
Time-aware middleware for Blockchain-Based
Business Process⋆

Asma Mâalej1, Wael Sellami1,2,3 and Hatem Hadj-Kacem1,2,*

1ReDCAD Laboratory, University of Sfax, Tunisia
2FSEG, University of Sfax, Tunisia
3Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia

Abstract
Blockchain-Based Inter-organizational business processes often face significant challenges in managing
temporal constraints, which are important for ensuring timely and efficient execution due to the decen-
tralized nature of blockchain and the complexities of coordinating multiple organizations. To address
these challenges, this paper introduces an approach focusing on two solutions: a Retry Mechanism and a
Controlled Extension of Allowed Time. The Retry Mechanism is designed to automatically re-execute
tasks that surpass their time limits, providing a robust solution for maintaining process continuity in
the face of delays or failures. The Controlled Extension of Allowed Time offers a flexible yet disciplined
approach to extending task deadlines under specific conditions, balancing the need for adaptability with
the importance of maintaining process integrity.
Our proposed solutions not only improve the management of temporal constraints but also establish a
strong foundation for future advancements. Specifically, we explore the potential of parallel processing,
where tasks are divided into subtasks and executed concurrently across multiple processors, thereby
accelerating overall process execution and ensuring stricter adherence to time constraints. This pa-
per contributes to the advancement of temporal constraint management, offering practical strategies
for improving the performance and reliability of complex business processes across organizational
boundaries.

Keywords
Inter-organizational business process,, Blockchain, middleware, Temporal Constraints

1. Introduction

In today’s interconnected world, Inter-Organizational Business Processes (IOBPs) [1] play an
important role in enabling collaboration between different organizations to achieve common
business goals [2]. These processes involve the coordination of tasks and data across various en-
tities, often operating under distinct policies, regulations, and systems. As these processes span
multiple organizations, ensuring consistency, transparency, and security becomes a significant
challenge. In this context, Blockchain technology has emerged as a powerful solution due to its
decentralized nature, immutability, and ability to provide transparent, tamper-proof records of

TACC’2024, The 4th Tunisian-Algerian Conference on applied Computing, December 17-18, 2024, Constantine, Algeria
*Corresponding author.
$ maalejasma01@gmail.com (A. Mâalej); wael.sellami@gmail.com (W. Sellami); hatem.hadjkacem@redcad.org
(H. Hadj-Kacem)

©2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
I

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:maalejasma01@gmail.com
mailto:wael.sellami@gmail.com
mailto:hatem.hadjkacem@redcad.org
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org

transactions. By leveraging blockchain, organizations can streamline IOBPs, ensuring trust and
accountability without relying on a central authority.

The combination of IOBPs and blockchain offers new avenues for enhancing business process
management. Blockchain’s decentralized ledger ensures the integrity and traceability of inter-
organizational transactions [3], while its smart contract capabilities can automate tasks and
enforce business rules across organizational boundaries. However, integrating blockchain into
IOBPs also introduces several challenges, particularly when it comes to managing temporal
constraints [4]. This becomes especially problematic in time-sensitive business processes,
where exceeding time constraints can result in process violations or costly failures. Therefore,
addressing these temporal challenges is crucial to fully realizing the potential of blockchain-
based IOBPs.
This study presents a time-sensitive approach to address the temporal challenges in blockchain-
based IOBPs, ensuring the execution of tasks within defined time limits. To implement this
approach, we developed a middleware solution, which was then applied to a real-world case
study to demonstrate its effectiveness.

The paper is organized as follows: In the next section we present Temporal Inter-
Organizational Business Process in Blockchain. In section 3, we give a review of the related
works. Next, we describe, in section 4 our proposed approach. Section 5 is dedicated to the
implementation and evaluation. We will apply a case study focused on an insurance company.
This case study will serve to demonstrate the practical application and effectiveness of our
proposed approach within the context of insurance management, allowing us to evaluate its
real-world viability and impact. Finally, section 6 contains conclusion and plans for future
work.

2. Temporal Inter-Organizational Business Process in Blockchain

An Inter-Organizational Business Process (IOBP) refers to a set of coordinated activities
carried out by two or more independent organizations to achieve a common business objective.
Unlike intra-organizational processes, which occur within a single entity, IOBPs require seam-
less collaboration across organizational boundaries, involving the exchange of information,
resources, and services, as well as coordination through mechanisms such as shared platforms,
communication tools, or contracts. These processes are critical for managing complex supply
chains [5], partnerships, and collaborative enterprises, but they face significant challenges such
as trust, data sharing, and governance due to differing organizational priorities and systems.
Blockchain technology has emerged as a potential solution to some of these challenges. As
a data structure, blockchain [6] consists of a linked list of blocks, each containing a set of
transactions that are cryptographically linked to the previous one, ensuring immutability and
security. This structure is replicated across a decentralized network of full nodes, promoting
trust by eliminating the need for a central authority. While blockchain offers benefits [7]
such as transparency and enhanced security, it also introduces complexities when managing
time-sensitive processes in IOBPs. Temporal constraints, which require tasks to be completed
within specific time limits, are difficult to manage in a blockchain context due to factors such as
consensus delays, network latency, and limited transaction throughput.

While blockchain provides significant benefits for managing inter-organizational business
processes, it also presents challenges when handling temporal constraints—the scheduling and
order of events that are important for the successful execution of these processes. In many
IOBPs, tasks must be performed within strict timeframes or follow a specific sequence to ensure
smooth operations and prevent disruptions.

The aim of our research is to propose solutions that can improve the efficiency and reliability
of these processes under strict time requirements.

3. Related work

This section provides a comprehensive overview of related work in the stream of Temporal
Constraints based Business Processes research. The verification of temporal constraints in
business processes have been a long-researched topic (see [8] for an updated survey). But,
there has been limited research on implementing these constraints in blockchain-based process
execution. Notable frameworks like Caterpillar [9, 10], and others do not address them at all.
However, there are some exceptions.

The approach proposed in [11] extends the Caterpillar tool to enable the automatic transforma-
tion of temporal constraints for business process models into smart contract code . Specifically, it
adds support for transforming temporal constraints such as duration, temporal constraints over
cardinality, temporal dependency, and start/end temporal constraints into Solidity code that
can be executed on the Ethereum blockchain. This approach integrates time-guards inside the
functions implementing activities with temporal constraints, eliminating the need for external
timer services. This allows business processes with temporal requirements to be executed in
a trustless blockchain environment while enforcing time constraints and avoiding potential
violations or delays. The work of [12] propose a holistic framework for implementing temporal
constraints in blockchain-based business process execution. The authors identify challenges
with enforing temporal contraints on blockchain and propose several alternative measures to
facilitate them. Specifically, they introduce five time measures available in blockchain systems:
block number, parameter approach, storage oracle and request response oracle. The paper
systematically compares these measures on properties like accuracy, trust and cost. It then eval-
uates how suitable the measures are for implementing different types of temporal constraints
commonly found in process models, such as absolute timers, relative timers, cycles, and deferred
choice. The goal is to provide guidelines on choosing appropriate measures for specific scenarios
when developing blockchain-based process execution platforms. In [13], the authors propose
TimeAwareBPMN-js, a web-based graphical editor that enables the modeling and verification of
time-aware BPMN processes. The tool allows users to create and edit BPMN models enriched
with temporal constraints, such as contingent durations and conditions. It supports a subset of
BPMN elements enhanced with temporal attributes and allows the specification of relative con-
straints between flow objects. The application features a modular architecture that facilitates the
integration of different verification plug-ins. As a proof-of-concept, it includes a CSTNU plug-in
that verifies the dynamic controllability property by converting the time-aware BPMN model
into an equivalent CSTNU instance. This approach enables researchers and practitioners to
model, analyze, and verify temporal aspects of business processes in an integrated environment.

The approach proposed in [14] involves implementing a blockchain-based case study of organ
transfer by healthcare drone delivery. The authors extended the Caterpillar blockchain-based
process execution engine to support temporal constraints in smart contracts. Key steps include
modeling the organ transfer process with temporal constraints, generating smart contracts from
the process model, and executing the process on the Ethereum blockchain. This approach aims
to validate the feasibility of incorporating temporal constraints like deadlines and durations into
blockchain-based business process execution. The case study demonstrates how the extended
Caterpillar system can handle time-sensitive processes with multiple actors, while leveraging
blockchain to secure data sharing and traceability.

In [15], the proposed approach involves a Blockchain-based system for monitoring business
processes. It utilizes a three layered architecture consisting of the Process Level, Monitoring
Level, and Smart Contract in Blockchain Level. It aims to leverage blockchain’s capabilities to
enhance trust, security, and automation in business process monitoring. While this approach
effectively monitors workflows, it does not consider the temporal aspect of business processes,
which is crucial for managing time-sensitive operations and ensuring that tasks are completed
within defined time limits.

Haarmann, in [16] aims to analyze the duration of blockchain-based business processes
using simulation techniques. The method involves creating a timed Petri net representation of
the inter-organizational process, translating each interaction task from a choreography model
into corresponding transitions in the Petri net. The approach incorporates blockchain-specific
configurations, including diffusion time, inter-block time, and confirmation count, to simulate
the blockchain’s transaction processing. Using CPN Tools to model and simulate the Petri net,
the method allows for quantitative analysis and manual step-through simulation techniques.
This simulation-based approach enables stakeholders to estimate the process execution time
for various blockchain implementations by simply adjusting the blockchain configuration
parameters.

In [17], authors presents a constraint satisfaction method for modeling and analyzing temporal
process constraints with the ability to handle controlled violations. The method can handle
various temporal patterns including basic duration and gap constraints.

Although these studies introduce innovative perspectives, they all have some limitations.
Some of them, while they focuses on integrating Business processes with Blockchain, they may
neglect the temporal perspective. Others, However our research aims to address these gaps.

4. Proposed approach

In this section, we present our proposed approach for managing inter-organizational business
processes using a middleware solution based on temporal constraints. Our approach is designed
to address the complexities and dynamic nature of collaborative workflows across multiple
organizations. By integrating blockchain technology and linear programming, our architecture
provides a robust framework that ensures both transparency and efficiency in process execution.
The design schema of our approach, depicted in Figure 1, illustrates the core components and
their interactions within the system.
Process level: The system incorporates temporal constraints that ensure all operations respect

Figure 1: Overview of the Temporal Constraints Based approach architecture

predefined time windows. This is important for business processes where certain actions must
be completed within specified deadlines. These constraints are modeled in process diagrams
and later translated into smart contracts.
Smart contract level: Once the process logic is defined with temporal constraints, it is trans-
lated into smart contracts [18]. Each business process is associated with a smart contract, which
functions as a self-executing script residing on the blockchain.
Linear Programming level: Linear programming provides a framework to optimize a given
objective, such as minimizing costs or maximizing efficiency, subject to a set of linear constraints.
This method is especially valuable when dealing with limited resources while satisfying demand,
balancing workloads, or adhering to capacity limits. By expressing the problem mathematically,
linear programming ensures that decisions are made systematically, with the best possible
outcome based on the established parameters.

In the context of processing activities, an optimization model can be formulated to minimize
the total cost of processing, while accounting for budget restrictions, capacity limits, and penal-
ties associated with unprocessed or delayed activities. The following optimization model utilizes
linear programming to determine the optimal number of accepted, rejected, and unprocessed
activities during specific time slots, ensuring that the system operates within its capacity and
budget while minimizing overall costs.

Objective function :

Min 𝑧 =
∑︁
𝑡∈𝑇

𝐶𝐴
𝑡 · 𝐼𝐴𝑡 +

∑︁
𝑡∈𝑇

𝐶𝑅
𝑡 · 𝐼𝑅𝑡 + Penalty ·

∑︁
𝑤∈Ω

𝑈𝐹𝑅𝑡(𝑤) (1)

Table 1
Input Data

Notation Description

𝐶𝐴
𝑡 Cost of processing an accepted activity during time slot 𝑡

𝐶𝑅
𝑡 Cost of processing a rejected activity during time slot 𝑡

MaxBudget Maximum allocated budget for processing

max𝑡 Maximum processing capacity during time slot 𝑡

𝑓𝐴
𝑞 (𝑤) Number of accepted activities processed in scenario 𝑤

𝑓𝑅
𝑞 (𝑤) Number of rejected activities processed in scenario 𝑤

𝑟𝑡𝑟(𝑤) Number of received activities during time slot 𝑡 for scenario 𝑤

Penalty Penalty for unprocessed or incorrectly handled activities

Table 2
Decision Variables

Notation Description

𝐼𝐴𝑡 Number of accepted activities processed during time slot 𝑡

𝐼𝑅𝑡 Number of rejected activities processed during time slot 𝑡

𝑈𝐹𝑅𝑡(𝑤) Number of unprocessed activities in scenario 𝑤

Subject to:

∙ 𝑧 ≤ MaxBudget (2)

∙ 𝐼𝐴𝑡 + 𝐼𝑅𝑡 ≤ max𝑡, ∀𝑡 ∈ 𝑇 (3)

∙ 𝑟𝑟𝑡(𝑤) = 𝐼𝐴𝑡 + 𝐼𝑅𝑡 + 𝑈𝐹𝑅𝑡(𝑤), ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω (4)

∙ 𝐼𝐴𝑡 ≥ 0, 𝐼𝑅𝑡 ≥ 0, 𝑈𝐹𝑅𝑡(𝑤) ≥ 0, ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω (5)

Where, the objective function (1) consists in minimizing the total cost of processing activities,
including penalties for unprocessed activities. Constraint (2) states that the total processing
cost cannot exceed the maximum allocated budget. Constraint (3) insists that the total number
of processed activities must be less than or equal to the processing capacity for each time slot.
Constraint (4) ensures that all received activities are either processed (accepted or rejected) or

left unprocessed. Constraint (5) defines the non-negativity constraints for decision variables.

Blockchain level : blockchain layer offers a decentralized and secure infrastructure for exe-
cuting smart contracts, ensuring the enforcement of each process and its associated temporal
constraints. By making these operations immutable and tamper-resistant, the blockchain guar-
antees that all actions are transparent, reliable, and protected from external interference or
manipulation. This layer plays a key role in maintaining the integrity of the entire system,
providing a trusted environment where time-sensitive operations can be carried out with full
transparency and security.

Figure 2: BPMN Diagram for Insurance process

5. Implementation and evaluation

5.1. Case study

In this case study, we present a BPMN diagram (see Figure 2) developed by Camunda [19] that
maps the core processes within an insurance system. The diagram highlights three distinct
spaces: the Public Space, the Client Space, and the Administrative Space, each representing
different stages of interaction between the client and the insurance company. This BPMN model
demonstrates how insurance companies can optimize these processes for greater efficiency and
client satisfaction.

• Public Space: This section represents the initial touchpoint for users exploring insurance

options. Users can explore and navigate the insurance offerings on the platform but have
not yet committed to any formal actions like creating an account or submitting claims.

• Client Space: This space represents the part of the process where the user becomes an
active participant by registering or logging in as a client. Once authenticated, the client
has access to the system’s claim submission features.

• Administrator Space: Once a claim is submitted by the client, the administrative
process begins. The administrator reviews it to determine its validity and decide whether
additional information is needed from the client. If all conditions are met and the claim is
approved, the process is concluded. If the claim review takes too long, it can result in
automatic cancellation.

5.2. Implementation

To clarify our methodology and validate our approach, we detail the implementation of an appli-
cation, as it is illustrated in Figure 3. It illustrates the architecture of a time-aware middleware
that integrates BPMN with blockchain technology. The process begins with a BPMN model that
defines the workflow of business processes. This model is fed into Caterpillar which converts it
into smarts contracts.
Caterpillar serves as an innovative bridge, linking Camunda with the Ethereum blockchain.
This functionality is important for our project, as it enables business processes, meticulously
modeled in Camunda, to be transformed into executable smart contracts on the Ethereum
blockchain. These smart contracts are developed using the Solidity programming language
[20]. Rather than being a simple conversion, this transformation involves an intelligent rein-
terpretation of business logic into blockchain programming instructions, ensuring that the
original process’s consistency and integrity are maintained. This approach facilitates seamless
integration and streamlines the transition from BPM theory to blockchain implementation.
The middleware plays an important role in facilitating essential functionalities, such as data
management, which ensures the availability and organization of relevant information; claim
management, which handles claims within the smart contract context; and notifications man-
agement, which manages alerts related to the contract’s lifecycle. This integration provides
a secure and automated approach to managing business processes, with the added benefit of
time-awareness, ensuring timely execution and accountability within blockchain environments.

In the case of this insurance process, several temporal and operational constraints are essential
for maintaining the workflow’s integrity and efficiency. First of all, the process requires the
customer to register or connect to the system before accessing insurance options.
In the case of claims submission, the process becomes more intricate. The validity of the claim
must be checked within 48 hours after submission, and if additional information is required, the
customer must provide it. Any delay beyond this period results in automatic claim rejection.
These constraints ensure that the entire process remains streamlined and secure, minimizing the
risk of delays or fraudulent activities. By defining such temporal dependencies and operational
rules, the system is better equipped to handle multiple customer interactions efficiently, without
the need for intermediaries, while maintaining strict adherence to the business rules.
Now, we present our contribution by comparing it with existing works. We observe that in
cases of temporal constraint violations, the notifyDesigner() function alone is not sufficient. To

Figure 3: Overview of the Time-aware middleware architecture

address this, we propose two approaches based on the task at hand. The first is the Retry
Mechanism, where the task is automatically retried if it exceeds the time limit. This approach
is useful for processes that need to be reexecuted in case of failure or time overruns. The second
approach is to Extend the Allowed Time (with limits), where limited flexibility is introduced
by extending the maximum allowed time if the task is near completion. However, this should
only be done under specific conditions to prevent temporal constraint violations from becoming
a recurring issue.

if (duration > minTime || duration < maxTime) {
notifyDesigner();
retryTask(); }

Listing 1: Solidity code in case of the "Retry" function in smart contract

function retryTask() internal {
require(retryCount < maxRetries, "Max retries exceeded, aborting task.");
retryCount += 1;
// Adding a delay (1 min) before retrying the task
uint retryDelay = 1 minutes;
uint retryStartTime = block.timestamp;

if (block.timestamp >= retryStartTime + retryDelay) {
taskA(minTime, maxTime); }}

Listing 2: Solidty code of the RetryTask() function in smart contract

if (duration > minTime || duration < maxTime) {
notifyDesigner();
if (canExtendTime(duration)) {extendTime();}
else {revert("Time constraint violated, process aborted."); }}

Listing 3: Solidity Code in case of the "extendTime" function in smart contract

Optimization model

The aim is to minimize the overall claim processing costs within the constraints of a given
budget and processing capacity. Specifically, the model considers both accepted and rejected
claims, assigning distinct costs to each for a given time slot. The uncertain parameters, including
the number of claims received and the scenario-specific outcomes for claims processed or
rejected, are encapsulated in our model to account for the variability in demand.

Table 3
Input Data

Notation Description

𝐶𝐴
𝑡 Cost of processing an accepted claim for the time slot

𝐶𝑅
𝑡 Cost of processing a rejected claim for the time slot

MaxBudget Maximum budget allocated for claim processing

𝑚𝑎𝑥𝑡 Maximum processing capacity for claims during the time slot 𝑡

𝑓𝑞𝐴(𝑤) Number of claims successfully processed for scenario 𝑤

𝑓𝑞𝑅(𝑤) Number of claims rejected for scenario 𝑤

𝑟𝑟𝑡(𝑤) Number of claims received for the time slot 𝑡 for scenario 𝑤

Penalty Penalty for unprocessed or incorrectly handled claims

Decision variables, such as the number of accepted and rejected claims processed during
each time slot, are used to determine the optimal allocation of resources. Moreover, the model
incorporates penalties for unprocessed or incorrectly handled claims. Table 3 presents the
notations of the parameters and Table 4 presents the decision variables of the optimization
model.
Objective function :

Min 𝑧 =
∑︁
𝑡∈𝑇

𝐶𝐴
𝑡 · 𝐼𝐴𝑡 +

∑︁
𝑡∈𝑇

𝐶𝑅
𝑡 · 𝐼𝑅𝑡 + Penalty ·

∑︁
𝑤∈Ω

𝑈𝐹𝑅𝑡(𝑤) (1)

Subject to:

Table 4
Decision variables

Notation Description

𝐼𝐴𝑡 Number of accepted claims processed for the time slot 𝑡

𝐼𝑅𝑡 Number of rejected claims processed for the time slot 𝑡

𝑈𝐹𝑅𝑡(𝑤) Number of unprocessed claims for scenario 𝑤

∙ 𝑧 ≤ MaxBudget (2)

∙ 𝐼𝐴𝑡 + 𝐼𝑅𝑡 ≤ max𝑡, ∀𝑡 ∈ 𝑇 (3)

∙ 𝑟𝑟𝑡(𝑤) = 𝐼𝐴𝑡 + 𝐼𝑅𝑡 + 𝑈𝐹𝑅𝑡(𝑤), ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω (4)

∙ 𝐼𝐴𝑡 ≥ 0, 𝐼𝑅𝑡 ≥ 0, 𝑈𝐹𝑅𝑡(𝑤) ≥ 0, ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω (5)

where, objective function (1) consists in minimizing the total cost of processing claims, including
penalties for unprocessed claims. Constraint (2) states that the total processing cost cannot
exceed the maximum allocated budget. Constraint (3) insists that the total number of processed
claims (accepted or rejected) must be less than or equal to the processing capacity for each time
slot. Constraint (4) ensures that all received claims are either processed (accepted or rejected)
or left unprocessed. Constraint (5) is the non-negativity constraints for decision variables.

5.3. Evaluation

To evaluate the performance of our proposed time-aware middleware, we executed a number of
tests on an insurance process. The goal of the evaluation is to compare the process execution
time before and after applying the middleware, focusing on its ability to handle temporal
constraints effectively.

We evaluated the process using different sets of tasks, ranging from 50 to 950 tasks. For
each set, we measured the total execution time both without the middleware and with the
middleware applied. The results are presented in the form of a line graph (Figure 4a), where the
X-axis represents the number of tasks in the process and the Y-axis represents the execution
time in minutes.

The first evaluation metric is CPU consumption, which reflects how efficiently system re-
sources are used during the execution of the process. Figure 4a presents a comparison between
CPU consumption for the process with and without the middleware. The X-axis represents the
number of tasks, and the Y-axis represents the percentage of CPU utilization.

As shown in Figure 4a, processes without the middleware consume significantly more CPU
than those with the middleware. This result highlights one of the key benefits of the middleware:

(a) CPU consumption curve (b) Average of process execution time

Figure 4: Evaluation

its ability to optimize resource usage by intelligently managing retries, extensions, and parallel
executions, which reduces the overall load on the system. The reduced CPU consumption
suggests that the middleware provides more efficient processing, making it suitable for large-
scale or resource-constrained environments.

The second metric is execution time, measured to determine how the middleware impacts
the overall duration of the process. Figure 4b provides a comparison of execution times with
and without the middleware. The X-axis represents the number of tasks in the process, and the
Y-axis represents the execution time in minutes.

In contrast to CPU consumption, the results show that processes with the middleware take
slightly more time to execute than those without it. This is due to the middleware’s additional
mechanisms, such as retrying failed tasks and extending the allowed time for near-completion
tasks, which introduce a small overhead. However, this slight increase in execution time is a
trade-off for ensuring that processes adhere to strict temporal constraints, which is critical for
time-sensitive operations like insurance claims processing.

6. Conclusion and future work

In this paper, we have explored novel approaches to handling temporal constraints in inter-
organizational business processes. Our proposed solution extends beyond the limitations of
existing methods by incorporating a Retry Mechanism and a controlled Extension of Allowed
Time. The Retry Mechanism provides a practical solution for handling time overruns by
re-executing tasks automatically, which is important for processes where failure recovery is
essential. The Extension of Allowed Time introduces a level of adaptability, allowing tasks that
are nearing completion to benefit from extended deadlines under predefined conditions, thus
mitigating the risk of habitual constraint violations.

Moreover, our proposed future work aims to ensure that tasks are completed within the
defined time limits by executing them in parallel across multiple available processors. This

involves breaking down a task into smaller subtasks that can run simultaneously, thereby
speeding up the overall process. By utilizing parallel processing, we intend to optimize task
execution times and improve the efficiency of the entire system.

7. Declaration on Generative AI and AI-assisted Technologies

During the preparation of this work, the authors used X-GPT-4 for grammar and spelling checks.
After using this tool, the authors reviewed and edited the content as needed and takes full
responsibility for the publication’s content.

References

[1] K. Bouchbout, Z. Alimazighi, Inter-organizational business processes modelling framework,
in: ADBIS (2), 2011, pp. 45–54.

[2] Object Management Group, Business Process Model and Notation (BPMN) Version 2.0.2,
2014. URL: https://www.omg.org/spec/BPMN/2.0.2/PDF, [Accessed 7 July 2021].

[3] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel, S. Debois,
C. D. Ciccio, M. Dumas, S. Dustdar, et al., Blockchains for business process management-
challenges and opportunities, ACM Transactions on Management Information Systems
(TMIS) 9 (2018) 1–16.

[4] J. Eder, E. Panagos, M. Rabinovich, Workflow Time Management Revisited, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 207–213. URL: https://doi.org/10.1007/
978-3-642-36926-1_16. doi:10.1007/978-3-642-36926-1_16.

[5] H. Stadtler, Supply chain management: An overview, Supply chain management and
advanced planning: Concepts, models, software, and case studies (2014) 3–28.

[6] M. Di Pierro, What is the blockchain?, Computing in Science & Engineering 19 (2017)
92–95.

[7] G. Habib, S. Sharma, S. Ibrahim, I. Ahmad, S. Qureshi, M. Ishfaq, Blockchain technology:
benefits, challenges, applications, and integration of blockchain technology with cloud
computing, Future Internet 14 (2022) 341.

[8] S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, The temporal perspective in business
process modeling : An evaluative survey and research challenges, Service Oriented
Computing and Applications 9 (2014) 75–85. doi:10.1007/s11761-014-0170-x.

[9] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, Caterpillar: A blockchain-based
business process management system., BPM (Demos) 172 (2017) 1–5.

[10] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, A. Ponomarev, Caterpillar: A
business process execution engine on the ethereum blockchain, Software: Practice and
Experience 49 (2018) 1162 – 1193. URL: https://api.semanticscholar.org/CorpusID:51967088.

[11] A. Abid, S. Cheikhrouhou, M. Jmaiel, Modelling and executing time-aware processes
in trustless blockchain environment, in: S. Kallel, F. Cuppens, N. Cuppens-Boulahia,
A. Hadj Kacem (Eds.), Risks and Security of Internet and Systems, Springer International
Publishing, Cham, 2020, pp. 325–341.

[12] J. Ladleif, M. Weske, Time in blockchain-based process execution, in: 2020 IEEE 24th

https://www.omg.org/spec/BPMN/2.0.2/PDF
https://doi.org/10.1007/978-3-642-36926-1_16
https://doi.org/10.1007/978-3-642-36926-1_16
http://dx.doi.org/10.1007/978-3-642-36926-1_16
http://dx.doi.org/10.1007/s11761-014-0170-x
https://api.semanticscholar.org/CorpusID:51967088

International Enterprise Distributed Object Computing Conference (EDOC), 2020, pp.
217–226.

[13] M. Ocampo-Pineda, R. Posenato, F. Zerbato, Timeawarebpmn-js: An editor and temporal
verification tool for time-aware bpmn processes, SoftwareX 17 (2022) 100939.

[14] A. Abid, S. Cheikhrouhou, S. Kallel, M. Jmaiel, Temporal constraints in smart contract-
based process execution: A case study of organ transfer by healthcare delivery drone,
in: A. H. Kacem, S. Kallel, F. Belala, M. Belguidoum, M. Jmaiel, I. B. Rodriguez (Eds.),
Proceedings of the Tunisian-Algerian Joint Conference on Applied Computing (TACC
2021), Tabarka, Tunisia, December 18-20, 2021, volume 3067 of CEUR Workshop Proceedings,
CEUR-WS.org, 2021, pp. 1–13. URL: https://ceur-ws.org/Vol-3067/paper1.pdf.

[15] R. Essid, W. Sellami, H. Hadj-Kacem, MW4BPM: A middleware for blockchain-based
business process monitoring, in: S. Kallel, Z. Benzadri, A. H. Kacem (Eds.), Proceedings
of the Tunisian-Algerian Joint Conference on Applied Computing (TACC 2023), Sousse,
Tunisia, November 8-10, 2023, volume 3642 of CEUR Workshop Proceedings, CEUR-WS.org,
2023, pp. 170–181. URL: https://ceur-ws.org/Vol-3642/paper15.pdf.

[16] S. Haarmann, Estimating the duration of blockchain-based business processes using
simulation, in: Central-European Workshop on Services and their Composition, 2019, pp.
24–31. URL: https://api.semanticscholar.org/CorpusID:96426650.

[17] A. Kumar, R. R. Barton, Controlled violation of temporal process constraints–models,
algorithms and results, Information Systems 64 (2017) 410–424.

[18] K. Delmolino, M. Arnett, A. Kosba, A. Miller, E. Shi, Step by step towards creating a safe
smart contract: Lessons and insights from a cryptocurrency lab, in: Lecture Notes in
Computer Science, volume 9604, 2016, pp. 79–94.

[19] Camunda, bpmn-js: BPMN 2.0 Viewer and Editor, 2014. URL: https://bpmn.io/toolkit/
bpmn-js/, [Accessed 7 July 2021].

[20] C. Dannen, C. Dannen, Solidity programming, Introducing Ethereum and Solidity:
Foundations of Cryptocurrency and Blockchain Programming for Beginners (2017) 69–88.

https://ceur-ws.org/Vol-3067/paper1.pdf
https://ceur-ws.org/Vol-3642/paper15.pdf
https://api.semanticscholar.org/CorpusID:96426650
https://bpmn.io/toolkit/bpmn-js/
https://bpmn.io/toolkit/bpmn-js/

	1 Introduction
	2 Temporal Inter-Organizational Business Process in Blockchain
	3 Related work
	4 Proposed approach
	5 Implementation and evaluation
	5.1 Case study
	5.2 Implementation
	5.3 Evaluation

	6 Conclusion and future work
	7 Declaration on Generative AI and AI-assisted Technologies

