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Abstract

Significant advancements in the identification of sleep disorders, such as obstructive sleep apnea and insomnia,
cardiovascular illnesses, diabetes, and mental health issues, have resulted from the combination of machine
learning and deep learning approaches. These techniques leverage physiological signals and patient data to provide
automated, accurate, and efficient diagnostic tools. Comparing these sophisticated computational techniques
to conventional diagnostic procedures, there is potential for significant gains in efficiency and accuracy. This
review examines current research (2021-2024) on applying ML and DL to diagnose distinct sleep disorders. It
highlights approaches, datasets for important comparisons, performance measures, outcomes, potential future
directions, and gaps in the field. With the incorporation of new technologies, the diagnosis of mental health
illnesses, cardiovascular diseases, diabetes, and sleep disorders including obstructive sleep apnea and insomnia
has changed dramatically.
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1. Introduction

Sleep disorders such obstructive sleep apnea, insomnia, restless leg syndrome, narcolepsy, and comorbid
insomnia and sleep apnea , which can cause major health problems like neurological, metabolic, and
cardiovascular problems. Early detection and accurate diagnosis are essential for managing and treating
patients well. Polysomnography and clinical as- sessments, the conventional technique of identifying
these diseases, are labor-intensive, costly, time-consuming, and prone to human error. By using
massive datasets and complex algorithms to find patterns suggestive of different sleep disorders, recent
developments in machine learning and deep learning provide potential options for the effective, scalable
solutions and accurate diagnosis of sleep problem.Obstructive sleep apnea , insomnia, narcolepsy,
restless legs syndrome, and concomitant PhysioNet ECG Sleep Apnea v1.0.0 dataset for sleep apnea
detection. Achieved performance with the highest accuracy of 88.13%.SVM, logistic regression, Gaussian
naive Bayes, discriminate analyses, nearest neighbor, decision tree, random forest, Ada- Boost, gradient
boosting, MLP, recurrent networks, and hybrid convolutional-recurrent networks are used with majority
voting. This method is more complex implementation [1].

For the detection of insomnia, the heart rate variability of ECG Signal Power spectral density. LDA
classifier achieves the finest insomnia detection accuracy with 99.0%. Fine-tuned and evaluated by the
free public PhysioNet dataset over fivefold trails cross-validation. This method is not generalized for
different data set [2].

2. Diagnosis Methods

This section discusses various methods of sleeping disorders.
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Figure 1: Types of Sleeping Disorder diagnosis methods.

2.1. Biomedical Signal Processing Methods

Detecting bio-signals based-sleep stages .on Model Agnostic Meta-Learning achieved 5.4% to 17.7%
range upgrading with statistical difference in the mean. This method iis Computational Overhead.
Sensitivity to Hyperparameters. This method is limited when tasks are too dissimilar or when the task
distribution changes drastically [3].

Detection of Insomnia presented with electroencephalogram (EEG) Demonstrated Gaussian mix-
turehidden Markov model (GMM-HMM) achieves 86 accuracy. This method is having less accuracy
[4].

Detection of Respiratory disturbances during sleep.A bed-integrated radio-frequency sensor through
near-field coherent sensing was applied. Apneic event detection attained a sensitivity up to 88.6% and
89.0% for k-fold validation. For this method more controlled environment is required [5].

Hybrid neural network with semi-supervised learning at the same time sleep arousal and sleep stage
finding with features of single-channel electroencephalography. On the Physio2018 dataset achieves an
overall accuracy of 0.78. This method is having less accuracy [6].

1,111 characteristics were produced after several criteria were suggested in the literature. The
112 worthies tones for automated sleep grading were given by the actometer, respiratory inductance
plethysmography belts, pulse oximeter, PneaVoX sensor (which records tracheal sounds), nasal cannula,
and respiratory inductance plethysmography belts. The system gets substantial agreement with manual
scoring for classifications into two stages (wake vs. sleep: mean Cohen’s Kappa & of 0.63 and accuracy
rate Acc of 87.8%) and three stages (wake vs. R stage vs. NREM stage: mean « of 0.60 and Acc of 78.5%)
[7]. Finally, implemented a three-step model, consisting of category using a multi-layer perceptron,
sleep transition rules correction, and sequence corrections using a Viterbi hidden Markov model.

Improved cardiovascular OSA phenotyping is required to rank treatment of high-risk individuals.
Methods: SpO 2 records from 1987 overnight polysomnography are included in the study. Of these,
974 come from patients who may have OSA, 931 from the Sleep Heart Health Study, which is based on
data from the general community, and 83 from healthy controls. For every oxygen desaturation, the
amplitude ratio of desaturation over resaturation, the minimum SpO 2 value, and the SpO 2 upslope
are retrieved and averaged per patient. Findings: The mICS performs 2.7% better when the SpO 2
parameters are included together with age and BMI. This results in a test area under the curve of 69.5%
for the identification of any cardiovascular comorbidity [8]. Although wearable sensor technology
has advanced dramatically over the past ten years, the absence of large and representative datasets
concurrently obtained with polysomnography (PSG) limits its clinical utility for the evaluation of
obstructive sleep apnea. Methods: respiratory effort and electrocardiogram data were used to create an
artificial neural network that would identify instances of sleep disturbed breathing. Findings: four-class
sleep staging distinguished between waking, combined N1-N2, N3, and REM with a « of 0.69 compared
to PSG. AHI estimate performed well in terms of diagnosis for various OSA severity thresholds, with an
intraclass correlation value of 0.91 [9].



Although research on respiratory and metabolic issues has been the focus of central sleep apnea
(CSA), the neuronal dysfunction that underlies central sleep apnea is still largely understood. Here,
using hypnograms to analyze the sleep-wake dynamics, we explore the underlying neural mechanism of
central sleep apnea. Techniques: We reviewed the sleep records of seven subject groups: adults without
CSA (n = 25), adults with CSA (n = 29), adults with obstructive sleep apnea (OSA) (n = 28), strong
children (n = 40), children with OSA (n = 18), children with CSA (n = 73), and children with CSA
treated with CPAP (n = 10). We have discovered that, in differ to the scale-invariant (i.e., power-law)
distribution that has been documented for stimulations in healthy sleep, the sleep arousals of CSA
patients exhibit a distinctive temporal scale (i.e., exponential distribution) [10].

The paper analyzes consumer sleep technology such as wearable sensors, bed sensors, smartphone
applications, ambient room sensors, and artificial intelligence, as well as sleep lab technologies like
polysomnography. The study also classifies the various learning approaches and gives an overview
of many clinical datasets for sleep staging. In conclusion, the paper provides our perspectives and
suggestions on the utilization of the examined sleep technologies [11].

2.2. Deep Learning Methods

Photoplethysmography (PPG) time series data used with residual convolutional network achieved
median Cohen’s Kappa (x) score of 0.75 compare to 0.69 for existing method. This method is having less
accuracy [12, 13]. Single-channel EEG recording with long short-term memory along with convolutional
neural network for healthy-unhealthy, and disease grouping with an accuracy of 91.45% and 90.55%.This
method is having less accuracy [14].

Pressure-sensor-based smart mattress to realize sleep status finding and quality evaluation. CNN
model for four various sleep postures archives accuracy of up to 96.987%.In this method Cross-validation
using medical data is not evaluated [15].

Deep learning-based sleep staging was used to detect sleep phases by assessing the hypothesis,
overlap 30-second epochs with 15-, 5-, 1-, or 0.5-second epoch-to-epoch duration. With a period of
one second between epochs, the hazard ratio, which indicates the risk of fragmented sleep, was 1.14
(p = 0.39) for mild OSA, 1.59 (p < 0.01) for moderate OSA, and 4.13 (p < 0.01) for severe OSA. The
findings show that, in order to properly diagnose sleep problems, a more thorough examination of sleep
architecture is required [16].

Using wrist-worn consumer sleep technology (CST), categorization and detection of sleep apnea
(SA) is a deep transfer learning strategy for sleep stage. Methods: The model is based on a deep
convolutional neural network (DNN) that has been trained with information from accelerometers and
photoplethysmography recordings made at night. Using a hold-out test dataset containing raw data
from a wrist-worn CST, an external validation was performed. Using internal datasets that include
raw data from clinical and wrist-worn sensors, the DNN was trained and assessed. Findings: Training
on clinical data leads to a large improvement in performance, while feature enrichment using a sleep
stage stream only slightly improves performance. In CST datasets, raw data input performs better
than feature-based input. When comparing wearable device data to clinical data, the system performs
marginally worse, although it still generalizes well [17, 18].

A new network called SwSleepNet is suggested that is capable of accurately offline sleep staging
as well as online sleep stage prediction and calibration. In order to balance the network’s operational
efficiency and comprehensive feature extraction, For offline analysis, the sequence consolidating module
(SCM), squeeze and excitation (SE) block, sequential CNN (SCNN), and sequence broadening module
(SBM) are coordinated by the suggested network. In the context of online analysis, the only models used
to predict the sleep state within a brief video clip are SCNN and SE.Two publicly accessible datasets,
The Sleep-EDF and the Montreal Archive of Sleep Studies Huashan Hospital Fudan University (HSFU),
as well as one clinical dataset, have been expanded. are used to validate SwSleepNet’s performance.
The result shows that SwSleepNet outperforms state-of-the-art ways with offline accuracy of 84.5%,
86.7%, and 81.8%, respectively [19].

To develop an accurate deep learning technique for the automatic classification of sleep phases and to



look into how the severity of OSA affects classification accuracy. Two distinct datasets’ worth of nightly
polysomnographic recordings were used to build a mixed convolutional and long short-term memory
neural network: one from a clinical dataset (n = 891) of patients with suspected OSA, and the other
from a public dataset of healthy persons (Sleep-EDF, n = 153). The model obtained an accuracy of 83.7%
(k = 0.77) in sleep staging on the public dataset using a single frontal EEG channel, and 83.9% (x = 0.78)
when augmented with EOG. The model’s accuracy for the clinical dataset was 82.9% (x = 0.77) for a
single EEG channel and 83.8% (x = 0.78) for two channels (EEG+EOG) [20]. A deep learning model
was contructed to score respiratory events and sleep phases at the same time. Pulse oximetry data
alone should be sufficient to accomplish the scoring and subsequent AHI computation, according to the
hypothesis. Methods: The deep learning models were trained using 877 polysomnography recordings
of people who may have had OSA. Three distinct input signal combinations were used to train the
same architecture: Photoplethysmogram and oxygen saturation (SpO2) were included in model 1; PPG,
SpO2, and nasal pressure were included in model 2; and respiratory belts, electroencephalogram, nasal
pressure, SpO2, and oronasal thermocouple were included in model 3. Results: Model 1 performed
comparably to models 2 and 3 in terms of REM- AHI and AHI estimation as well as REM-AHI [21, 22].

2.3. Explainable Al in Sleep Diagnosis

Using optical, differential air pressure, and acceleration readings from a chest-worn sensor, five
somnographic-like signals are generated and fed into a deep network. To predict three patterns
related to breathing (normal, apnea, irregular), three patterns related to sleep (normal, snoring, loud),
and the overall signal quality (normal, corrupted),this solves a three-fold classification issue. Saliency
maps and confidence indices are two examples of qualitative and quantitative information that the
created architecture provides to enhance explainability and aid in prediction interpretation. The ac-
curacy of breathing rhythms was higher (0.93) than that of sleep patterns (0.76). Compared to apnea
(0.97), Using optical, differential air pressure, and acceleration readings from a chest-worn sensor, five
somnographic-like signals are generated and fed into a deep network. To predict three patterns related
to breathing (normal, apnea, irregular), three patterns related to sleep (normal, snoring, loud), and the
overall signal quality (normal, corrupted), Consequently, this is a step in the direction of gradually
closer clinical translation of the usage of Al-based techniques for sleep problem detection [23].

3. Challenges and Future Directions

Although ML and DL provide important improvements in the diagnosis of sleep disor- ders, there are
still a number of difficulties. These include the difficulty of integrating various physiological signals, the
requirement for sizable, annotated datasets for effi- cient model training, and the assurance of model
interpretability and clinical accepta- bility. In order to enable continuous monitoring and early action,
future research is probably going to concentrate on creating more reliable, understandable Al models
and incorporating these systems into wearable technology.

1. Data Availability: To ensure the resilience of these models across various populations, larger and
more diverse datasets are required for both training and validation.

2. Integration into Clinical Practice: Further investigation is necessary to optimize the incorporation
of these sophisticated models into standard clinical procedures, tackling concerns pertaining to
interpretability of the models and their real-time implementation.

3. Cross-Disorder Applicability: The majority of current research focuses on certain illnesses, such
as sleep apnea. Increasing the application’s scope to cover more sleep disorders might improve
the overall effect.

4. Generalization Across Diverse Populations: The generalizability of the models across various
demographics and settings is impacted by dataset variety, which limits the majority of investi-
gations. Integration of Multimodal Data: While combining multichannel physiological signals
has increased accuracy, further study is required to successfully integrate various data sources,
including patient health records and wearable technology.



5. Generalization Across Diverse Populations: The majority of research is constrained by dataset
variety, which impacts the models’ applicability to various situations and demography . Integration
of Multimodal Data: Although combining multichannel physiological signals has increased
accuracy, further study is required to success- fully integrate various data sources, including
wearable technology and medical records.

6. Real-World Implementation: There are several obstacles to overcome when moving from research
to clinical practice, such as the requirement for thorough validation in real-world situations,
patient privacy issues, and model interpretability.

7. Dataset Diversity: A lot of research uses narrow datasets, which restricts how broadly applicable
models may be. To increase the robustness of the model, different, multi-ethnic datasets are
required.

8. Real-time Monitoring: Many of the current models do not have real-time diagnostic features.Future
studies ought to concentrate on creating wearable, real-time diagnostic instruments.

9. Interpretability: The black-box character of many ML and DL models makes clinical interpretation
difficult. Improving the interpretability of the model will be essential to its clinical acceptance.

10. Longitudinal Studies: Studies evaluating the long-term efficacy of ML and DL models in clinical
contexts are few. Longitudinal research is required to verify these models in the long run.

4. Conclusion

A potential area of medical technology is the combination of deep learning and machine learning for
the identification of sleep problems. An important development in sleep medicine is the use of ML and
DL in the diagnosis of sleep disorders. These cutting-edge techniques offer effective, precise, and less
invasive substitutes for conventional diagnostic techniques, possibly revolutionizing the identification,
treatment, and successful integration of these technologies into clinical practice. These technologies
are anticipated to advance in sophistication, accessibility, and widespread clinical adoption as research
continues. These technologies will be further improved by ongoing research that focuses on various
datasets, multimodal integration, and useful deployment, ultimately leading to better patient outcomes
and more effective healthcare delivery. However, in order to integrate these technical advances into
clinical practice, it is imperative that the identified research gaps be addressed.
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