
Accelerating Deep Reinforcement Learning for UAVs
through Optimized Simulation*

Volodymyr Iatsyshyn1*,†, Natalya Shakhovska2,† and Sviatoslav Shainoha3,†

1 Department of Systems of Artificial Intelligence, Lviv Polytechnic National University, S. Bandera, str. 12, Lviv, 79013,
2 Lviv Polytechnic National University, S. Bandera, str. 12, Lviv, 79013, Ukraine
3 Department of Systems of Artificial Intelligence, Lviv Polytechnic National University, S. Bandera, str. 12, Lviv, 79013,
Ukraine

Abstract
Deep Reinforcement Learning (DRL) is crucial for autonomous Unmanned Aerial Vehicle (UAV) navigation
but faces challenges with the extensive training times required by high-fidelity simulators like AirSim. This
paper addresses this by detailing the development and evaluation of an optimized simulation strategy.
Initially, a 2D UAV navigation task in AirSim highlighted significant computational overhead. To overcome
this, a lightweight, Gymnasium-compatible programmatic 2D environment was created, incorporating
custom collision logic, stochastic elements to mimic AirSim's unpredictability, and a curriculum learning
approach with six map types of increasing complexity. Training a Deep Q-Network (DQN) agent in this
custom environment demonstrated substantial acceleration: a deterministic displacement model was
trained for 5 million steps in approximately 4 hours. Policies from this model achieved 98.3% success in the
programmatic environment and, crucially, showed successful transfer to AirSim with a 95% success rate.
Further, an enhanced model incorporating velocity control and a moving target was trained for 20 million
steps in the custom environment. This advanced policy, when validated in AirSim, achieved a 68% success
rate against static targets and a 63% success rate in more complex scenarios with dynamic obstacles,
showcasing its adaptability. This research underscores an effective two-stage methodology: leveraging fast,
abstracted simulations for efficient initial DRL policy development and using high-fidelity simulators like
AirSim for subsequent validation, fine-tuning, and robust sim-to-real transfer, thereby paving the way for
more complex 3D applications.

Keywords
Unmanned Aerial Vehicle (UAV), Deep Reinforcement Learning (DRL), Simulation Environment, Training
Acceleration, AirSim, Gymnasium, DQN

1. Introduction

The rapid advancement of Unmanned Aerial Vehicles (UAVs) has opened up a wide array of
applications, from logistics and surveillance to inspection and mapping [1]. A key factor in realizing
the full potential of UAVs is the development of robust autonomous navigation capabilities [2].
Especially challenging is path planning and collision avoidance in UAV swarms [14]. Deep
Reinforcement Learning (DRL) has emerged as a powerful paradigm for training agents to perform
complex tasks in dynamic environments, making it highly suitable for UAV control [3,13]. DRL
combines the principles of reinforcement learning (RL) with the representational power of deep
neural networks [9,10,11]. In the RL framework, an agent learns to make optimal decisions by
interacting with an environment. This interaction is typically characterized by a sequence of states,
actions, and rewards. The agent observes the current state of the environment, takes an action, and
receives a reward signal that indicates the desirability of that action in that state [3]. The goal of the
agent is to learn a policy – a mapping from states to actions – that maximizes the cumulative reward
over time. Deep neural networks are employed in DRL to approximate complex functions, such as the

*SmartIndustry 2025: 2nd International Conference on Smart Automation & Robotics for Future Industry, April 03-05, 2025,
Lviv, Ukraine
1* Corresponding author.
† These authors contributed equally.

volodymyr.p.yatsyshyn@lpnu.ua (V. Iatsyshyn); nataliya.b.shakhovska@lpnu.ua (N. Shakhovska);
sviatoslav.shainoha.kn.2021@lpnu.ua (S. Shainoha);

 0009-0001-9727-5080 (V. Iatsyshyn); 0000-0002-6875-8534 (N. Shakhovska); 0009-0009-4154-0816 (S. Shainoha);

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

value function (which estimates the expected future reward from a given state) or the policy itself,
especially in environments with high-dimensional state and action spaces, like those encountered in
robotics and autonomous vehicle control. This ability to learn complex mappings directly from raw
sensory inputs (e.g., camera images, LiDAR data) or intricate state representations makes DRL
particularly well-suited for tasks such as UAV navigation, where agents must perceive their
surroundings and make nuanced control decisions in real-time.

However, the practical application of DRL to UAVs is often hindered by the significant challenges
associated with training directly in the real world, including safety concerns, cost, and the time-
consuming nature of physical experiments [4,5]. Consequently, simulation environments play a
critical role in the DRL workflow, providing a safe, cost-effective, and scalable platform for agent
training and policy development. The relevance of such optimized simulation environments extends
significantly into the domain of Smart Industry and Industry 4.0. In these contexts, UAVs are
increasingly envisioned for tasks like automated inventory management in warehouses,
infrastructure inspection in hazardous or hard-to-reach areas of factories, and intra-logistics for
transporting materials between production lines. Developing and testing these complex UAV
applications within realistic simulations allows for the creation of 'digital twins' of industrial
environments. These digital replicas enable businesses to design, validate, and optimize UAV
operations, including their interaction with other automated systems and human workers, without
disrupting ongoing production or risking damage to expensive equipment. Furthermore, simulation
environments are invaluable for training DRL agents to handle the variability and unpredictability
inherent in smart factory settings, such as changing layouts, moving obstacles (e.g., forklifts,
personnel), and dynamic task assignments. By rigorously testing and refining UAV control policies in
simulation, industries can ensure safer, more efficient, and more reliable deployment of autonomous
aerial systems, thereby accelerating the adoption of smart technologies and enhancing overall
operational intelligence.

This paper focuses on the crucial aspect of optimizing these simulation environments to enhance
the efficiency and efficacy of DRL for autonomous UAV navigation, with clear implications for these
burgeoning industrial applications. We assess the effectiveness of an optimized, lightweight
programmatic simulation environment compared to a high-fidelity simulator for accelerating Deep
Reinforcement Learning-based UAV navigation training and ensuring successful policy transfer for
2D navigation tasks.

2. The Problem: Defining the UAV Simulation Challenge

2.1. Cosys AirSim and limitations

The core task addressed in this work is training a UAV agent to navigate a 2D environment, reach a
designated target, and avoid collisions with obstacles. Initially, this was implemented using Cosys
AirSim [6], a high-fidelity simulator integrated with Unreal Engine 5 (see Figure 1). While offering
realism, this setup presented significant constraints for DRL training, primarily the substantial
computational overhead leading to excessively long training times (e.g., over 19 hours for 270,000
steps). Even with a 5x simulation, the process remained resource-intensive. Another observed
constraint within AirSim was a degree of unpredictability in agent movement; the agent's position
after a velocity command did not always perfectly align with the intended displacement, introducing
a subtle stochasticity.

Figure 1: Basic Cosys-AirSim simulation environment

2.2. Observation

The agent's perception of the environment was defined by a 12-parameter state space in the initial
model:
 Normalized 2D vectors to the three nearest obstacles within a 10-meter radius, sorted by

proximity (3 obstacles * 2 components/vector = 6 parameters).
 Distances to these three nearest obstacles (3 parameters).
 A normalized 2D vector pointing towards the target (2 parameters).
 The direct distance to the target (1 parameter).

For the subsequent model incorporating velocity control, the state space was expanded by three
parameters to include the agent's current velocity normalized vector (Vx, Vy) and speed, bringing the
total to 15 parameters.

2.3. Action space

Two distinct action spaces were employed:
1. Deterministic Displacement Model: The agent could choose from four discrete actions, each

resulting in a deterministic displacement of 0.5 meters in one of the cardinal directions (forward,
backward, left, right).

2. Velocity Control Model: The action space consisted of five discrete actions: four actions to
change the agent's velocity by 0.1 m/s in each of the four cardinal directions (effectively an
acceleration command), and one "idle" action to maintain current velocity. A speed limit of 1 m/s
was imposed on each axis (x and y).

3. Custom simulation environment

To overcome the limitations of high-fidelity simulation for rapid DRL prototyping and training, a
lightweight, custom programmatic 2D environment was developed. This environment was
specifically designed to significantly accelerate the learning process and reduce computational load,
while still retaining the core challenges of UAV navigation. It was built to be compatible with the
Gymnasium [7] (formerly OpenAI Gym) interface, a standard toolkit for developing and comparing
reinforcement learning algorithms.

A critical aspect of this programmatic environment is that all information management and
calculations are handled internally, as there is no continuous physics simulation. The agent's
movement is discrete, effectively "teleporting" between points based on the chosen action and its
magnitude (e.g., 0.5m for the deterministic displacement model, or current velocity for the velocity
control model). This necessitated a custom collision detection logic. Instead of merely checking for
overlaps at the start and end points of a move, the logic determines if the geometric shape
representing the agent's path during a discrete jump intersects with any obstacle. This is crucial for
accurately penalizing collisions that might be missed by simpler checks, as illustrated by scenarios
where the agent's start and end points are clear, but its trajectory clips an obstacle.

To partially mimic the movement imprecision and slight instability observed in the AirSim
environment (where the agent's position after a velocity command did not always perfectly align
with the intended displacement), a small random noise component was introduced. Specifically, a
random value in the range of -0.05 to +0.05 meters was added to the calculated next position of the
agent along each axis, introducing a controlled element of stochasticity to the otherwise
deterministic programmatic environment.

4. Training process

To facilitate learning, a curriculum learning approach was implemented. The agent was
progressively exposed to more complex scenarios:
 Gradual Difficulty: The training started with simpler maps (e.g., no obstacles) and gradually

increased in difficulty by introducing more obstacles and increasing the distance to the target.
 Map Types: Six distinct types of maps were defined, each with an increasing number of obstacles

(from 0 on Map Type 1, to 4, 7, 10, 15, and finally 30 on Map Type 6) and varying target
coordinate ranges (e.g., X: 18-22, Y: -10-10 for Map Types 1 & 2, up to X: 65-75, Y: -30-30 for Map
Type 6). The penalty for collision also increased with map complexity (e.g., 0 for Map Type 1, -10
for Types 2 & 3, -20 for Type 4, and -100 for Types 5 & 6).

 Progression: During training in the programmatic environment, the map type would only
change to a more complex one after the agent successfully completed an episode on the current
map type. The transition between map types during training was also step-based (e.g., Map Type
1 up to 70k steps, Map Type 2 up to 700k steps, etc., up to Map Type 6 from 5 million steps
onwards for the velocity control model). For testing, the map type changed after every episode,
regardless of success or failure.

 Reproducibility: Maps were generated randomly but used a fixed seed, allowing for the
replication of specific map configurations for consistent training and testing.

5. The results

The DRL agent, a Deep Q-Network (DQN) [8,9,11] from Stable Baselines 3 [12], was trained using
specific hyperparameters: a "MultiInputPolicy" due to the dictionary-based state space, a batch size of
32, model update frequency of 4 steps, target network update interval of 10,000 steps, and an epsilon-
greedy exploration strategy with epsilon decaying from 0.3 to 0.01 over 50% of the training steps.
Figures 2,3 show mean episode length and reward.

A crucial aspect was to validate whether policies trained in the lightweight programmatic
environment could successfully transfer back to the more realistic AirSim simulation. So, a series of
experiments where conducted achieving following results:
 Deterministic Displacement Model Validation: The model trained in the programmatic

environment was tested in AirSim for 100 episodes. It achieved a 95% success rate. Successful
episodes had an average reward of 389.89 and an average length of 172.57 steps. Failed episodes
(5%) resulted in collisions, yielding a negative average reward (-80).

 Velocity Control Model Validation: This more advanced model, also trained in the custom
environment, was tested in AirSim for 100 episodes. It achieved a 68% success rate, with

successful episodes averaging a reward of 518.39 and a length of 62.22 steps. (see Table 1). The
increased complexity of the task (velocity control, moving target) naturally led to a lower
success rate compared to the simpler displacement model, but still demonstrated viable policy
transfer.

 Adaptability Test (Moving Obstacles): Further testing of the velocity control model was
conducted in AirSim with a challenging modification: half of the obstacles were made dynamic.
Even though the agent was not explicitly trained for this scenario, it achieved a 63% success rate
over 100 episodes, with successful episodes averaging a reward of 528.51 and a length of 51.52
steps. This indicated a good degree of adaptability and generalization of the learned policy. (see
Table 2)

Figure 2: Mean episode length

Figure 3: Mean episode reward

Table 1.
Training results with static obstacles

Mean reward Mean length Total episodes

All episodes 334.23 52.12 100

Successful 518.39 62.22 68

Unsuccessful -57 30.65 32

Table 2.
Training results with moving obstacles

Mean reward Mean length Total episodes

All episodes 315.01 42.92 100

Successful 528.51 51.52 63

Unsuccessful -48.51 28.27 37

6. Conclusions

This work successfully demonstrated a methodology for significantly optimizing the training
pipeline for DRL-based UAV navigation. The primary achievement was the development and
implementation of a lightweight, custom programmatic 2D simulation environment. This
environment proved to be orders of magnitude faster for DRL agent training compared to a high-
fidelity simulator like AirSim; for instance, the custom environment facilitated 5 million training
steps in approximately 4 hours, and was scaled to 20 million steps, whereas AirSim required over 19
hours for merely 270,000 steps with limited learning success.

The policies trained within this optimized programmatic environment exhibited strong
performance, achieving a 98.3% success rate for the deterministic displacement model within its own
testing. Crucially, these policies demonstrated successful sim-to-sim transfer when validated back in
the more realistic AirSim environment. The deterministic displacement model achieved a 95% success
rate in AirSim, while the more complex velocity control model, also trained programmatically,
achieved a 68% success rate in AirSim with static targets and a notable 63% success rate even when
faced with previously unseen dynamic obstacles. These results confirm the viability of using faster,
abstracted simulations for the bulk of DRL training.

While the custom environment offers substantial speed advantages for initial policy development
and iteration, the high-fidelity AirSim environment remains invaluable. The successful policy
transfer and subsequent validation and testing in AirSim highlight its critical role. AirSim can be
effectively used for fine-tuning models initially trained in simpler environments, for rigorously
testing policies under more realistic physics and sensor conditions, and for bridging the sim-to-real
gap before deployment on physical UAVs. This two-pronged approach—rapid initial training in a
custom lightweight environment followed by validation and potential fine-tuning in a high-fidelity
simulator—presents an efficient and effective pathway for developing robust DRL agents for complex
UAV tasks. The findings also suggest that this optimized approach is a promising step towards
tackling more complex 3D navigation challenges as well as navigation and collision avoidance for
RSSI-based self-localized UAV swarm described in [2].

Declaration on Generative AI

During the preparation of this work, the authors utilised Gemini to identify and rectify grammatical,
typographical, and spelling errors. Following the use of these tools, the authors conducted a thorough
review and made necessary revisions, and accept full responsibility for the final content of this
publication.

References

[1] Teixeira da Silva, Karolayne & Miguel, Geovane & Silva, Hugerles & Madeiro, Francisco.
(2023). A Survey on Applications of Unmanned Aerial Vehicles Using Machine Learning.
IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3326101.

[2] Iatsyshyn, V. (2025). Particle Filter Application to Radio-Based Range-Only UAV Self-
localization. In: Štarchoň, P., Fedushko, S., Gubíniova, K. (eds) Developments in Information
and Knowledge Management Systems for Business Applications. Studies in Systems,
Decision and Control, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-031-80935-4_8

[3] Kong, Xiaoran, Yatong Zhou, Zhe Li, and Shaohai Wang. “Multi-UAV Simultaneous Target
Assignment and Path Planning Based on Deep Reinforcement Learning in Dynamic Multiple
Obstacles Environments.” Frontiers in Neurorobotics Volume 17-2023 (2024).
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2023.1302898.

[4] WANG, Fei, Xiaoping ZHU, Zhou ZHOU, and Yang TANG. “Deep-Reinforcement-Learning-
Based UAV Autonomous Navigation and Collision Avoidance in Unknown Environments.”
Chinese Journal of Aeronautics 37, no. 3 (2024): 237–57.
https://doi.org/10.1016/j.cja.2023.09.033.

[5] Kalidas, A.P.; Joshua, C.J.; Md, A.Q.; Basheer, S.; Mohan, S.; Sakri, S. Deep Reinforcement
Learning for Vision-Based Navigation of UAVs in Avoiding Stationary and Mobile Obstacles.
Drones 2023, 7, 245. https://doi.org/10.3390/drones7040245

[6] W. Jansen et al., "COSYS-AIRSIM: A Real-Time Simulation Framework Expanded for
Complex Industrial Applications," 2023 Annual Modeling and Simulation Conference
(ANNSIM), Hamilton, ON, Canada, 2023, pp. 37-48.

[7] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W.
(2016). OpenAI1 Gym. arXiv preprint arXiv:1606.01540

[8] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis,
D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-
533

[9] Aske Plaat, Deep Reinforcement Learning, a textbook, arXiv:2201.02135
[10] Reinforcement Learning: A Comprehensive Overview, arXiv:2412.05265
[11] Terven, J. Deep Reinforcement Learning: A Chronological Overview and Methods.

AI 2025, 6, 46. https://doi.org/10.3390/ai6030046
[12] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021).

Stable-Baselines3: Reliable Reinforcement Learning Implementations.1 Journal of Machine
Learning Research, 22(268), 1-8.2

[13] AlMahamid, Fadi and Katarina Grolinger. “Autonomous Unmanned Aerial Vehicle
Navigation using Reinforcement Learning: A Systematic Review.” ArXiv abs/2208.12328
(2022): n. pag.

[14] Rahman, M.; Sarkar, N.I.; Lutui, R. A Survey on Multi-UAV Path Planning:
Classification, Algorithms, Open Research Problems, and Future Directions. Drones 2025, 9,
263. https://doi.org/10.3390/drones9040263

	1. Introduction
	2. The Problem: Defining the UAV Simulation Challenge
	2.1. Cosys AirSim and limitations
	2.2. Observation
	2.3. Action space

	3. Custom simulation environment
	4. Training process
	5. The results
	6. Conclusions
	Declaration on Generative AI
	References

