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Abstract
Deep Reinforcement Learning (DRL) is crucial for autonomous Unmanned Aerial Vehicle (UAV) navigation 
but faces challenges with the extensive training times required by high-fidelity simulators like AirSim. This 
paper addresses this by detailing the development and evaluation of an optimized simulation strategy. 
Initially, a 2D UAV navigation task in AirSim highlighted significant computational overhead. To overcome 
this,  a lightweight,  Gymnasium-compatible programmatic 2D environment was created,  incorporating 
custom collision logic, stochastic elements to mimic AirSim's unpredictability, and a curriculum learning 
approach with six map types of increasing complexity. Training a Deep Q-Network (DQN) agent in this 
custom  environment  demonstrated  substantial  acceleration:  a  deterministic  displacement  model  was 
trained for 5 million steps in approximately 4 hours. Policies from this model achieved 98.3% success in the 
programmatic environment and, crucially, showed successful transfer to AirSim with a 95% success rate.  
Further, an enhanced model incorporating velocity control and a moving target was trained for 20 million 
steps in the custom environment. This advanced policy, when validated in AirSim, achieved a 68% success  
rate against static targets and a 63% success rate in more complex scenarios with dynamic obstacles,  
showcasing its adaptability. This research underscores an effective two-stage methodology: leveraging fast, 
abstracted simulations for efficient initial DRL policy development and using high-fidelity simulators like 
AirSim for subsequent validation, fine-tuning, and robust sim-to-real transfer, thereby paving the way for 
more complex 3D applications.
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1. Introduction

The rapid  advancement  of  Unmanned Aerial  Vehicles  (UAVs)  has  opened up a  wide array of 
applications, from logistics and surveillance to inspection and mapping [1]. A key factor in realizing 
the full potential of UAVs is the development of robust autonomous navigation capabilities [2]. 
Especially  challenging  is  path  planning  and  collision  avoidance  in  UAV  swarms  [14].  Deep 
Reinforcement Learning (DRL) has emerged as a powerful paradigm for training agents to perform 
complex tasks in dynamic environments, making it highly suitable for UAV control [3,13]. DRL 
combines the principles of reinforcement learning (RL) with the representational power of deep 
neural networks [9,10,11].  In the RL framework, an agent learns to make optimal decisions by 
interacting with an environment. This interaction is typically characterized by a sequence of states,  
actions, and rewards. The agent observes the current state of the environment, takes an action, and 
receives a reward signal that indicates the desirability of that action in that state [3]. The goal of the 
agent is to learn a policy – a mapping from states to actions – that maximizes the cumulative reward 
over time. Deep neural networks are employed in DRL to approximate complex functions, such as the 
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value function (which estimates the expected future reward from a given state) or the policy itself,  
especially in environments with high-dimensional state and action spaces, like those encountered in 
robotics and autonomous vehicle control. This ability to learn complex mappings directly from raw 
sensory inputs (e.g.,  camera images,  LiDAR data)  or intricate state representations makes DRL 
particularly  well-suited  for  tasks  such  as  UAV  navigation,  where  agents  must  perceive  their  
surroundings and make nuanced control decisions in real-time.

However, the practical application of DRL to UAVs is often hindered by the significant challenges 
associated with training directly in the real world, including safety concerns, cost, and the time-
consuming nature of physical experiments [4,5].  Consequently, simulation environments play a 
critical role in the DRL workflow, providing a safe, cost-effective, and scalable platform for agent 
training and policy development. The relevance of such optimized simulation environments extends 
significantly into the domain of  Smart  Industry and Industry 4.0.  In  these contexts,  UAVs are 
increasingly  envisioned  for  tasks  like  automated  inventory  management  in  warehouses, 
infrastructure inspection in hazardous or hard-to-reach areas of factories, and intra-logistics for 
transporting  materials  between  production  lines.  Developing  and  testing  these  complex  UAV 
applications  within  realistic  simulations  allows  for  the  creation  of  'digital  twins'  of  industrial  
environments.  These  digital  replicas  enable  businesses  to  design,  validate,  and  optimize  UAV 
operations, including their interaction with other automated systems and human workers, without 
disrupting ongoing production or risking damage to expensive equipment. Furthermore, simulation 
environments are invaluable for training DRL agents to handle the variability and unpredictability 
inherent  in  smart  factory  settings,  such  as  changing  layouts,  moving  obstacles  (e.g.,  forklifts, 
personnel), and dynamic task assignments. By rigorously testing and refining UAV control policies in 
simulation, industries can ensure safer, more efficient, and more reliable deployment of autonomous 
aerial  systems,  thereby accelerating  the  adoption of  smart  technologies  and enhancing overall 
operational intelligence. 

This paper focuses on the crucial aspect of optimizing these simulation environments to enhance 
the efficiency and efficacy of DRL for autonomous UAV navigation, with clear implications for these 
burgeoning  industrial  applications.  We  assess  the  effectiveness  of  an  optimized,  lightweight 
programmatic simulation environment compared to a high-fidelity simulator for accelerating Deep 
Reinforcement Learning-based UAV navigation training and ensuring successful policy transfer for 
2D navigation tasks.

2. The Problem: Defining the UAV Simulation Challenge

2.1. Cosys AirSim and limitations

The core task addressed in this work is training a UAV agent to navigate a 2D environment, reach a 
designated target, and avoid collisions with obstacles. Initially, this was implemented using Cosys 
AirSim [6], a high-fidelity simulator integrated with Unreal Engine 5 (see Figure 1). While offering 
realism,  this  setup presented significant  constraints  for  DRL training,  primarily the substantial 
computational overhead leading to excessively long training times (e.g., over 19 hours for 270,000 
steps).  Even  with  a  5x  simulation,  the  process  remained  resource-intensive.  Another  observed 
constraint within AirSim was a degree of unpredictability in agent movement; the agent's position 
after a velocity command did not always perfectly align with the intended displacement, introducing 
a subtle stochasticity.



Figure 1: Basic Cosys-AirSim simulation environment

2.2. Observation

The agent's perception of the environment was defined by a 12-parameter state space in the initial 
model:
 Normalized 2D vectors  to  the three nearest  obstacles  within a  10-meter  radius,  sorted by 

proximity (3 obstacles * 2 components/vector = 6 parameters).
 Distances to these three nearest obstacles (3 parameters).
 A normalized 2D vector pointing towards the target (2 parameters).
 The direct distance to the target (1 parameter).

For the subsequent model incorporating velocity control, the state space was expanded by three 
parameters to include the agent's current velocity normalized vector (Vx, Vy) and speed, bringing the 
total to 15 parameters.

2.3. Action space

Two distinct action spaces were employed:
1. Deterministic Displacement Model: The agent could choose from four discrete actions, each 

resulting in a deterministic displacement of 0.5 meters in one of the cardinal directions (forward, 
backward, left, right).

2. Velocity Control Model: The action space consisted of five discrete actions: four actions to 
change the agent's velocity by 0.1 m/s in each of the four cardinal directions (effectively an 
acceleration command), and one "idle" action to maintain current velocity. A speed limit of 1 m/s 
was imposed on each axis (x and y).

3. Custom simulation environment

To overcome the limitations of high-fidelity simulation for rapid DRL prototyping and training, a 
lightweight,  custom  programmatic  2D  environment  was  developed.  This  environment  was 
specifically designed to significantly accelerate the learning process and reduce computational load, 
while still retaining the core challenges of UAV navigation. It was built to be compatible with the  
Gymnasium [7] (formerly OpenAI Gym) interface, a standard toolkit for developing and comparing 
reinforcement learning algorithms.



A critical aspect of this programmatic environment is that all  information management and 
calculations  are  handled  internally,  as  there  is  no  continuous  physics  simulation.  The  agent's 
movement is discrete, effectively "teleporting" between points based on the chosen action and its  
magnitude (e.g., 0.5m for the deterministic displacement model, or current velocity for the velocity 
control model). This necessitated a custom collision detection logic. Instead of merely checking for 
overlaps  at  the  start  and  end  points  of  a  move,  the  logic  determines  if  the  geometric  shape 
representing the agent's path during a discrete jump intersects with any obstacle. This is crucial for 
accurately penalizing collisions that might be missed by simpler checks, as illustrated by scenarios 
where the agent's start and end points are clear, but its trajectory clips an obstacle.

To partially mimic the movement imprecision and slight  instability observed in the AirSim 
environment (where the agent's position after a velocity command did not always perfectly align 
with the intended displacement), a small random noise component was introduced. Specifically, a 
random value in the range of -0.05 to +0.05 meters was added to the calculated next position of the 
agent  along  each  axis,  introducing  a  controlled  element  of  stochasticity  to  the  otherwise 
deterministic programmatic environment.

4. Training process

To  facilitate  learning,  a  curriculum  learning  approach  was  implemented.  The  agent  was 
progressively exposed to more complex scenarios:
 Gradual Difficulty: The training started with simpler maps (e.g., no obstacles) and gradually 

increased in difficulty by introducing more obstacles and increasing the distance to the target.
 Map Types: Six distinct types of maps were defined, each with an increasing number of obstacles 

(from 0 on Map Type 1, to 4, 7, 10, 15, and finally 30 on Map Type 6) and varying target  
coordinate ranges (e.g., X: 18-22, Y: -10-10 for Map Types 1 & 2, up to X: 65-75, Y: -30-30 for Map 
Type 6). The penalty for collision also increased with map complexity (e.g., 0 for Map Type 1, -10 
for Types 2 & 3, -20 for Type 4, and -100 for Types 5 & 6).

 Progression:  During training in the programmatic environment,  the map type would only 
change to a more complex one after the agent successfully completed an episode on the current 
map type. The transition between map types during training was also step-based (e.g., Map Type 
1 up to 70k steps, Map Type 2 up to 700k steps, etc., up to Map Type 6 from 5 million steps 
onwards for the velocity control model). For testing, the map type changed after every episode, 
regardless of success or failure.

 Reproducibility:  Maps  were  generated  randomly  but  used  a  fixed  seed,  allowing  for  the 
replication of specific map configurations for consistent training and testing.

5. The results

The DRL agent, a Deep Q-Network (DQN) [8,9,11] from Stable Baselines 3 [12], was trained using 
specific hyperparameters: a "MultiInputPolicy" due to the dictionary-based state space, a batch size of 
32, model update frequency of 4 steps, target network update interval of 10,000 steps, and an epsilon-
greedy exploration strategy with epsilon decaying from 0.3 to 0.01 over 50% of the training steps. 
Figures 2,3 show mean episode length and reward.

A crucial  aspect  was  to  validate  whether  policies  trained  in  the  lightweight  programmatic 
environment could successfully transfer back to the more realistic AirSim simulation. So, a series of 
experiments where conducted achieving following results:
 Deterministic  Displacement  Model  Validation:  The  model  trained  in  the  programmatic 

environment was tested in AirSim for 100 episodes. It achieved a 95% success rate. Successful 
episodes had an average reward of 389.89 and an average length of 172.57 steps. Failed episodes 
(5%) resulted in collisions, yielding a negative average reward (-80).

 Velocity Control Model Validation: This more advanced model,  also trained in the custom 
environment,  was tested in  AirSim for  100 episodes.  It  achieved a  68% success  rate,  with 



successful episodes averaging a reward of 518.39 and a length of 62.22 steps. (see Table 1). The 
increased complexity of the task (velocity control,  moving target) naturally led to a lower  
success rate compared to the simpler displacement model, but still demonstrated viable policy 
transfer.

 Adaptability  Test  (Moving  Obstacles):  Further  testing  of  the  velocity  control  model  was 
conducted in AirSim with a challenging modification: half of the obstacles were made dynamic. 
Even though the agent was not explicitly trained for this scenario, it achieved a 63% success rate 
over 100 episodes, with successful episodes averaging a reward of 528.51 and a length of 51.52 
steps. This indicated a good degree of adaptability and generalization of the learned policy. (see 
Table 2)

Figure 2: Mean episode length

Figure 3: Mean episode reward

Table 1.
Training results with static obstacles

Mean reward Mean length Total episodes

All episodes 334.23 52.12 100

Successful 518.39 62.22 68

Unsuccessful -57 30.65 32



Table 2.
Training results with moving obstacles

Mean reward Mean length Total episodes

All episodes 315.01 42.92 100

Successful 528.51 51.52 63

Unsuccessful -48.51 28.27 37

6. Conclusions

This  work  successfully  demonstrated  a  methodology  for  significantly  optimizing  the  training 
pipeline  for  DRL-based  UAV navigation.  The  primary  achievement  was  the  development  and 
implementation  of  a  lightweight,  custom  programmatic  2D  simulation  environment.  This 
environment proved to be orders of magnitude faster for DRL agent training compared to a high-
fidelity simulator like AirSim; for instance, the custom environment facilitated 5 million training 
steps in approximately 4 hours, and was scaled to 20 million steps, whereas AirSim required over 19 
hours for merely 270,000 steps with limited learning success.

The  policies  trained  within  this  optimized  programmatic  environment  exhibited  strong 
performance, achieving a 98.3% success rate for the deterministic displacement model within its own 
testing. Crucially, these policies demonstrated successful sim-to-sim transfer when validated back in 
the more realistic AirSim environment. The deterministic displacement model achieved a 95% success 
rate in AirSim, while the more complex velocity control model,  also trained programmatically,  
achieved a 68% success rate in AirSim with static targets and a notable 63% success rate even when 
faced with previously unseen dynamic obstacles. These results confirm the viability of using faster,  
abstracted simulations for the bulk of DRL training.

While the custom environment offers substantial speed advantages for initial policy development 
and  iteration,  the  high-fidelity  AirSim  environment  remains  invaluable.  The  successful  policy 
transfer and subsequent validation and testing in AirSim highlight its critical role. AirSim can be 
effectively used for fine-tuning models initially trained in simpler environments,  for rigorously 
testing policies under more realistic physics and sensor conditions, and for bridging the sim-to-real 
gap before deployment on physical UAVs. This two-pronged approach—rapid initial training in a 
custom lightweight environment followed by validation and potential fine-tuning in a high-fidelity 
simulator—presents an efficient and effective pathway for developing robust DRL agents for complex 
UAV tasks. The findings also suggest that this optimized approach is a promising step towards 
tackling more complex 3D navigation challenges as well as navigation and collision avoidance for 
RSSI-based self-localized UAV swarm described in [2].
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