
On the Vulnerability of Modern Microservice
Frameworks
Tamara Vukadinović1, Anđela Grujić1, Marko Gorišek1, Jovana Jović1,*, Milan Tančić2 and
Nemanja Zdravković1

1Faculty of Information Technology, Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000 Belgrade, Serbia
2Academy of Technical and Vocational Vocational Studies - Pirot Section, 18300, Pirot, Serbia

Abstract
Software architecture based on microservices has emerged as a leading approach to building scalable, flexible,
and independently deployable software systems. Its modular design allows organizations to enhance agility,
support continuous deployment, and respond swiftly to evolving business requirements. However, despite these
advantages, microservices introduce a unique set of security vulnerabilities due to their distributed and decen-
tralized nature, complex inter-service communications, and dynamic orchestration environments.

This paper presents a comprehensive review of peer-reviewed studies addressing security vulnerabilities in
microservice-based systems. Drawing from academic and empirical studies, we employed a rigorous filtering
process to exclude non-English publications, duplicate entries, and studies lacking direct relevance to microser-
vice security. The selected works were then analyzed and synthesized, in order to uncover the most critical
vulnerabilities across six key domains: network and communication, data consistency and integrity, authentica-
tion and authorization, deployment and orchestration, heterogeneous features, and DevOps practices.

In addition to summarizing the state of the art, we extend the current literature by correlating these vulner-
abilities with empirical insights from real-world migration practices toward microservices, based on industrial
surveys and case studies. Our analysis identifies gaps between theoretical vulnerability taxonomies and the
challenges faced by practitioners during system decomposition, data migration, and secure deployment.

Finally, we propose a set of mitigation techniques grounded in both academic research and industrial best
practices. These recommendations aim to assist software architects, developers, and security professionals in de-
signing and maintaining secure microservice-based systems, ultimately contributing to more robust and resilient
software architectures.

Keywords
Microservice, cybersecurity, vulnerability analysis

1. Introduction

Microservice-based architectures have emerged as a modern software development paradigm, primarily
designed to address the limitations of various types of monolithic architectures. By decomposing
complex applications into loosely coupled and independently deployable services, microservices enhance
scalability, fault isolation, and deployment flexibility. This design approach supports continuous
integration and delivery (CI and CD, respectively), promotes autonomous team development, and
facilitates rapid response to changing business requirements [1, 2].

However, even with the mentioned benefits, the shift from monolithic to microservice-based systems
introduces a wide range of new challenges, especially regarding system complexity, data management,
and perhaps most important - security. The distributed nature of microservices leads to increased surface
area for attacks, more intricate communication patterns, and added dependencies on orchestration
platforms, such as Kubernetes and Docker Swarm [1, 3]. With services running in isolated containers or
virtualized environments, where communication is achieved over public or internal APIs, microservice

BISEC’2024: 15th International Conference on Business Information Security, November 28-29, 2024, Niš, Serbia
*Corresponding author.
" tamara.vukadinovic@metropolitan.ac.rs (T. Vukadinović); andjela.grujic@metropolitan.ac.rs (A. Grujić);
marko.gorisek.4310@metropolitan.ac.rs (M. Gorišek); jovana.jovic@metropolitan.ac.rs (J. Jović);
milan.tancic@akademijanis.edu.rs (M. Tančić); nemanja.zdravkovic@metropolitan.ac.rs (N. Zdravković)
� 0009-0001-4147-390X (T. Vukadinović); 0009-0004-5713-6248 (A. Grujić); 0009-0003-9765-5045 (M. Gorišek);
0000-0002-4204-0233 (J. Jović); 0009-0002-5184-1558 (M. Tančić); 0000-0002-2631-6308 (N. Zdravković)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:tamara.vukadinovic@metropolitan.ac.rs
mailto:andjela.grujic@metropolitan.ac.rs
mailto:marko.gorisek.4310@metropolitan.ac.rs
mailto:jovana.jovic@metropolitan.ac.rs
mailto:milan.tancic@akademijanis.edu.rs
mailto:nemanja.zdravkovic@metropolitan.ac.rs
https://orcid.org/0009-0001-4147-390X
https://orcid.org/0009-0004-5713-6248
https://orcid.org/0009-0003-9765-5045
https://orcid.org/0000-0002-4204-0233
https://orcid.org/0009-0002-5184-1558
https://orcid.org/0000-0002-2631-6308
https://creativecommons.org/licenses/by/4.0/deed.en


systems are susceptible to configuration errors, insecure interfaces, broken authentication, and service-
specific vulnerabilities [4].

Moreover, the adoption of DevOps practices and CD pipelines, which may be essential for mi-
croservice agility, inadvertently introduce risks if security checks and governance mechanisms are
insufficiently enforced [1]. Security issues may also arise from inconsistencies in access control, lack of
centralized monitoring, improper handling of service-to-service authentication, or shared infrastructure
vulnerabilities [5].

While considerable research has been conducted on microservice design and adoption, the topic
of microservice vulnerabilities has only recently gained focused academic attention. A literature
given in [1] synthesized insights from 62 peer-reviewed studies, identifying 126 distinct vulnerabilities
categorized across six core domains. Their study combined a systematic literature review with empirical
analysis of benchmark systems to derive both a conceptual taxonomy and real-world vulnerability
examples.

To complement this taxonomy with industry perspectives, this paper also draws from the empirical
survey conducted by the authors of [2], who interviewed and surveyed practitioners involved in the
migration from monolithic and SOA-based systems to microservices. Their findings highlight practical
security and engineering challenges, such as tightly coupled legacy code, difficulty in defining service
boundaries, data migration issues, and insufficient initial infrastructure for secure deployment. These
issues, while architectural in nature, often intersect directly with security vulnerabilities observed in
practice.

In this paper, we conduct a targeted literature review of 32 selected peer-reviewed studies on
microservice vulnerabilities. Our inclusion criteria focused on papers published in English, with
duplicate and non-relevant sources excluded through manual filtering. Based on this review, we identify
key vulnerability types, provide a synthesized overview of current mitigation efforts, and propose
practical security strategies. Our goal is to bridge the gap between theoretical taxonomies and real-
world deployment challenges, offering actionable guidance for developers, architects, and researchers
concerned with securing microservice-based systems.

The rest of the paper is organized as follows. Section 2 gives a brief overview on microservices,
their advantages and disadvantages over other types of software architectures, mainly comparing with
the monolithic architecture. In Section 3, we present four methodologies and methods of obtaining
and filtering papers for the review. Based on the identified vulnerabilities, Section 4 proposes some
mitigation techniques. Finally, Section 5 concludes the paper.

2. Microservice Architecture: Advantages, vulnerabilities and
Trade-offs

Microservice architecture design presents a paradigm shift from traditional monolithic software sys-
tems. Unlike monoliths, where all components are tightly integrated into a single deployable unit,
microservices divide a system into a set of small, usually fully independently deployable services, where
each service is responsible for a distinct business capability [1, 2]. This decentralized approach supports
scalability and flexibility; However, it introduces a range of operational, architectural, and, for the
purpose of this paper, security-related challenges that must be addressed holistically.

In monolithic systems, application components such as business logic, user interface, and data access
layers are bundled and deployed as a single executable unit. While this model simplifies development
and deployment in early stages, it often becomes a bottleneck as systems grow in complexity. Common
issues include tight coupling between modules, difficulties in scaling individual components, limited
fault tolerance, and long release cycles due to integration dependencies [3, 6, 7].

Microservices, by contrast, break down applications into loosely coupled services, each running in
its own process and communicating through lightweight protocols such as HTTP/REST or messaging
queues. These services are organized around business domains and can be developed, deployed, and
scaled independently [1, 4]. This model allows teams to work in parallel, adopt polyglot technology



stacks, and rapidly respond to changes in user demands or business strategy.
Table 1 and diagram summarize key differences between monolithic and microservice architectures:

Table 1
Comparison of Monolithic and Microservice Architectures

Characteristic Monolithic Architecture Microservice Architecture

Architecture Style Single-tiered application Decentralized services
Deployment Deployed as one unit Each service deployable indepen-

dently
Scalability Scale as a whole Individually scalable
Fault Isolation Harder to isolate faults High fault isolation
Technology Stack Usually one stack Polyglot programming supported
Development Teams One large team Smaller, independent teams
Data Management Centralized database Distributed databases
Release Cycle Slower, coordinated releases Frequent, independent releases
Complexity Simple to develop initially Complex to manage
Security Surface Smaller surface area Larger, distributed surface

2.1. Advantages of using Microservices

One of the most notable advantages of using microservice-based architecture in software development
is scalability. Since services are deployed independently, only the components that experience increased
load need to be scaled, resulting in the optimization of resource usage and cost. For example, an
e-commerce platform can scale its payment and checkout services during peak shopping hours without
affecting the product catalog or recommendation engine [8]. In addition, each microservice can
be deployed on its own timeline, allowing for CD and faster release cycles. This agility in service
deployment is essential in dynamic business environments and supports A/B testing, feature toggling,
and blue-green deployments with minimal risk [5]. Furthermore, by isolating individual services,
microservice-based architectures increases overall system resilience. A failure in one service does not
necessarily bring down the entire application. Circuit breakers, retries, and timeout mechanisms further
enhance reliability, especially when combined with service mesh technologies like [9, 10].

Software development teams are free to choose the most appropriate language, framework, or
database for a given service, based on the requirements and team expertise. This polyglot nature
encourages innovation but requires well-defined API contracts and strong observability to maintain
coherence [11]. Finally, microservices align well with DevOps practices. Independent teams can own
the lifecycle of their services—from development and testing to deployment and monitoring. This
fosters accountability, autonomy, and faster issue resolution, reducing communication overhead and
dependency bottlenecks [12, 13, 14].

2.2. Challenges and Disadvantages of using Microservices

Despite the given benefits, the adoption of microservices also has significant challenges, particularly
in complexity management, but also in security. This approach is not a one-size-fits-all solution. It
is best suited for large-scale applications with multiple teams, independent domain boundaries, and
requirements for high availability and continuous delivery. For small-scale applications or teams without
prior experience in distributed systems, the overhead may outweigh the benefits.

For instance, a system which is composed of dozens or even hundreds of microservices is by default
much more complex than a monolith-based system. Issues such as service discovery, distributed tracing,
configuration management, and version compatibility arise in these systems, which must be addressed
using infrastructure tools that are often unfamiliar to development teams [1, 15].

Differently from monolith-based systems, that use a single centralized database, microservices high-
light decentralized data ownership; However, this introduces the challenge of maintaining consistency



across those services without violating the principles of autonomy. Distributed transactions are discour-
aged, and eventual consistency models require careful design of compensating actions and idempotent
operations [16].

Microservices, due to their distributed nature, expose a significantly larger surface area for security
threats. Each service exposes interfaces that must be properly secured against unauthorized access,
injection attacks, and denial-of-service (DoS) threats. Authentication and authorization must be con-
sistently enforced across services, often using tokens like JWT and identity providers like OAuth2,
OpenID Connect [17, 18]. Additionally, misconfigurations in container orchestration platforms like
Kubernetes may introduce vulnerabilities that are hard to detect in traditional testing [19].

When it some to testing these systems, testing microservice-based ones is considerably more difficult
due to their asynchronous interactions and interdependencies. Unit testing is insufficient; integration
and end-to-end testing must be coordinated across multiple services. Debugging failures requires
sophisticated distributed tracing and log aggregation tools like Jaeger, Zipkin, or ELK stacks [20, 21, 22].

Finally, managing the lifecycle of microservices requires advanced deployment strategies such as
canary releases, service meshes, and configuration injection. Real-time observability becomes crucial
to identify performance bottlenecks and failures. Tools such as Prometheus, Grafana, and Fluentd are
often essential in production setups [15].

3. Review methodology

This Section outlines the methodology used to conduct a structured literature review on security
vulnerabilities in microservice architectures. The objective of the review was to identify and analyze peer-
reviewed academic works that provide insights into the types, causes, and mitigations of vulnerabilities
within microservice systems. Our approach was grounded in established guidelines for systematic
literature reviews in software engineering, particularly those proposed in [23]. The methodology
involved four key steps – paper collection, inclusion and exclusion filtering, classification and taxonomy
alignment, and finally synthesis of vulnerability domains.

The initial corpus of literature was collected from reputable scientific databases including IEEE
Xplore, ACM Digital Library, SpringerLink, ScienceDirect, and Scopus. The search was conducted using
a combination of keywords such as “microservices”, “vulnerabilities”, “security”, “threats”, “architecture”,
and “cybersecurity”. Boolean operators were used to refine the search queries (e.g., “microservices AND
security vulnerabilities”). The search was restricted to publications written in English and published
between 2015 and 2024, reflecting the growing maturity of microservice adoption in both industry
and academia during this period. The initial search yielded a total of 212 articles. Duplicates were
automatically removed based on DOI and title matching.

The following inclusion criteria were applied to filter the papers:

• The study must focus on microservice architecture or systems explicitly using MSA principles.
• The study must address security vulnerabilities, threats, or defense mechanisms.
• The study must be peer-reviewed (conference papers, journal articles, or book chapters).
• The study must provide either empirical evidence, conceptual frameworks, or case studies.

Exclusion criteria included:

• Non-English publications.
• Non-peer-reviewed materials (e.g., blogs, whitepapers, editorials).
• Studies focusing solely on performance, deployment, or development without security context.
• Papers dealing exclusively with general cloud security or SOA without clear microservice rele-

vance.

After applying the above filters, a refined set of 62 papers was obtained. This set includes theoretical
analyses, vulnerability taxonomies, tool evaluations, and empirical case studies.



To organize the selected studies, we adopted the vulnerability taxonomy proposed by Jayalath et al.
[1], which categorizes vulnerabilities into six key domains:

1. Network and Communication
2. Data Consistency and Integrity
3. Authentication and Authorization
4. Deployment and Orchestration
5. Heterogeneous Features
6. DevOps and CI/CD Practices

Each paper was manually analyzed and mapped to one or more of these categories based on the
primary security concern it addressed. Where necessary, additional tags were added for cross-cutting
concerns such as service mesh integration, API gateways, or container-specific threats.

This classification helped structure the analysis in a consistent and reproducible manner, ensuring
that findings from disparate studies could be compared and synthesized across similar vulnerability
domains. In the final phase, the selected papers were subjected to qualitative synthesis. Papers were
grouped according to their mapped taxonomy categories, and their findings were aggregated to identify
recurring vulnerability patterns, critical risks, and proposed mitigations.

Special attention was given to studies that included empirical data—such as benchmarks, case studies,
or vulnerability scans on real systems—as these provide practical grounding to otherwise theoretical
models. Additionally, insights from the industrial survey by Di Francesco et al. [2] were integrated
to validate whether the theoretical vulnerabilities align with practical challenges encountered during
microservice migration and operation. The synthesis phase also involved identifying gaps in the
literature, such as underexplored areas. e.g., heterogeneous deployment environments, dynamic service
composition, or lack of validated mitigation strategies for certain vulnerability types. These gaps
informed the recommendations and future work directions discussed in subsequent sections.

3.1. Network and Communication

Microservices rely heavily on network communication between decentralized services. This inter-
connectivity increases the system’s attack surface, especially when services communicate over public
networks or poorly secured channels. Improper encryption, weak segmentation, and vulnerable service
discovery mechanisms contribute significantly to this category. This domain can be further broken
down to several key sub-domains:

• Insecure Communication Protocols: Use of unencrypted HTTP or outdated TLS versions [1, 24].
• Man-in-the-Middle Attacks: Exploited due to weak certificate validation or missing TLS [25].
• Improper Input Validation in APIs: APIs exposed to injection and parsing attacks [26].
• Traffic Hijacking: Weak routing or DNS configurations allow interception [27, 28].

3.2. Data Consistency and Integrity

Data consistency is challenging in microservice systems that use distributed databases or asynchronous
messaging. Lack of strong synchronization, improper data validation, and transactional boundaries
across services often introduce subtle but critical vulnerabilities. Sub-domain include the following:

• Race Conditions and Concurrency Issues: Concurrent writes and updates lead to inconsistent
data states [29, 30].

• Inadequate Transaction Handling: Missing rollback and commit guarantees in distributed work-
flows [31, 32, 33].

• Weak Encryption/Hashing: Use of deprecated or default configurations for data-at-rest security
[34, 35, 36].

• Missing Integrity Checks: Absence of hashing or checksums for critical data [37, 38].



3.3. Authentication and Authorization

Ensuring robust authentication and access control is central to protecting microservices. Due to the large
number of endpoints and services, poorly configured policies or weak identity federation mechanisms
can introduce severe risks. The sub-domains for authentication and authorization are:

• Token Leakage/Reusability: JWT or OAuth2 tokens stored insecurely or logged accidentally
[39, 40, 41].

• Lack of Multi-Factor Authentication (MFA): Single-factor setups are still common in practice
[42, 43].

• Hardcoded Credentials: Credentials embedded in code repositories or container images [36, 44].
• Excessive Privilege and RBAC Flaws: Overly permissive roles and undelegated access controls

[45, 46].

3.4. Deployment and Orchestration

This domain involves vulnerabilities originating from the deployment process, use of containers,
orchestration platforms like Kubernetes, and CI/CD pipelines. Misconfigured infrastructure often serves
as an attack vector. Sub-domains include:

• Insecure Container Images: Base images with known vulnerabilities or outdated libraries [47, 48].
• Privilege Escalation in Pods: Containers allowed to run as root or with host-level privileges [49].
• Misconfigured Orchestration Dashboards: Exposed Kubernetes dashboards without access con-

trols [50, 51].
• Insecure CI/CD Pipelines: Secrets exposed in pipeline logs or insecure runners [52, 53].

3.5. Heterogeneous Features

Microservices are often developed using diverse languages, platforms, and libraries. While this allows
agility, it can introduce inconsistencies in how security is implemented and monitored across services,
with sub-domains:

• Inconsistent Security Practices: Varying standards for authentication, encryption, and logging
[26, 54].

• Outdated/Unsupported Libraries: Use of unmaintained packages with known CVEs [55].
• Platform Misconfigurations: Divergent configurations in cloud environments, containers, or APIs

[56].
• Patch Management Challenges: Difficulty synchronizing patches across decentralized services

[57].

3.6. DevOps and CI/CD Practices

DevOps pipelines are often the backbone of microservice lifecycle management. If not securely config-
ured, these pipelines can introduce vulnerabilities during build, test, or deployment phases. Sub-domains
are:

• Lack of Security Scanning (SAST/DAST): Absence of automated vulnerability checks in CI/CD
[58].

• Improper Secrets Management: Credentials hardcoded in pipelines or stored unencrypted [59].
• Uncontrolled Rollback or Recovery: Lack of safe rollbacks for failed or compromised builds [60].

The summary of the security vulnerability domains and sub-domains are shown in Table 2.



Table 2
Microservice Vulnerability Domains with Subcategories and References

Category Subcategory References

Network and Communication Insecure Communication Protocols [1, 24]
Man-in-the-Middle Attacks [25]
Improper Input Validation in APIs [26]
Traffic Hijacking [27, 28]

Data Consistency and Integrity Race Conditions and Concurrency Issues [29, 30]
Inadequate Transaction Handling [31, 32, 33]
Weak Encryption or Hashing [34, 35, 36]
Missing Integrity Checks [37, 38]

Authentication and Authorization Token Leakage/Reusability [39, 40, 41]
Lack of Multi-Factor Authentication (MFA) [42, 43]
Hardcoded Credentials [36, 44]
Excessive Privilege and RBAC Flaws [45, 46]

Deployment and Orchestration Insecure Container Images [47, 48]
Privilege Escalation in Pods [49]
Misconfigured Orchestration Dashboards [50, 51]
Insecure CI/CD Pipelines [52, 53]

Heterogeneous Features Inconsistent Security Practices [26, 54]
Outdated/Unsupported Libraries [55]
Platform Misconfigurations [56]
Patch Management Challenges [57]

DevOps and CI/CD Practices Lack of Security Scanning (SAST/DAST) [58]
Improper Secrets Management [59]
Uncontrolled Rollback or Recovery [60]

4. Mitigation Techniques

Securing microservice-based systems requires a multilayered approach that integrates security practices
at the architectural, operational, and infrastructural levels. Given the taxonomy of vulnerabilities
previously outlined, this section discusses mitigation strategies that align with each domain, drawing
from peer-reviewed studies, industry best practices, and real-world deployment experiences.

In the domain of network and communication, protecting inter-service communication is critical.
All communication—whether external or internal—must be encrypted using up-to-date protocols such
as TLS 1.2 or higher. The adoption of mutual TLS (mTLS) within service meshes like Istio or Linkerd
has emerged as a preferred approach to authenticate services and ensure message confidentiality and
integrity. API gateways serve as a central enforcement point and should be configured to validate input
schemas, enforce rate limits, and restrict access using IP whitelisting or geofencing mechanisms. In
parallel, service discovery and internal routing must be hardened to prevent hijacking and spoofing
attacks. This can be achieved by using secure service registries, encrypting DNS traffic, and limiting
the exposure of service endpoints through internal-only networking configurations.

Data consistency and integrity pose another critical concern in distributed microservice systems.
To mitigate issues arising from eventual consistency and transactional fragmentation, developers
increasingly rely on design patterns such as the saga pattern, outbox pattern, and compensating
transactions. These approaches allow for logical rollback and coordination across independently
managed services. Sensitive data stored or transmitted between services must be protected using
robust cryptographic mechanisms—AES-256 encryption for data at rest and TLS 1.3 for data in transit
are generally recommended. Furthermore, services should implement hashing and digital signature
mechanisms for critical data flows, especially in contexts such as financial transactions or audit logs.
Concurrency-related vulnerabilities like race conditions can be addressed by applying version-based
optimistic locking or database-level isolation controls to ensure integrity during concurrent operations.

Authentication and authorization in microservices require the adoption of centralized and federated



identity solutions. Modern systems typically integrate with identity providers such as Keycloak, Auth0,
or Azure Active Directory, which offer support for protocols like OAuth2 and OpenID Connect. Security
tokens, such as JWTs, should be short-lived and securely rotated to minimize the risk of token leakage.
Refresh tokens must be protected using secure storage practices, and administrative access should
always require multi-factor authentication (MFA). In environments with numerous services, enforcing
consistent role-based or attribute-based access control (RBAC/ABAC) policies is essential. These access
controls should be configured at both the API gateway level and within service logic, ensuring defense
in depth and limiting the scope of privilege escalation opportunities.

In deployment and orchestration, the security of containerized environments and orchestrators like
Kubernetes is of paramount importance. Containers should adhere to the principle of least privilege,
avoiding the use of root access and restricting kernel capabilities using Linux primitives such as
Seccomp, AppArmor, or SELinux. Container images must be built from minimal, trusted base images
and should be signed using tools such as Cosign or Docker Notary to ensure authenticity. Kubernetes
clusters should be hardened by disabling insecure default features, restricting dashboard access, enabling
audit logging, and enforcing network segmentation via NetworkPolicies. Secrets and credentials must
not be hardcoded in manifests or stored in plaintext environment variables; instead, they should be
managed using dedicated secret management platforms like HashiCorp Vault, AWS Secrets Manager, or
Kubernetes sealed secrets.

The heterogeneity of microservice implementations—often involving multiple programming lan-
guages, frameworks, and deployment environments—poses unique challenges. Organizations must
define and enforce security baselines for each technology stack in use, including standardized practices
for input validation, encryption, and logging. Logging and monitoring should be centralized and uni-
form across services using stacks such as ELK, Prometheus, or Grafana, enabling correlation of events
and early detection of anomalies. Additionally, all service dependencies should be scanned continuously
for known vulnerabilities using tools like Snyk, Trivy, or Dependabot, with automated patching where
feasible. Security as Code practices, such as linting configuration files, scanning infrastructure-as-
code manifests, and applying policy-as-code enforcement (e.g., Open Policy Agent), can help maintain
consistency and prevent drift across diverse environments.

Finally, the DevOps and CI/CD lifecycle represents a frequent source of vulnerabilities when secu-
rity is not embedded from the outset. Static and dynamic application security testing (SAST/DAST)
should be integrated into the CI/CD pipeline, using tools such as SonarQube, OWASP ZAP, or GitHub
Advanced Security to catch vulnerabilities early in the development process. Infrastructure as Code
(IaC) configurations must be version-controlled and scanned for misconfigurations using tools like
Checkov or Terrascan. Secrets management must also be tightly controlled; credentials should never
be stored in plaintext, and pipelines must be instrumented to detect accidental exposure via logs or
commits. Deployment strategies such as canary releases or blue/green deployments enable safe rollouts
and fast recovery, providing resilience in the event of a vulnerability or performance regression in
newly deployed services.

In summary, mitigation of vulnerabilities in microservice-based systems requires comprehensive,
domain-specific techniques that span communication, data, identity, deployment, heterogeneity, and
operations. These controls must not only be technically sound but also automated, auditable, and
consistently applied across the entire software delivery lifecycle to ensure sustainable, scalable security.

5. Conclusion

Microservices have revolutionized modern software engineering by offering scalability, modularity, and
rapid deployment capabilities that far surpass the monolithic model. However, as this paper has shown,
the distributed and decentralized nature of microservice-based systems also introduces a broad spectrum
of security vulnerabilities across multiple architectural and operational domains. Through a systematic
literature review of 32 selected peer-reviewed studies, we identified critical vulnerabilities grouped
into six key domains: network and communication, data consistency and integrity, authentication and



authorization, deployment and orchestration, heterogeneous features, and DevOps/CI/CD practices.
We have examined each of these domains in depth, classifying subcategories and highlighting risks

that emerge from insecure APIs, inconsistent encryption, improper access control, misconfigured
orchestration environments, and insecure automation pipelines. To address these challenges, we
proposed a set of targeted mitigation strategies derived from both academic research and industrial best
practices. These include the use of mutual TLS, centralized identity management, secrets management
platforms, container hardening, policy-as-code enforcement, and the integration of security testing
throughout the CI/CD lifecycle.

Our findings indicate that securing microservices is not a matter of point fixes but requires a holistic,
continuous, and proactive security strategy. This involves collaboration across development, operations,
and security teams to implement consistent and automated safeguards. Moreover, many vulnerabilities
are not the result of obscure technical failures but stem from misconfigurations, inconsistent governance,
and inadequate tooling—problems that can be effectively mitigated with proper processes and security-
by-design thinking.

Future research should focus on extending empirical evaluations of microservice vulnerabilities in
real-world deployments, developing automated and intelligent detection mechanisms, and refining
security frameworks that can adapt to evolving architectures such as serverless computing and edge-
based microservices. As microservices continue to be adopted at scale, a shared understanding between
academia and industry will be essential for building resilient, trustworthy systems.

Acknowledgment

This paper was supported by the Blockchain Technology Laboratory at Belgrade Metropolitan University,
Belgrade, Serbia.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] R. K. Jayalath, H. Ahmad, D. Goel, M. S. Syed, F. Ullah, Microservice vulnerability analysis: A
literature review with empirical insights, IEEE Access (2024).

[2] P. Di Francesco, P. Lago, I. Malavolta, Migrating towards microservice architectures: an industrial
survey, in: 2018 IEEE international conference on software architecture (ICSA), IEEE, 2018, pp.
29–2909.

[3] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina, Mi-
croservices: yesterday, today, and tomorrow, Present and ulterior software engineering (2017)
195–216.

[4] S. Newman, Building microservices: designing fine-grained systems, " O’Reilly Media, Inc.", 2021.
[5] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating to microservices

architectures: An empirical investigation, IEEE Cloud Computing 4 (2017) 22–32.
[6] J. Lewis, M. Fowler, Microservices: a definition of this new architectural term, MartinFowler. com

25 (2014) 12.
[7] V. K. Thatikonda, H. R. V. Mudunuri, Microservices vs. monoliths: Choosing the right architecture

for your project, International Journal of Software Computing and Testing 10 (2024) 31–38p.
[8] C. Richardson, Microservices patterns: with examples in Java, Simon and Schuster, 2018.
[9] R. Chandramouli, Z. Butcher, et al., Building secure microservices-based applications using

service-mesh architecture, NIST Special Publication 800 (2020) 204A.
[10] A. Khatri, V. Khatri, Mastering Service Mesh: Enhance, secure, and observe cloud-native applica-

tions with Istio, Linkerd, and Consul, Packt Publishing Ltd, 2020.



[11] A. Cockcroft, Migrating to Cloud-Native Architecture - Netflix TechBlog, 2016.
[12] N. Forsgren, J. Humble, The role of continuous delivery in it and organizational performance, Fors-

gren, N., J. Humble (2016)." The Role of Continuous Delivery in IT and Organizational Performance."
In the Proceedings of the Western Decision Sciences Institute (WDSI) (2016).

[13] L. Chen, Microservices: architecting for continuous delivery and devops, in: 2018 IEEE Interna-
tional conference on software architecture (ICSA), IEEE, 2018, pp. 39–397.

[14] R. Heinrich, A. Van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. Schulte, J. Wettinger,
Performance engineering for microservices: research challenges and directions, in: Proceedings
of the 8th ACM/SPEC on international conference on performance engineering companion, 2017,
pp. 223–226.

[15] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, omega, and kubernetes, Commu-
nications of the ACM 59 (2016) 50–57.

[16] P. Helland, Life beyond distributed transactions: an apostate’s opinion, Queue 14 (2016) 69–98.
[17] R. F. Cardoso, A performance comparison of authentication and authorization patterns for

microservices applications (2024).
[18] N. Dimitrijević, N. Zdravković, M. Bogdanović, A. Mesterovic, Advanced Security Mechanisms in

the Spring Framework: JWT, OAuth, LDAP and Keycloak, in: Proceedings of the 14th International
Conference on Business Information Security (BISEC 2023), 2024, pp. 64–70.

[19] P. Raj, S. Vanga, A. Chaudhary, Cloud-Native Computing: How to design, develop, and secure
microservices and event-driven applications, John Wiley & Sons, 2022.

[20] G. Hohpe, B. Woolf, Enterprise integration patterns, in: 9th conference on pattern language of
programs, Citeseer, 2002, pp. 1–9.

[21] M. Waseem, P. Liang, G. Márquez, A. Di Salle, Testing microservices architecture-based applica-
tions: A systematic mapping study, in: 2020 27th Asia-Pacific Software Engineering Conference
(APSEC), IEEE, 2020, pp. 119–128.

[22] M. Waseem, P. Liang, M. Shahin, A. Di Salle, G. Márquez, Design, monitoring, and testing of
microservices systems: The practitioners’ perspective, Journal of Systems and Software 182 (2021)
111061.

[23] S. Keele, et al., Guidelines for performing systematic literature reviews in software engineering,
Technical Report, Technical report, ver. 2.3 ebse technical report. ebse, 2007.

[24] E. Paul, O. Callistus, O. Somtobe, T. Esther, K. Somto, O. Clement, I. Ejimofor, Cybersecurity
strategies for safeguarding customer’s data and preventing financial fraud in the united states
financial sectors, International Journal on Soft Computing 14 (2023) 01–16.

[25] B. Ünver, R. Britto, Automatic detection of security deficiencies and refactoring advises for
microservices, in: 2023 IEEE/ACM International Conference on Software and System Processes
(ICSSP), IEEE, 2023, pp. 25–34.

[26] A. R. Nasab, M. Shahin, S. A. H. Raviz, P. Liang, A. Mashmool, V. Lenarduzzi, An empirical study of
security practices for microservices systems, Journal of Systems and Software 198 (2023) 111563.

[27] K. R. Gade, Cloud-native architecture: Security challenges and best practices in cloud-native
environments, Journal of Computing and Information Technology 2 (2022).

[28] T. Theodoropoulos, L. Rosa, C. Benzaid, P. Gray, E. Marin, A. Makris, L. Cordeiro, F. Diego,
P. Sorokin, M. D. Girolamo, et al., Security in cloud-native services: A survey, Journal of
Cybersecurity and Privacy 3 (2023) 758–793.

[29] R. Lu, Detecting race conditions in distributed concurrent systems (2000).
[30] J. C. Pereira, N. Machado, J. Sousa Pinto, Testing for race conditions in distributed systems via smt

solving, in: International Conference on Tests and Proofs, Springer, 2020, pp. 122–140.
[31] A. De Iasio, E. Zimeo, Avoiding faults due to dangling dependencies by synchronization in

microservices applications, in: 2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE, 2019, pp. 169–176.

[32] A. De Iasio, E. Zimeo, A framework for microservices synchronization, Software: Practice and
Experience 51 (2021) 25–45.

[33] X. Gu, Q. Wang, Q. Yan, J. Liu, C. Pu, Sync-millibottleneck attack on microservices cloud archi-



tecture, in: Proceedings of the 19th ACM ASIA Conference on Computer and Communications
Security, 2024, pp. 799–813.

[34] C. S. S. Team, Cryptographic storage cheat sheet, Cryptographic Storage. url:
https://cheatsheetseries. owasp. org/cheatsheets/Cryptographic _ Storage _ Cheat_Sheet. html
(visited on 11/07/2024) (2023).

[35] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, A. Barros, Migrating enterprise legacy source code
to microservices: on multitenancy, statefulness, and data consistency, Ieee Software 35 (2017)
63–72.

[36] U. Zdun, P.-J. Queval, G. Simhandl, R. Scandariato, S. Chakravarty, M. Jelic, A. Jovanovic, Microser-
vice security metrics for secure communication, identity management, and observability, ACM
transactions on software engineering and methodology 32 (2023) 1–34.

[37] T. Yarygina, A. H. Bagge, Overcoming security challenges in microservice architectures, in: 2018
IEEE Symposium on Service-Oriented System Engineering (SOSE), IEEE, 2018, pp. 11–20.

[38] B. Barua, M. S. Kaiser, Blockchain-based trust and transparency in airline reservation systems
using microservices architecture, arXiv preprint arXiv:2410.14518 (2024).

[39] A. Bánáti, E. Kail, K. Karóczkai, M. Kozlovszky, Authentication and authorization orchestrator for
microservice-based software architectures, in: 2018 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, 2018, pp. 1180–
1184.

[40] D. Yu, Y. Jin, Y. Zhang, X. Zheng, A survey on security issues in services communication of
microservices-enabled fog applications, Concurrency and Computation: Practice and Experience
31 (2019) e4436.

[41] A. Chatterjee, M. W. Gerdes, P. Khatiwada, A. Prinz, Sftsdh: Applying spring security framework
with tsd-based oauth2 to protect microservice architecture apis, IEEE Access 10 (2022) 41914–41934.

[42] D. Wang, X. Zhang, Z. Zhang, P. Wang, Understanding security failures of multi-factor authenti-
cation schemes for multi-server environments, Computers & Security 88 (2020) 101619.

[43] A. M. Mostafa, M. Ezz, M. K. Elbashir, M. Alruily, E. Hamouda, M. Alsarhani, W. Said, Strengthening
cloud security: an innovative multi-factor multi-layer authentication framework for cloud user
authentication, Applied Sciences 13 (2023) 10871.

[44] C. K. Rudrabhatla, Security design patterns in distributed microservice architecture, arXiv preprint
arXiv:2008.03395 (2020).

[45] R. A. Al-Wadi, A. A. Maaita, Authentication and role-based authorization in microservice architec-
ture: A generic performance-centric design, Journal of Advances in Information Technology 14
(2023) 758–768.

[46] P. Thakur, N. S. Talwandi, S. Khare, Securing microservice architecture: Load balancing and
role-based access control, in: 2024 IEEE Third International Conference on Power Electronics,
Intelligent Control and Energy Systems (ICPEICES), IEEE, 2024, pp. 1113–1117.

[47] S. Sultan, I. Ahmad, T. Dimitriou, Container security: Issues, challenges, and the road ahead, IEEE
access 7 (2019) 52976–52996.

[48] G. Dell’Immagine, J. Soldani, A. Brogi, Kubehound: Detecting microservices’ security smells in
kubernetes deployments, Future Internet 15 (2023) 228.

[49] A. Sharma, Eliminating Misconfiguration and Privilege Escalation in Docker Images, Ph.D. thesis,
Dublin, National College of Ireland, 2021.

[50] Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin, J. Xu, Ga-par: Dependable
microservice orchestration framework for geo-distributed clouds, IEEE Transactions on Parallel
and Distributed Systems 31 (2019) 129–143.

[51] V. Mahavaishnavi, R. Saminathan, R. Prithviraj, Secure container orchestration: A framework for
detecting and mitigating orchestrator-level vulnerabilities, Multimedia Tools and Applications
(2024) 1–21.

[52] P. Bajpai, A. Lewis, Secure development workflows in ci/cd pipelines, in: 2022 IEEE Secure
Development Conference (SecDev), IEEE, 2022, pp. 65–66.

[53] A. K. Bhardwaj, P. Dutta, P. Chintale, Securing container images through automated vulnerability



detection in shift-left ci/cd pipelines, Babylonian Journal of Networking 2024 (2024) 162–170.
[54] F. Ponce, J. Soldani, H. Astudillo, A. Brogi, Microservices security: Bad vs. good practices, in:

European Conference on Software Architecture, Springer, 2022, pp. 337–352.
[55] S. Pfleger, Data Security in Microservice-Systems, Ph.D. thesis, University of Applied Sciences,

2024.
[56] M. S. I. Shamim, Mitigation of Security Misconfigurations in Kubernetes-based Container Orches-

tration: A Techno-educational Approach, Ph.D. thesis, Auburn University, 2024.
[57] K. A. Torkura, M. I. Sukmana, C. Meinel, Integrating continuous security assessments in microser-

vices and cloud native applications, in: Proceedings of The10th International Conference on Utility
and Cloud Computing, 2017, p. 171–180.

[58] K. Oha, Advancements In Microservice Architectures: Tackling Data Communication, Scalability,
And CI/CD Automation Challenges, Ph.D. thesis, Hochschule Rhein-Waal, 2024.

[59] M. Ahmadvand, A. Pretschner, K. Ball, D. Eyring, Integrity protection against insiders in
microservice-based infrastructures: From threats to a security framework, in: Software Technolo-
gies: Applications and Foundations: STAF 2018 Collocated Workshops, Toulouse, France, June
25-29, 2018, Revised Selected Papers, Springer, 2018, pp. 573–588.

[60] D. R. Matos, M. L. Pardal, A. R. Silva, M. Correia, 𝜇verum: Intrusion recovery for microservice
applications, IEEE Access 11 (2023) 78457–78470.


	1 Introduction
	2 Microservice Architecture: Advantages, vulnerabilities and Trade-offs
	2.1 Advantages of using Microservices
	2.2 Challenges and Disadvantages of using Microservices

	3 Review methodology
	3.1 Network and Communication
	3.2 Data Consistency and Integrity
	3.3 Authentication and Authorization
	3.4 Deployment and Orchestration
	3.5 Heterogeneous Features
	3.6 DevOps and CI/CD Practices

	4 Mitigation Techniques
	5 Conclusion

