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Abstract
Bioreactors play a crucial role in making industrial biotechnological processes possible by providing a 
tool for creating and maintaining an optimal environment for proteins, cells, and cell cultures to grow and 
function  in.  In  most  cases,  the  overall  technical  and  economic  performance  of  an  industrial 
biotechnological process heavily depends on the efficiency of utilized bioreactors; thus, optimizing their 
operation is of great theoretical and practical interest. However, due to the highly complex and stochastic 
nature  of  bioprocesses,  many  issues  arise  during  the  development  and  implementation  of  their 
autonomous control systems.
This article analyzes the main challenges associated with the development of  autonomous bioreactor 
controllers, reviews the most prominent ways of tackling them with reinforcement learning, and presents 
an implementation of an offline-to-online memory-based RL controller applied for the custom simulation 
of a backer yeast fed-batch bioreactor with a partially observable state.
Results show that pretraining on approximate simulations can be successfully applied to increase the 
generalization capabilities and convergence speed of a memory-based RL agent in the context of partially 
observable bioprocess control, reducing the time required to reach high rewards. However, such questions 
as avoiding harmful overfitting during the pretraining and implementing an efficient memory mechanism 
for an agent remain open.
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1. Introduction

Bioreactors  are  indispensable  in  industrial  biotechnology:  they  are  used  to  produce 
vaccines,  antibiotics,  biofuels,  food,  and  beverages,  synthesize  complex  proteins  and 
enzymes, process waste, grow tissues,  organs, and more [1, 2, 3]. In the vast majority of 
cases,  it  is  the  efficiency  of  the  bioreactor  that  has  a  decisive  impact  on  the  overall 
technical and economic performance of the production process [4]. That is why creating 
flexible  and  effective  bioreactor  control  systems  is  a  pressing  problem  the  solution  of 
which can affect many areas of human life.

However,  in  practice,  a  functioning  bioreactor  is  an  extremely  complex  stochastic 
dynamic system with a high degree of nonlinearity. Many factors can influence the course 
of a bioprocess both at the macroscopic level  (substrate absorption,  oxygen saturation, 
accumulation of growth inhibitors, etc.) and at the microscopic level of individual cells [5, 
6]; there are significant limitations in the ability to measure the actual state of the system 
[6]; each bioprocess requires its specific parameters to be taken into account, and each 
bioreactor is different from the others, as it is specially designed to solve particular tasks 
[3]. In addition, we never know the exact model of the underlying bioprocess, and finding 
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an  approximate  model  that  aligns  with  the  limited  experimental  data  can  be  quite 
challenging  [7].  That  is  why  such  modern  process  control  methods  as  Proportional-
Integral-Derivative (PID), Fuzzy Logic Control (FLC), and Model Predictive Control (MPC), 
despite their widespread use, are often unable to provide optimal control of bioprocesses 
due to their limitations or require an accurate mathematical model, which in most cases is 
extremely difficult to build [8]. 

This has led to growing scientific interest in reinforcement learning (RL) in the context 
of  bioreactor  control  [9,  10,  11],  thanks to  which the optimal  control  problem can be 
considered  as  a  Markov  Decision  Process  (MDP)  in  which  an  agent  tries  to  learn  to 
maximize the cumulative reward it receives when interacting with a complex, uncertain 
environment [12]. Extensive experience in applying RL in various industrial environments 
has  shown  that  RL  controllers  are  able  to  outperform  traditional  methods  in  control 
accuracy and speed,  have an outstanding ability  to generalize  and learn without prior 
knowledge and models built by experts [13].

Therefore, this article aims to review the modern experience of using reinforcement 
learning  in  the  context  of  autonomous  bioreactor  control,  as  well  as  common related 
problems and ways to solve them, synthesize a practical approach to implementing an RL-
controller,  and  test  it  on  the  simulation  of  a  fed-batch  baker  yeast  bioreactor  with  a 
partially observable state.

2. Related Work

Treloar  et  al.  [14]  investigated  the  possibility  of  utilizing  DQN  to  effectively  control 
bioprocesses  where  several  microbial  cultures  coexist  simultaneously.  The  authors 
empirically proved the algorithm's robustness to different initial conditions, demonstrated 
the possibility of obtaining a sufficiently good policy in 24 hours with the help of the 
parallel use of 5 bioreactors, and even showed the ability of an RL agent to perform control 
with  higher  efficiency  than  a  traditional  PID  controller  as  measurement  frequency 
decreases.

Authors of [15] have successfully applied Deep Deterministic Policy Gradient (DDPG) 
to  control  the  temperature  of  an  ethanol  fermenter  (simulation),  demonstrating  faster 
convergence and higher control precision in comparison with DQN, as well as its ability to 
effectively react to random disturbances in the force and temperature of the incoming flow, 
quickly returning the system to the desired state. Several sources describe the successful 
application of an improved version of DDPG – T3D (Twin Deep Delayed Deterministic 
Policy  Gradient)  for  controlling  bioreactors  and  wastewater  treatment  systems 
(simulations) [16, 17, 18] and its ability to converge to better policies.

Soft Actor-Critic is a widely used RL algorithm that often demonstrates state-of-the-art 
performance [19]. SAC effectively works with continuous observation and action spaces, 
utilizes  the  stochastic  policy,  which  increases  the  robustness  to  uncertainties,  and  the 
maximum entropy framework with automatic temperature adjustment, which provides a 
more  efficient  environment  exploration  strategy.  In  addition,  it  uses  all  the  successful 
architectural decisions of the algorithms discussed above: off-policy learning, replay buffer, 
Actor-Critic design, double Q-functions, target networks, soft update, etc.

Performance comparison of PG, DQN, A2C, DDPG, and SAC algorithms applied to such 
bioreactor control tasks as valuable product maximization and maintaining the biomass 
concentration  at  a  fixed  level  demonstrated  that  the  Actor-Critic  architecture  is 
significantly more effective than value-based and policy-based methods separately,  and 



among all the algorithms implementing it, SAC had the best performance in terms of the 
convergence speed and control efficiency [20]. In another study, SAC outperformed TRPO, 
PPO, and TD3 in the task of HVAC control [21].

In  practice,  despite  the  availability  of  powerful  algorithms,  there  is  often a  lack  of 
available data for offline training of RL controllers, while the cost of online training is too 
high. The situation is further complicated by the complexity of bioprocesses, which makes 
it  challenging  to  create  high-quality  mechanistic  models  and  simulations  of  them. 
Therefore, hybrid approaches that can provide a compromise by combining the best of 
mechanistic and data-driven approaches are of particular interest, despite the fact that, as 
pointed out by Monteiro and Kontoravdi, “yet it is unclear how best to integrate these two 
components  and  how  to  account  for  plant-model  mismatch  that  characterizes 
bioprocesses” [9].

One promising way to solve this problem is offline-to-online reinforcement learning, 
which  combines  the  stage  of  offline  pretraining  on  available  data  or  approximate 
simulation with online adaptation in the real system. And while pretraining is widely used 
in other areas of ML, offline-to-online reinforcement learning is a relatively new area with 
many unique problems that are being explored in detail in [22].

In the context of this paradigm, an interesting approach is proposed by Pandian et al. 
[23].  The authors combine inverse neural  networks (INN) and RL, but unlike previous 
works on similar topics, the separately trained inverse network is not used as a direct 
policy-function  but  as  a  tool  to  initialize  the  agent's  Q-table.  This  hybrid  approach 
simultaneously reduces the requirements for the amount of existing data (a disadvantage 
of  INN)  and  speeds  up  the  convergence  of  the  agent.  The  authors  demonstrated  the 
effectiveness of the described approach in a real-world laboratory setup.  However,  the 
disadvantages of the proposed algorithm are the requirements to use tabular Q-Learning 
and  discretize  continuous  variables,  which  makes  it  hard  to  apply  for  solving  more 
complex continuous control problems due to the so-called curse of dimensionality.

Petsagkourakis  et  al.  [24]  also  propose  the  use  of  the  staged integration of  the  RL 
controller, in which, in the first stage, a simple mechanistic approximation of the target 
process model is used for offline pretraining of the Policy-Gradient agent; in the second, 
some network  parameters  are  frozen  and  the  network  is  additionally  trained  on  data 
obtained from the real system; and in the third, the pretrained RL controller is used to 
control a real system in online mode.

Another  critical  problem that  arises  in  the  development  of  autonomous  bioprocess 
controllers is the inability to fully measure the actual state of the system. [6, 25]. This 
transforms the control task from MDP into Partially Observable Markov Decision Process 
(POMDP), which is formulated as a 6-tuple , where  are defined as in MDP, O is a set of 

possible observations, and  is an emission function that determines which observations are 
available for an agent, given the current state and the chosen action. Thus, the RL agent is 
faced with finding an optimal policy that maximizes the expected sum of rewards under 
conditions of incomplete information.

The  dominant  way  to  solve  this  problem  is  via  the  memory-based  reinforcement 
learning – augmentation of the RL agent with a sequence model, mainly in the form of a 
recurrent  neural  network  [26],  or  a  transformer  [27],  which  provides  the  agent  with 
“memory”,  thanks to which it  can approximate the system’s dynamics and the current 
state based on the history of observations. Some of the algorithms developed with  this 
principle in mind are LSTM-TD3 [28], BSAC [29], and an open-sourced family of recurrent 



versions of the most popular RL algorithms, which are described and compared in [30]. 
Out of the latter, RSAC with LSTM layers demonstrated the best performance.

Therefore, considering the effectiveness of the offline-to-online training approach and 
the ability of memory-based RL algorithms to capture the latent system’s dynamics, as well 
as the advantages of Soft Actor-Critic (and the frequent emergence of new modifications of 
this algorithm), the problem of developing a method for the staged integration of RSAC for 
autonomous bioreactor control becomes relevant.

3. Combining Offline-to-online and POMDP

3.1. Staged Integration

The staged integration of the Recurrent Soft Actor-Critic bioreactor controller is proposed 
to be conducted in the following way:

1. Convert the approximate mechanistic model of the target bioprocess to the form of 
POMDP and construct an RL environment based on it. Many industrial bioreactors 
are  already  operated  by  MPC-controllers  that  rely  on  empirically-derived 
mathematical models, but if the approximate model is missing, it must be created.

2. Create the RSAC agent and tune its hyperparameters, e.g., the number and size of 
hidden layers, learning rates, trajectory size, rate of weight updates, etc.

3. Pretrain the agent on several deterministic simulations with simpler dynamics or 
slightly  different  parameters  to  promote  a  better  generalization  of  biomass 
concentration change laws to obtain a more flexible initial policy.

4. Pretrain  the  agent  on  the  original  simulation  with  added  random  noises  and 
disturbances.

5. If real data is available, pretrain the agent using it via loading it into the agent’s 
replay buffer in the form of 4-tuple 

6. Integrate the RL controller into the real system and for online finetuning.

This approach allows for taking maximum advantage of the available knowledge about 
the real system. Thanks to the pretraining a good initial approximation of an ideal control 
policy is  obtained,  which is able to speed up the algorithm’s convergence,  improve its 
robustness to random noises and disturbances, lower the need for costly exploration of the 
environment  and  probability  of  bringing  the  bioprocess  to  irreversible  critical  states, 
because the agent, thanks to prior knowledge, will avoid completely unpromising actions 
even during exploration.
3.2. Custom POMDP Environment

Approbation  of  the  proposed  method's  effectiveness  in  maintaining  a  biomass 
concentration at a fixed level was conducted with the utilization of a fed-batch baker’s 
yeast bioreactor simulation based on a mathematical model described and used by Pandian 
and Noel in [27].

This  model  was  chosen  because  despite  the  small  number  of  its  parameters  and 
controlled variables, it still preserves all the characteristic features of a complex nonlinear 
system,  is  easy  to  modify,  and  is  based  on  the  Monod  equation,  which  describes  the 
cellular growth dynamics and is widely used in environment engineering.

Model’s dynamics is defined by the system of two coupled differential equations (1), the 
first of which describes the rate of change of biomass concentration x1, and the second – 



substrate concentration  x2.  Table 1 contains the description and values of the 

model parameters we used during the method’s approbation.

(1)

Considering the problem as a Markov Decision Process, the system’s state consists of 
biomass  and  substrate  concentrations  in  the  vessel   while  the  action  is 
substrate concentration in the feed  . As in the original work, the reward 
function R is defined as an absolute error between the real and desired values of biomass 

concentration (2). 

(2)

However,  unlike  the  original  implementation  of  the  environment,  we  remove  the 
assumption  that  the  current  substrate  concentration  in  the  bioreactor  is  an  observed 
variable,  turning the control  task from MDP to POMDP. This way, the set of possible 
observations becomes 
and  emission  function can be defined as in (3).

(3)

where ϵ  is random Gaussian noise with mean 0 and standard deviation σ Z.

Table 1
Parameters of the Mathematical Model of the Bioreactor

Symbol Meaning Value

x1 Biomass concentration (g/l)
Target variable, initial 

x2 Substrate concentration (g/l)
Latent variable, initial
 

u1 Dilution factor (h−1) 0.1 

u2 Substrate in the feed (g/l)
Action variable, 

θ1. . 4 Other process parameters  

Target biomass concentration (g/l) 7.5 

σ Z
Observation noise deviation (g/l)

Also, in contrast with the original work, during training the environment is initialized 
with random values  at the beginning of every episode, where 

 is a continuous uniform distribution bounded by the interval   Such an 

approach allows the agent to learn how to quickly restore the system's desired state in case 
of any random disturbances.



4. Results

4.1. Bioprocess simulations

We used three simulations to test our method: one stochastic (TRUE), which imitates the 
real bioprocess, and two auxiliary deterministic (AUX1, AUX2), parameters of which were 
slightly changed with respect to TRUE. Simulations were implemented with the help of 
Gymnasium and odeint  function from scipy Python package as  a  differential  equation 
system solver. Values of the parameters of each simulation are listed in Table 2.

Table 2
Parameters of True and Auxiliary Simulations

Parameter TRUE AUX1 AUX2
θ1 0.31 0.34 0.28
θ2 0.18 0.16 0.20
θ3 0.55 0.60 0.50
θ4 0.05 0.03 0.07
σ Z 0.05 0 0

4.2. Comparison of MDP- and POMDP-oriented algorithms

At first, to assess the general ability to maintain the biomass concentration at a fixed level 
under conditions of limited observability, the performance of SAC and RSAC algorithms 
was compared when applied to fully and partially observable versions of TRUE simulation 
respectively. In both cases, training lasted 50 episodes with an environment rollout length 
of 160 and batch/trajectory size of 16. Both environments were randomly initialized at the 
beginning of each episode to improve the flexibility of the policy and its robustness to 
disturbances and untypical states of the system.

To evaluate how quick deviation from the desired state can be eliminated in both cases 
after sufficient training, 1000 test environment rollouts were performed using the frozen 
latest  policies.  The  mean  average  error  (MAE)  between  actual  and  desired  biomass 
concentration was recorded during each rollout. The mean and standard deviation of MAE 
of 1000 tests are listed in Table 3.

Table 3
MAE of Ideal and Real Biomass Concentration for Agents with Different Observability

Observability Partial Full
Mean 1.12404 0.93135

Std. dev. 0.47539 0.50121

4.3. Integration of the pretrained agent

To check the convergence speed of the algorithm with the proposed approach, sequential 
pretraining of the RSAC agent was performed with the update period of 4 steps (hours) on 
deterministic environments AUX1 and AUX2 during seven episodes (week equivalent) 24 
steps each (day equivalent), and its application to TRUE environment lasting 48 steps. 

The 4-hour weight update period was chosen as it was the smallest trajectory size the 
algorithm  could  converge  with.  The  higher  update  frequency  decreases  the  agent’s 



reaction time, which determines how quickly it can adapt to changes in the environment. 
However, if the update interval is too small, trajectories in the replay buffer become too 
short for the sequence model to accurately approximate the environment dynamics from.

For comparison, RSAC without pretraining was also applied to the TRUE environment. 
Figure 2 illustrates the reward dynamics of each algorithm during the online training (left) 
and the test 200-step rollout of their frozen latest policies (right).

It can be seen that the agent pretrained on AUX1 and AUX2 simulations reached the 
reward plateau after 6 hours of operation of the simulated bioreactor, which took 14 hours 
for an agent without pretraining. The performance indicators of the algorithms with and 
without pretraining are given in Table 4.

 

Figure 1: Rewards achieved during the online adaptation (left) and the dynamics of the absolute 
error value during the last policy rollout (right).

It was interesting to note that after reaching the plateau, the spread of rewards around 
the target value was slightly greater for the pretrained agent, which can be explained by 
the fact that during the fine-grained adjustment of the value of the target variable, it was 
hindered by previous experience in contrast to the agent without pretraining. This effect 
became  more  pronounced  with  the  increase  in  simulation  pretraining  episodes  and 
gradually disappeared with further online training, although the pretrained agent always 
converged  to  small  absolute  error  values  faster  and  better  coped  with  random 
perturbations.  Given  this  fact,  we  can  conclude  that  when  training  for  the  task  of 
maintaining biomass concentration (or any other parameters)  at  a fixed level,  it  is  not 
worth doing long environment rollouts so that the agent can focus more on overcoming 
disturbances and world-model mismatches then on mastering the specific environment. 
Also, if necessary, additional regularization can be used during the simulation pretraining 
stage, which was not investigated in this work.

Table 4
Performance Metrics of Online-Only and Pretrained RL-Controllers

Pretraining No Yes
MAE 1.38497 0.97132
MSE 4.40333 2.62941
ITAE 19.50145 15.07084
ITSE 28.66606 16.4545



5. Conclusion

This  article  reviews  key  challenges  in  developing  autonomous  bioreactor  control 
systems,  including  high  complexity,  non-linearity,  stochasticity,  limited  system 
observability, measurement errors, and insufficient data—factors that complicate accurate 
modeling  and  control.  The  novelty  of  the  study  lies  in  the  introduction  of  a  hybrid 
approach  to  RL-based  smart  controller  development  that  can  help  resolve  the 
abovementioned problems via  the  combination of  memory-based RL,  staged offline-to-
online  integration,  and  (Recurrent)  Soft  Actor-Critic  algorithm.  Approbation  of  the 
effectiveness  of  the  proposed  method  was  performed  by  applying  an  RSAC  agent, 
pretrained on two approximate deterministic simulations, to control a simulation of a fed-
batch baker’s yeast bioreactor with a partially observable state. Experiments demonstrated 
the ability of the agent created this way to adapt to the real environment and bring the 
system to the desired state much faster (6 hours vs. 14 without pretraining).
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