Our  studies  claim  that  using  nonlinear  coordinate  transformation  equations  as  observability 
equations allows us to design novel chaotic systems as systems which dynamic are defined by 
state-space equations. The features of this system depend on both the initial chaotic system and the 
coordinate transformation used. Since these transformations can be quite complex, it can be hard to 
use them to solve direct and inverse transformation problems. One can avoid this drawback by 
using interval methods, which allows us to rewrite system dynamics as piecewise linear differential 
equations with the piecewise linear observability equations. Such an approach makes it possible to 
get results similar to the solution of exactly defined equations. 

We see the future development of our research in designing the control system to synchronize 
the considered chaotic systems with some signals. 
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