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Abstract
The classic principle of reduction suggests removing unnecessary elements of the model one at a time [2].  
The  reduction  process  can  be  significantly  accelerated  by  group  removal  of  elements.  The  article  
substantiates such removal and shows its effectiveness on the example of the identification of the Lorenz 
ODE.
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1.Introduction

Mathematical modeling is one of the foundations of scientific knowledge. The identification of 
the mathematical model is reversed problem, and therefore incorrect [1]. Identification errors can 
occur from redundant model elements [2].

The classic principle of reduction [3], [4] suggests removing unnecessary elements of the model 
one at a time. If the model is complex, with a large number of elements, then such reduction may 
take too much time. 

In this paper we propose the improvement of the reduction principle to reduce reduction time. 
Using the Lorenz atractor equations as an example, it is shown how to do group deletion of model 
elements. Group deletion significantly speeds up the model reduction process. 

1.1. Reduction principle 

Assume there exists a precise mathematical model for a simulated object, characterized by a 
known vector of parameters  p = (p₁,…,pₙ). These parameters are determined through a specific 
identification  method.  A  parameter  value  of  zero  implies  the  absence  of  the  corresponding 
element, and the identification problem—finding the vector p — is solved based on the continuous 
dependence of the solution on the initial conditions within a certain neighborhood.

Now,  let  the  parameter  vector  be  expanded  to  include  additional  components: 
p = (p₁,…,pₙ, pₙ₊₁,…,pₘ). In this extended scenario, the identification method will assign values 
near zero to the superfluous parameters  pₙ₊₁,…,pₘ,  with deviations only within the bounds of 
computational precision: 

                              pi ≈ 0;  i = n+1,…,m.                                    (1)
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But  this  property  can  not  detect  unnecessary  parameters,  because  some  of  the  needed 
parameters  may  be  close  to  zero.  Next,  we  apply  slight  random variations  —  referred  to  as  
disturbances — in a manner that preserves the system’s continuous dependence on the solution. 
The  identification  algorithm then  determines  a  parameter  vector  p′p'p′  corresponding  to  the 
disturbed system, which differs from the original parameter vector ppp of the undisturbed system. 
For  each  parameter,  we  calculate  the  absolute  values  of  relative  deviations  (RD)  using  the 
following approach: : 

                                                     δi = abs(( p'i − pi) / p'i );  i=1,…,m.                                     (2)

For the relevant parameters, the absolute differences (pi′−pi)(p'_i - p_i)(pi′−pi) approach zero as 
the magnitude of the perturbations diminishes, owing to the continuous relationship between the 
parameters  and  the  introduced  disturbances.  A  similar  behavior  is  observed  for  the  relative 
deviations (RD): 

                                        δi → 0; i = 1,…,n;  if  disturb → 0. (3)

Contrary, for the unnecessary parameters the values of the RD (2) are close to one due to (1):

                                              δi → 1; i = n+1,…,m;  if  disturb ≠ 0                        (4)

Criteria  (3)  and  (4)  were  derived  specifically  for  the  precision-focused  model  but  can  be 
generalized  to  apply  to  broader  classes  of  mathematical  models.
Typically, redundant parameters are characterized by significantly larger relative deviations (RD) 
as per equation (2),  in contrast to essential  parameters.  Gradual removal of these superfluous  
components  enhances  both  the  robustness  and  accuracy  of  the  identification  process.  This 
observation is  supported by multiple case studies [2],  including those presented in this  work.
By applying the principle of model reduction, it becomes feasible to expand the model’s structure 
systematically—assessing each new component for relevance and discarding non-essential ones 
accordingly.

2. Test recovery of the Lorentz Atractor

The classical equations of the Lorentz attractor (5) are convenient for testing the principle of 
reduction, since they allow an analytical transformation into an equivalent form (6) convenient for 
our identification.

                                                                                      (5)



                                                                                          (6)

Thus, the task of recovering the exact model (6) can be formulated as follows: given a discrete  
signal y1= x1, it is necessary to compute its first, second, and third derivatives. y1'= y2, y2'= y3, y3',  
and solve the identification problem (7). 

                            (7)

All  polynomial  coefficients  of  the  problem (7)  are  50.  But  for  the  exact  model  (6)  only  7  
coefficients are required. The remaining coefficients are unnecessary. 

 The polynomial representation in problem (7) includes 50 coefficients. However, the accurate  
model described in (6) requires only 7 of them; the rest are redundant and do not contribute to the 
solution. The discrete signal y1=x1 was obtained by applying numerical integration to equations (5) 
using the Runge-Kutta method with a time step of 0.02 seconds, covering the interval from 0 to 34 
seconds. Based on the resulting dataset, a fifth-degree interpolation spline was generated, and its 
first three derivatives were derived analytically. These computed values formed the datasets y1m, 
y2m, y3m, y’3m, (m=1,…,1701), which were then used for solving the identification problem (7). 
Subsequently, a step-by-step reduction of the coefficient arrays aijk, bijk, according to the principle 
of reduction, was applied. The perturbations were added to values y’3m, with a relative value of 10-
5. The RD δi (2) were calculated and the element with the largest δi was deleted. The criterion for 
completing the reduction is the compact set of residual RD. The sign of this is the same number of 
the RD that are larger and smaller than the average of the remaining area. The stopping criterion  
for  the  reduction  process  was  a  compact  distribution  of  the  remaining  δi\delta_iδi values. 
Specifically,  the  number  of  deviations  above and below the  average  had  to  be  roughly  equal, 
indicating a balanced residual set.

In the reduction process, the magnitude of the RD max(δi)-min(δi), and the middle relative error 
model coefficients were calculated. After 43 reduction steps, there are 7 coefficients of the exact  
model (6) with an middle relative error 0.0016. In Fig. 1 shows a change in relative error with 
increasing number of reduction step.
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Figure 1: Changing the coefficients reproduction RD of the model (6) in the process of reduction 

The dependence of the area size of relative deviations on the reduction step is shown in Fig. 2. 

Figure 2: Change the size of the area of RD during the reduction 

The same figure on an enlarged scale Fig 3. is  demonstrated. The process of forming a compact 
area is well visible.

The model expansion approach (induction) was applied to the Lorenz system to evaluate its  
effectiveness. Relative deviations (as defined in equation (2)) were computed for all 50 coefficients.  
Beginning with the three coefficients exhibiting the lowest relative deviation values,  additional 
coefficients were incrementally incorporated into the model—each time selecting the one with the 
next smallest RD from the remaining set. 



Figure 3: Change the size of the area of RD during the reduction on enlarged scale 

The induction process was halted once a compact cluster of RD values was established, which 
occurred after four iterations.

The benefits of the induction approach over reduction are evident. Firstly, there is no need to  
recalculate relative deviations at every stage—initial computation suffices for the entire process. 
Secondly, the total number of iterations may be reduced.

Thus, using the Lorenz attractor as a test case, the fundamental principles underpinning the 
reduction method were effectively validated.

4. Group  deletion  of  model  elements

Removing model elements one at a time at each reduction step requires too much time to reduce 
complex models with a large number of elements. The reduction process  can be  accelerated 
by group removal of elements. You just need to make sure that the group you are deleting does not 
have the necessary model elements.

Fig.  2  shows  that  the  size  of  the  relative  deviation  region  (RDR)  of  elements  can  change  
significantly during the reduction process. In the test case of the Lorentz attractor the necessary 
elements are known, and it is possible to study the change in their RD in the process of reduction. 
It turned out that the RD of the necessary elements is always less than the middle of the RDR at 
any of its sizes, The same conclusion is obtained for other test models [5]. 

This means that you can delete a group of elements with an RD greater than the middle of the 
RDR at any reduction step except for the last ones, when this criterion does not work. It is only 
necessary to select the minimum size of the group to be removed in order to successfully complete  
the reduction process.

Fig. 4 shows the change in the error of the model coefficients when deleting elements with a 
minimum group size of 4. The lacunaes correspond to three group deletions with group sizes of 13, 
4, and 4 elements. The reduction process accelerated by 49%. If you reduce the minimum size of the  
deleted group to 3, the reduction process is not successful.

In the publication [6], on the basis of the principle of reduction, group removal of elements  
without any justification is proposed.



0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7
Coefficients Restoring Midle Relative Error

Figure 4: Changing the coefficients reproduction relative error of the model (6) 
in the process of groupe reduction

3.Conclusions

The improvement of mathematical models using the principle of reduction is proposed. The 
improvement consists in the group removal of unnecessary elements of models.

Using the example of a test model, it is shown how to form a group of deleted elements without 
the necessary model elements.
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