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Abstract

This study investigates the impact of different initialization methods on the Archerfish Hunting Optimizer (AHO)
performance. We first examined how variations in population size and the maximum number of iterations affect
the algorithm’s performance. Subsequently, we evaluated six probability distributions and three low-discrepancy
sequences for initializing the AHO’s population. The performance of these initialization methods was compared
to the original AHO, which uses uniform distribution for initialization. Statistical analyses were conducted
using the Friedman and Wilcoxon signed-rank tests for post-hoc comparisons. The findings offer insights into
how different initialization methods influence AHO’s effectiveness, providing guidance for selecting optimal
initialization strategies to improve its performance.
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1. Introduction

Optimization is a fundamental concept in various fields such as artificial intelligence [1], computer
science [2], machine learning [3], and operations research [4]. It involves finding the best possible
solution, either a minimum or maximum, to a given objective function. Traditional optimization
techniques, including linear programming [5], quadratic programming [6], convex optimization 7], and
interior-point methods [8], have been widely used to address these challenges. However, the growing
complexity and scale of real-world problems have led researchers to explore more flexible and robust
approaches, such as Metaheuristic Algorithms (MAs), which have gained significant attention in recent
years.

MAs are high-level problem-independent techniques that explore the search space to find near-
optimal solutions within a reasonable computational time. They are inspired by natural processes
and phenomena, including biological evolution, animal behaviours, and physical principles. Examples
of widely used MAs include the genetic algorithm [9], inspired by the process of natural selection,
the particle swarm optimization [10], which mimics the social behaviour of bird flocking and fish
schooling, the ant colony optimization [11], based on the foraging behaviour of ants, and the solar
system algorithm [12], which mimics the orbiting behaviour of celestial objects found in the solar
system. These MAs have demonstrated considerable success across various applications due to their
adaptability and robustness in exploring complex and large search spaces.

One of the key factors influencing the performance of population-based MAs is the initialization of
the population. The way the initial population is generated can significantly impact the algorithm’s
convergence speed, accuracy, and ability to explore the solution space effectively. Traditionally, ran-
dom number generators, which use uniform probability distributions, have been the most commonly
employed method for population initialization. However, the limitations of random initialization, such
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as poor diversity and uneven coverage of the search space, have driven researchers to investigate
alternative initialization strategies [13]. Recent studies have explored various approaches to improve
population initialization, such as using different probability distributions (e.g., Beta, Rayleigh, Expo-
nential) [14], quasi-random sequences (e.g., Halton, Sobol, Faure) [15], and chaos-based methods [16].
Additionally, hybrid techniques combining MAs with other optimization methods have been proposed
to enhance the initialization process and improve the overall performance [17]. These methods aim
to ensure better diversity and coverage of the search space, which are critical for avoiding premature
convergence and ensuring that MAs can explore a wide range of possible solutions.

In this paper, we examine the impact of nine distinct initialization methods on the performance of
AHO [18]. These methods include six probability distributions: Beta, Normal, Logarithmic Normal,
Exponential, Rayleigh, and Weibull distributions [14], as well as three low-discrepancy sequences:
Halton, Faure, and Sobol [15]. In addition, we analyze how varying population sizes and iteration
counts affect the optimizer’s efficiency. The findings reveal that AHO’s performance is significantly
influenced by the choice of initialization scheme. Based on these findings, we propose optimal population
sizes, iteration counts, and initialization methods for enhancing AHO’s effectiveness across different
benchmark functions.

The paper is structured as follows: Section 2 provides a brief overview of related work in the litera-
ture. Section 3 discusses background information on pseudo-random number generators, probability
distributions, and the Archerfish Hunting Optimizer used in our experiments, which are presented in
Section 4. The paper concludes in Section 5 with suggestions for future work to expand on the findings
of this study.

2. Related Work

Initialization is critical in implementing MAs, significantly influencing their efficiency and performance
in finding optimal solutions to complex optimization problems. Traditional approaches often rely
on random number generators to create initial populations. However, the limitations of random
initialization, such as uneven coverage of the search space, leading to premature convergence, and
poor performance in high-dimensional problems, are well-documented in the literature, prompting
researchers to explore alternative probability distributions to enhance algorithm performance [19, 13].

To overcome these limitations, numerous studies have investigated the effects of different probabilistic
distributions as alternative initialization methods. For instance, in a comprehensive study, conducted in
[14], 22 different initialization methods based on distributions such as Beta, Rayleigh, and Exponential
were compared across five MAs: differential evolution [20], particle swarm optimization [21], cuckoo
search [22], artificial bee colony [23], and genetic algorithm [9]. The results indicated that some of these
distributions could significantly improve the accuracy and convergence of these optimizers compared
to traditional random initialization.

Another notable work explored the significance of initialization methods on the performance of
population-based MAs [24]. The authors examined the impact of population size, the number of
iterations, and eleven different initialization techniques on ten widely used optimizers, including the
bat algorithm [25], grey wolf optimizer [26], and whale optimization algorithm [27]. The study revealed
that specific algorithms were sensitive to the choice of initialization methods, which influenced their
convergence and accuracy across various test functions. Furthermore, the research underscored that
the optimal population size and the number of iterations varied depending on the specific algorithm
and problem, highlighting the importance of tailored initialization strategies to boost algorithmic
performance.

In another work [15], researchers delved into the application of randomized low-discrepancy se-
quences, specifically the Halton, Sobol, and Faure sequences, for initializing particle swarms in the
particle swarm optimization algorithm [28]. The study compared its performance using these low-
discrepancy sequences with the traditional uniform initialization method that employs a pseudo-random
number generator. The findings suggested that the use of randomized low-discrepancy sequences could



enhance the algorithm’s performance on benchmark problems. Moreover, the study indicated that differ-
ent low-discrepancy sequences might have varying effects on the algorithm’s performance, suggesting
that the choice of sequence could influence optimization outcomes.

Finally, an article provided a comprehensive review of various initialization methods used in MAs to
enhance their performance [29]. It categorized initialization schemes into several groups, including
random numbers, quasi-random sequences, chaos theory, and probability distributions. The authors
conducted experiments comparing ten different initialization methods, evaluating their impact on the
performance of three MAs: bat algorithm [25], grey wolf optimizer [26], and butterfly optimization
algorithm [30]. The experiments emphasized the importance of balancing population size, the diversity
of the initial population, and the number of iterations as crucial factors in achieving optimal solutions
in complex optimization problems.

3. Background

This section provides an overview of AHO and the various initialization methods adopted in this study.
These foundational concepts are critical to understanding how these initialization techniques influence
AHO’s performance.

3.1. Archerfish Hunting Optimizer

AHO [18] is an MA inspired by the hunting strategies of archerfish, which capture prey by either
shooting water droplets or leaping out of water. AHO translates these behaviours into an optimization
algorithm where solutions are refined through iterations, focusing on efficient search space exploration
and the avoidance of local optima. The algorithm operates with two key parameters: the attractiveness
rate (w) and the swapping angle (6).

The algorithm begins by initializing a population of candidate solutions x; within the search space
boundaries using Equation 1. The symbols r; represent D-dimensional vectors drawn from the uniform
distribution. The vectors ub and 1b denote the upper and lower bounds of the search space, respectively.

x;=r;o(ub—1b)+1b,ie{l,...,N} (1)

The generation of new solutions during the search process is governed by three key phases: explo-
ration, exploitation, and local optima avoidance. The exploration phase uses Equation 2; the exploitation
phase refines solutions by employing Equation 3; and to avoid getting trapped in local optima, Equation
4 is utilized. The symbol « is a random number uniformly distributed between 0 and 1. The symbol L p
is a vector derived from the Lévy flight distribution. The symbol € is a small number. The symbol b is a
random number drawn from {0, 1}.

Xnew = Xbest + €XP (_Hxl - Xz”%) X (Xl - Xi) (2)
Xnew = Xbest T €XP (*HXQ - XZH%) X (X2 - Xi) 3)
Xpew = X; + ¢ X LD (4)
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3.2. Probability Distributions

Usually, distributions can be used as initial population schemes, where each affects MAs’ search
behaviour differently. In the following sections, some common distributions are described.

3.2.1. Beta Distribution

It is defined over (0, 1) with shape parameters a and b. It can be written as X ~ Be(a, b). Its probability
density function (PDF) is given by Equation 5, where the symbol I represents the Gamma function.
Also, its expected value and variance are provided in Equation 6.

. _ F(a + b) a— b—
f($7a7b) - F(G)F(b)x 1(1_1") ! (5)
X1 = _a ab (6)
Var(X) = (@0 (b D)

3.2.2. Uniform Distribution

It is defined over [a, b]. It can be written as X ~ U(a,b). Its PDF is described by Equation 7, and its
mean and variance are calculated using Equation 8.

L fora<z<b
_ b—a — —
J(@) = {O otherwise @
E[X] = ®
Var(X) = (bzg)

3.2.3. Normal Distribution

It is characterized by mean p and variance 2. It can be written as X ~ N (yu, 02). Its PDF is given by
Equation 9, and its mean and variance are described in Equation 10.

T — )2
flap,0®) = 2;2 exp (—(2(7?) )
{ a2 @

3.2.4. Logarithmic Normal Distribution

It is defined as the logarithm of the variable following a normal distribution. It can be written as
In X ~ N(p,0?). Its PDF is given by Equation 11, and its mean and variance are specified in Equation

12.
1 Inz — p)?
o) = e (~5) "

{ B[X] = exp (u +2 ) 2
Var(X) = (exp — 1) exp (2u + 0?)



3.2.5. Exponential Distribution

It can be written as X ~ exp(A). Its PDF is given by Equation 13, and its mean and variance are
provided in Equation 14 (A > 0).

\_ JAexp(=Az) forz >0
fa: ) = {0 forz <0 (12)
-1
{ Va2 o4

3.2.6. Rayleigh Distribution

It can be written as X ~ Rayleigh(o). Its PDF is given by Equation 15, and its mean and variance are
calculated using Equation 16.

X 1'2
faio) = Zow (5 ) )
{ E[X] = U\/g (16)

3.2.7. Weibull Distribution

It generalizes several distributions with scale parameter A and shape parameter k. It can be written as
X ~ Weibull(\, k) . Its PDF is given by Equation 17, and its mean and variance are given in Equation

18.
z\k—1 o\ k
Fla )\ k) = {I;i (X) exp <— (X) ) forx >0 )
0 forx <0
BIX] =T (14 }) |
Var(X) = X2 [P (1+2) =T (1+ 4)] (18)

3.3. Low-Discrepancy Sequences

Quasi-random number generators are known to generate sequences that have low discrepancy, which
makes them powerful tools for improving optimization algorithms. Low-discrepancy sequences, such
as Van der Corput [31], Sobol [31], Faure [32], and Halton [33], are particularly useful in uniformly
covering the search space, which enhances the initialization process in MAs. This section will focus on
three common low-discrepancy sequences — Halton, Faure, and Sobol — which have shown significant
promise in initialization schemes for MAs.

3.3.1. Randomized Halton Sequence

The Halton Sequence [34, 31] extends the Van der Corput sequence to multiple dimensions. The Van
der Corput sequence in a given base b is defined by representing a non-negative integer n in base-b
form, as shown in Equation 19.

n=ag+ab+ agh® + - + apbh™ (19)
, where a; are the digits in base b, and m is the largest integer such that 0" < n. The Van der Corput

sequence maps n to a fraction by reversing the digits of the base-b expansion, according to Equation 20.

ag a1 a
wb(n):?—i_ﬁ—‘r”'—i_bmﬁl

(20)



For higher dimensions, the Halton sequence uses different prime numbers py, po, ..., pgq as bases, as
described in Equation 21. To address the deterministic nature of the Halton sequence, small perturbations
such as Gaussian noise are introduced, which ensures variability between multiple algorithm runs.

Xn = (0p1(n); Pps(N); - - Ppa(n)) (21)

, where each ¢y, (n) is the radical inverse function in base p;.

3.3.2. Randomized Faure Sequence

The Faure sequence [34, 32] is a permutation of the Halton sequence with a single base m, chosen as
the smallest prime number greater than or equal to the number of dimensions. The representation
of a point (), is given by Equation 22. The Faure sequence improves stratification by applying a
specific permutation to the coefficients. The recursive permutation for the Faure sequence is outlined
in Equation 23.

Cr= by 072 4o b (L) (22)
bj = Z (;) a; mod m (23)
i2]

We also apply randomization to the Faure sequence by introducing small Gaussian noise to the
coordinates. This randomization ensures that the Faure sequence can be used in randomized MAs,
providing better performance compared to pseudo-random numbers.

3.3.3. Randomized Sobol Sequence

The Sobol sequence [34, 33] is another popular low-discrepancy sequence based on linear recurrence
relations over a finite field. The n-th element of the Sobol sequence in dimension j, denoted by 93,(:3 ) is
computed using the recurrence relation defined in Equation 24.

20 :v(j)m @véj)ng@...@vg)nw (24)

n 1

Z(j ) are known as direction numbers, and the symbol & denotes the bit-wise XOR operation.

We also introduce randomization by adding Gaussian noise to the generated points to enhance
exploratory capabilities while maintaining the low discrepancy properties of the Sobol sequence.

, where v

4. Experiments, and Discussion

To examine how different initialization methods influence the performance of AHO, we conducted
a series of experiments. The key objective is to assess how varying the population size (NP) and
the maximum number of iterations (T) affects the algorithm’s efficiency, with the ultimate goal of
determining the optimal values for NP and T that produce the best outcomes. The total number of
function evaluations (NFEs) is consistently set at 600,000, while the number of iterations is adjusted
based on the chosen population size. Consequently, larger NP values corresponded to fewer iterations,
while smaller NP values allowed for more iterations. The NP and T combinations tested include
¢y = (10,60000), C2 = (30,20000), C3 = (60,10000), and Cy = (100,6000), with the goal of
identifying the combination that delivers the best performance for AHO.

The experiments were conducted on a machine equipped with an Intel® Core™ i7-8750H CPU,
operating at a base frequency of 2.20 GHz with a boost frequency of 2.21 GHz. The system is equipped
with 32 GB of RAM and runs Windows 11. All computational analyses were performed using Matlab
R2023a. Each test function was evaluated with 30 independent runs to reduce variance.

We evaluated the performance of AHO across functions Fi, F», Fg, and Fy in dimensions 10 and 20
(Not all twelve benchmark functions were included due to space constraints). These functions were



specifically chosen to represent different categories of benchmark functions — unimodal, multimodal,
hybrid, and composition. Table 1 provides a detailed summary of the Best, Worst, Mean, Standard
Deviation (STD), and mean execution time (ET) values obtained from 30 independent runs. The STD was
computed based on the optimal solutions of the test functions, as defined in the CEC 2022 benchmark!.
Finally, the table presents the statistical analysis performed using Friedman’s test, showing that the
best performance for both the 10-dimensional and 20-dimensional cases was achieved when NP = 30
and T = 20000.

Table 1
Impact of varying the population size and the number of iterations on the obtained performance.

D =10 D =20

(& Cy Cs Cy (& Cy Cs Cy

Best 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02
Worst | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.003e+02
F1 | Mean 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.001e+02
STD 4.792e-11 2.462e-12 5.452e-12 7.772e-11 8.542e-03 | 8.357e-03 2.056e-02 | 8.288e-02
ET 1.877e+01 | 1.739e+01 | 1.662e+01 | 2.082e+01 | 2.431e+01 | 1.857e+01 | 1.747e+01 | 2.107e+01
Best 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.001e+02
Worst | 4.708e+02 | 4.089e+02 | 4.708e+02 | 4.708e+02 | 4.491e+02 | 4.491e+02 | 4.491e+02 | 4.709e+02
F> | Mean 4.051e+02 | 4.047e+02 | 4.100e+02 | 4.110e+02 | 4.316e+02 | 4.289e+02 | 4.234e+02 | 4.407e+02
STD 1.395e+01 | 6.242e+00 | 1.975e+01 | 2.341e+01 | 3.942e+01 | 3.779e+01 | 3.354e+01 | 4.637e+01
ET 1.860e+01 | 1.767e+01 | 1.667e+01 | 2.099e+01 | 2.565e+01 | 1.898e+01 | 1.801e+01 | 2.049e+01
Best 1.831e+03 | 1.838e+03 | 1.835e+03 | 1.826e+03 | 1.902e+03 | 1.942e+03 | 1.968e+03 | 1.887e+03
Worst | 8.060e+03 | 8.013e+03 | 8.068e+03 | 8.013e+03 | 2.042e+04 | 2.034e+04 | 1.999e+04 | 1.710e+04
Fs | Mean 4.280e+03 | 3.729e+03 | 3.858e+03 | 4.107e+03 | 7.066e+03 | 6.448e+03 | 8.222e+03 | 6.727e+03
STD 3.467e+03 | 2.747e+03 | 2.872e+03 | 3.295e+03 | 8.414e+03 | 7.000e+03 | 8.333e+03 | 7.314e+03
ET 1.907e+01 1.741e+01 1.693e+01 2.244e+01 2.790e+01 1.947e+01 1.807e+01 2.078e+01
Best 2.529e+03 | 2.529e+03 | 2.529e+03 | 2.529e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03
Worst | 2.676e+03 | 2.676e+03 | 2.676e+03 | 2.529e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03
Fy | Mean 2.544e+03 | 2.534e+03 | 2.534e+03 | 2.529e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03
STD 2.522e+02 | 2.397e+02 | 2.397e+02 | 2.332e+02 | 1.839e+02 | 1.839e+02 | 1.839e+02 | 1.839e+02
ET 2.116e+01 1.983e+01 1.942e+01 2.441e+01 3.160e+01 2.607e+01 2.195e+01 2.642e+01
Mean Rank | 3.2500 1.3750 2.3750 3.0000 2.0000 1.7500 2.7500 3.5000

After determining the optimal values for NP and T, we assess the effectiveness of various probability
distributions and low-discrepancy sequences for initializing the population in AHO. Specifically, we
tested six probability distributions — Beta, Normal, Logarithmic Normal, Exponential, Rayleigh, and
Weibull - as well as three low-discrepancy sequences: Halton, Faure, and Sobol. Each distribution and
sequence is used to generate the initial populations, and the performance is compared to the original
algorithm, which utilizes a uniform distribution for initialization. We provide an overview of the
initialization methods and their parameter settings in Table 2. Additionally, the results derived from the
comparison of these methods are systematically presented in Tables 3 and 4.

We give an in-depth analysis of the performance of AHO on the CEC 2022 benchmark functions,
using various initialization schemes, across two dimensions: D = 10 and D = 20. First, the discussion
will be focused on the type of test functions (unimodal, basic, hybrid, and composition). Then, an
analysis of the Friedman statistical test will be provided. Finally, a general overview of some key
observations is given.

For the unimodal function F; at dimension D = 10, initialization schemes such as Dy, D3, Dy,
D5, and Dg exhibited very poor performance, with significantly high mean values and large standard
deviations, reflecting instability in the performance. This contrasts with their performance at D = 20,
where the results were more consistent across all initialization methods. At D = 20, the best, worst,
and mean values were identical at 300 for all methods, indicating that this unimodal function does
not effectively distinguish between different initialization techniques when applied in the context of
AHO. This suggests that for unimodal functions, the choice of initialization method becomes more

'https://github.com/P-N-Suganthan/2022-SO-BO
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Table 2
Overview of the used probability distributions and low-discrepancy sequences

Initialization Method Parameter | Value
Random (Do) - -
Beta (D1) (a,b) (3,2)
Normal Distribution (D2) | (u, o) (0,1)
Logarithmic Normal (D3) | (u,0) (0,0.5)
Exponential (D4) A 0.5
Rayleigh (Ds) o 0.4
Weibull (Ds) (N k) (1,1)
Sobol (S1) - -
Halton (S2) - -
Faure (S3) - -

critical at lower dimensions, where instability in certain methods can negatively impact performance.
However, at higher dimensions, this sensitivity diminishes, leading to more uniform outcomes across
various methods. When analyzing the basic functions (F to F5) at D = 10, the results showed more
variability. Initialization methods like Dy, D3, D4, and D5 produced unstable results, characterized by
high standard deviation. However, the Sy and S3 were the most stable, showing the lowest standard
deviations across these functions. The D; also demonstrated competitive performance, closely matching
the results of Dy. At D = 20, the results followed the same general pattern, though the average values
and standard deviations increased slightly, with S5 showing the best performance across three of the
four functions, while Dy remained inconsistent. For the hybrid functions (Fg to Fg), the majority
of methods displayed similar performance, but Dy was particularly unstable and performed poorly
across both dimensions. At D = 20, methods like Dy, D3, Dy, D5, and Dg delivered the worst results,
especially on function F6. Meanwhile, Sy, S3, and D were more stable and provided better results. S}
and S3 remained the top-performing methods, confirming their effectiveness in hybrid functions. These
findings indicate that for hybrid functions, the careful selection of an initialization method is crucial.
The probability distributions, with the exception of D1, were generally ineffective for this category
of functions. In contrast, low-discrepancy sequences, consistently performed well, suggesting that
they are better suited for hybrid optimization problems. In the composition functions (Fy to Fi2), S2
consistently outperformed other methods at both D = 10 and D = 20. This performance highlights
the effectiveness of low-discrepancy sequences in efficiently navigating complex search spaces, which
is essential for composition functions characterized by their intricate landscapes and multiple optima.

The Friedman test (last columns of Tables 3 and 4), used to rank the initialization methods across
all functions, further highlighted the statistical superiority of S and D; in both dimensions. These
methods consistently demonstrated stability and efficiency, yielding optimal results with low standard
deviations. S also outperformed Dy at D = 10, while S3 showed better performance than Dy at
D = 20, though it did not perform as well at D = 10. Most initialization methods outperformed Dy at
D = 20, with S5, S3, and D; being the most effective. At D = 10, only three methods outperformed
Dy, with So, S, and D, leading the way.

Finally, the results from the Friedman test rankings of execution times for different initialization
methods across the dimensions D = 10 and D = 20, as presented in Table 5, highlight significant
differences in computational efficiency. At D = 10, methods Dy and D; ranked among the slowest with
scores of 6.5000, indicating high computational overhead, while methods D3 and D4 exhibited relatively
better execution times, although they still performed poorly overall. In contrast, low-discrepancy
sequence methods such as S7, S, and S3 displayed more balanced execution times, with S achieving a
score of 5.0833. At D = 20, the efficiency landscape shifted, with S; ranking the lowest at 6.8333, while
Dy and Dy also exhibited poor performance. Notably, methods Dy, D5, and Dg provided the shortest
execution times but did not perform well on this dimension. Overall, low-discrepancy sequences
consistently outperformed probabilistic methods in execution time, reinforcing their suitability for
optimization tasks where both solution quality and computational efficiency are critical.



Table 3
AHO’s performance comparison for CEC 2022 functions with different initialization schemes (D = 10).

Initialization Methods

Dy D, Dy D3 Dy Dy Dg Si So S3

Best 3.000e+02 3.000e+02 3.000e+02 3.000e+02 3.000e+02 3.000e+02 3.000e+02 3.000e+02 3.000e+02 3.000e+02
Worst | 3.000e+02 3.000e+02 | 5.893e+08 | 1.080e+10 1.302e+10 2.602e+06 | 8.363e+10 | 3.000e+02 3.000e+02 | 3.000e+02
Fy Mean 3.000e+02 3.000e+02 | 3.884e+07 | 3.599e+08 4.582e+08 1.104e+05 | 3.532e+09 | 3.000e+02 3.000e+02 | 3.000e+02
STD 2.403e-12 | 2.144e-12 | 1.529e+08 | 2.005e+09 2.421e+09 | 4.970e+05 | 1.580e+10 | 2.744e-12 2.431e-12 2.580e-12
ET 1.710e+01 1.681e+01 1.688e+01 1.556e+01 1.538e+01 1.611e+01 1.622e+01 1.547e+01 1.545e+01 1.551e+01
Best 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.001e+02 4.000e+02 | 4.000e+02
Worst | 4.708e+02 4.708e+02 | 2.102e+04 | 4.455e+03 4.708e+02 7.669e+03 | 4.089e+02 | 4.041e+02 4.000e+02 | 4.089e+02
F5 | Mean 4.105e+02 | 4.184e+02 | 1.874e+03 | 5.505e+02 | 4.313e+02 8.108e+02 | 4.029e+02 | 4.011e+02 4.000e+02 | 4.051e+02
STD 2.334e+01 3.500e+01 | 4.659e+03 | 7.535e+02 | 4.578e+01 1.611e+03 | 4.913e+00 | 2.020e+00 | 9.251e-03 | 6.624e+00
ET 1.582e+01 1.579e+01 1.561e+01 1.478e+01 1.499e+01 1.563e+01 1.572e+01 1.596e+01 1.561e+01 1.591e+01
Best 6.429e+02 | 6.337e+02 | 6.347e+02 | 6.331e+02 | 6.676e+02 6.283e+02 | 6.307e+02 | 6.599e+02 6.592e+02 | 6.328e+02
Worst | 6.794e+02 | 6.914e+02 | 6.868e+02 | 6.813e+02 7.184e+02 6.961e+02 | 6.959e+02 | 6.604e+02 6.602e+02 | 6.805e+02
F3 | Mean 6.591e+02 | 6.601e+02 | 6.530e+02 | 6.58%e+02 6.922e+02 6.532e+02 | 6.635e+02 | 6.599e+02 6.592e+02 | 6.562e+02
STD 6.086e+01 6.263e+01 5.567e+01 6.162e+01 9.488e+01 5.560e+01 | 6.765e+01 6.097e+01 6.025e+01 5.806e+01
ET 2.819e+01 2.844e+01 | 2.699e+01 | 2.680e+01 2.603e+01 2.731e+01 | 2.785e+01 | 2.759e+01 2.773e+01 | 2.918e+01
Best 8.209e+02 | 8.119e+02 | 8.209e+02 | 8.179e+02 | 8.229e+02 | 8.139e+02 | 8.279e+02 | 8.378e+02 8.517e+02 | 8.149e+02
Worst | 8.900e+02 | 8.776e+02 | 9.234e+02 | 9.363e+02 | 9.573e+02 8.935e+02 | 9.592e+02 | 8.378e+02 8.517e+02 | 8.925e+02
Fy Mean 8.552e+02 8.480e+02 | 8.767e+02 8.707e+02 8.984e+02 8.406e+02 8.766e+02 8.378e+02 8.517e+02 8.544e+02
STD 5.819e+01 5.075e+01 | 8.336e+01 | 7.758e+01 1.037e+02 | 4.591e+01 | 8.464e+01 | 3.845e+01 | 5.262e+01 | 5.906e+01
ET 2.795e+01 2.942e+01 2.862e+01 2.904e+01 2.913e+01 2.931e+01 2.825e+01 2.860e+01 2.859e+01 2.777e+01
Best 1.674e+03 1.222e+03 | 1.323e+03 | 1.606e+03 2.511e+03 1.326e+03 | 1.667e+03 | 1.594e+03 1.538e+03 | 1.327e+03
Worst | 4.555e+03 2.925e+03 | 4.514e+03 | 4.394e+03 5.201e+03 3.187e+03 3.965e+03 1.611e+03 1.538e+03 3.432e+03
F5 | Mean 2.338e+03 1.795e+03 | 2.526e+03 | 2.878e+03 | 4.011e+03 1.881e+03 | 2.714e+03 | 1.601e+03 1.538e+03 | 2.197e+03
STD 1.567e+03 9.791e+02 | 1.793e+03 | 2.118e+03 3.246e+03 1.069e+03 | 1.991e+03 | 7.127e+02 | 6.489e+02 | 1.425e+03
ET 2.964e+01 2.949e+01 | 2.912e+01 | 2.822e+01 2.853e+01 2.915e+01 | 3.005e+01 | 2.903e+01 2.943e+01 | 2.909e+01
Best 1.831e+03 1.815e+03 | 1.823e+03 | 1.810e+03 1.889e+03 1.857e+03 | 1.819e+03 | 2.355e+03 1.973e+03 | 1.825e+03
Worst | 8.05%e+03 7.673e+03 | 7.999e+08 | 7.995e+03 5.874e+03 7.010e+03 | 8.061e+03 | 2.553e+03 2.033e+03 | 8.002e+03
Fs | Mean 4.098e+03 2.920e+03 | 2.667e+07 | 3.407e+03 3.226e+03 3.141e+03 | 4.046e+03 | 2.421e+03 2.005e+03 | 3.627e+03
STD 3.259e+03 1.965e+03 | 1.485e+08 | 2.150e+03 1.922e+03 1.831e+03 | 3.246e+03 | 6.327e+02 | 2.086e+02 | 2.666e+03
ET 2.899e+01 2.938e+01 | 2.942e+01 | 2.887e+01 2.857e+01 2.916e+01 | 2.915e+01 | 2.918e+01 2.824e+01 | 2.894e+01
Best 2.048e+03 | 2.049e+03 | 2.038e+03 | 2.023e+03 2.076e+03 2.045e+03 | 2.050e+03 | 2.158e+03 2.132e+03 | 2.045e+03
Worst | 2.250e+03 | 2.289e+03 | 2.266e+03 | 2.298e+03 2.265e+03 2.273e+03 | 2.250e+03 | 2.176e+03 2.231e+03 | 2.275e+03
F7 | Mean 2.126e+03 | 2.128e+03 | 2.173e+03 | 2.155e+03 2.201e+03 2.150e+03 | 2.160e+03 | 2.164e+03 2.227e+03 | 2.141e+03
STD 1.397e+02 | 1.397e+02 | 1.853e+02 | 1.766e+02 2.111e+02 1.654e+02 | 1.714e+02 | 1.669e+02 2.319e+02 | 1.537e+02
ET 3.365e+01 3.283e+01 3.311e+01 3.277e+01 3.374e+01 3.414e+01 3.280e+01 3.291e+01 3.343e+01 3.393e+01
Best 2.227e+03 | 2.228e+03 | 2.221e+03 | 2.221e+03 2.346e+03 2.221e+03 | 2.222e+03 | 2.351e+03 2.602e+03 | 2.223e+03
Worst | 2.685e+03 | 2.534e+03 | 2.621e+03 | 2.641e+03 2.646e+03 2.647e+03 | 2.585e+03 | 2.358e+03 2.604e+03 | 2.621e+03
F3 | Mean 2.393e+03 | 2.431e+03 | 2.308e+03 | 2.290e+03 2.470e+03 2.437e+03 | 2.330e+03 | 2.355e+03 2.603e+03 | 2.380e+03
STD 2.423e+02 2.475e+02 1.578e+02 | 1.571e+02 2.86%9e+02 2.807e+02 1.768e+02 1.579e+02 4.096e+02 2.234e+02
ET 3.487e+01 3.388e+01 | 3.457e+01 | 3.485e+01 3.579e+01 3.564e+01 | 3.420e+01 | 3.490e+01 3.545e+01 | 3.417e+01
Best 2.529e+03 2.529e+03 | 2.529e+03 | 2.529e+03 2.400e+03 2.300e+03 | 2.529e+03 | 2.529e+03 2.529e+03 | 2.529e+03
Worst | 2.529e+03 | 2.529e+03 | 3.638e+03 | 2.676e+03 2.529e+03 3.261e+03 | 4.046e+03 | 2.529e+03 2.529e+03 | 2.676e+03
Fy Mean 2.529e+03 2.529e+03 | 2.617e+03 | 2.539e+03 2.521e+03 2.546e+03 | 2.611e+03 2.52%9e+03 2.529e+03 | 2.534e+03
STD 2.332e+02 | 2.332e+02 | 4.151e+02 | 2.460e+02 | 2.268e+02 | 2.874e+02 | 4.343e+02 | 2.332e+02 2.332e+02 | 2.397e+02
ET 3.193e+01 3.059e+01 3.137e+01 2.963e+01 2.948e+01 3.095e+01 3.136e+01 2.965e+01 2.962e+01 3.100e+01
Best 2.501e+03 | 2.501e+03 | 2.501e+03 | 2.501e+03 2.501e+03 2.501e+03 | 2.501e+03 | 2.501e+03 2.631e+03 | 2.501e+03
Worst | 3.904e+03 4.151e+03 | 4.371e+03 | 4.361e+03 4.325e+03 3.825e+03 | 4.545e+03 | 2.502e+03 4.553e+03 | 4.234e+03
Fip | Mean 2.946e+03 | 2.764e+03 | 3.516e+03 | 3.361e+03 3.584e+03 2.816e+03 | 3.404e+03 | 2.502e+03 4.483e+03 | 3.193e+03
STD 7.682e+02 6.370e+02 | 1.220e+03 | 1.128e+03 1.333e+03 5.984e+02 | 1.188e+03 | 1.034e+02 2.147e+03 | 1.018e+03
ET 2.949e+01 3.088e+01 | 2.956e+01 | 3.022e+01 3.006e+01 2.959e+01 | 3.230e+01 | 2.956e+01 | 3.085e+01 | 3.069e+01
Best 2.600e+03 | 2.600e+03 | 2.600e+03 | 2.600e+03 2.985e+03 2.600e+03 | 2.600e+03 | 2.600e+03 2.900e+03 | 2.600e+03
Worst | 4.857e+03 | 4.636e+03 | 5.465e+03 | 6.043e+03 6.527e+03 | 4.580e+03 | 6.697e+03 | 2.600e+03 4.471e+03 | 3.916e+03
F11 | Mean 3.229e+03 3.242e+03 | 3.456e+03 | 3.313e+03 3.676e+03 2.962e+03 | 3.278e+03 | 2.600e+03 3.709e+03 | 2.851e+03
STD 8.955e+02 | 8.097e+02 | 1.233e+03 | 1.188e+03 1.242e+03 6.207e+02 | 1.212e+03 | 2.506e-12 | 1.318e+03 | 4.823e+02
ET 3.134e+01 3.272e+01 | 3.125e+01 | 3.336e+01 3.391e+01 3.170e+01 | 3.215e+01 | 3.277e+01 3.321e+01 | 3.392e+01
Best 2916e+03 | 2.903e+03 | 2.915e+03 | 2.900e+03 2.869e+03 2.898e+03 | 2.882e+03 | 2.990e+03 3.113e+03 | 2.880e+03
Worst | 3.35Te+03 3.265e+03 | 3.290e+03 | 2.900e+03 3.333e+03 3.299e+03 | 3.317e+03 | 3.185e+03 3.113e+03 | 3.175e+03
Fi5 | Mean 3.036e+03 3.034e+03 | 3.019e+03 | 2.900e+03 3.118e+03 3.051e+03 | 3.052e+03 | 3.089e+03 3.113e+03 | 2.994e+03
STD 3.544e+02 3.516e+02 | 3.363e+02 | 2.034e+02 | 4.462e+02 3.758e+02 | 3.756e+02 | 4.026e+02 4.204e+02 | 3.099e+02
ET 3.447e+01 3.290e+01 3.395e+01 3.393e+01 3.262e+01 3.265e+01 3.276e+01 3.321e+01 3.370e+01 3.397e+01
Mean Rank | 4.5833 4.2500 6.8333 6.0833 8.0833 4.7500 7.2500 3.2500 5.5833 4.3333

5. Conclusion and Perspectives

The research presented in this paper contributes to the growing body of knowledge on initialization
schemes for MAs, an area that has yet to be fully explored in the optimization literature. While
numerous MAs have been developed and refined over the years, much less attention has been given
to the initialization phase, which significantly impacts the overall performance of these algorithms.
Most researchers continue to rely on traditional random number generators for initialization, despite



Table 4
AHO’s performance comparison for CEC 2022 functions with different initialization schemes (D = 20).

Initialization Methods

Dy D, Dy D3 Dy Ds Dg S1 S S3

Best 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 3.000e+02 | 3.000e+02
Worst | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 3.000e+02 | 3.000e+02
Fy | Mean | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 | 3.000e+02 3.000e+02 | 3.000e+02
STD 1.025e-02 6.507e-03 | 9.284e-03 9.673e-03 | 3.336e-03 | 7.448e-03 | 8.858e-03 3.965e-03 2.557e-03 1.041e-02
ET 3.030e+01 | 3.069e+01 | 3.086e+01 | 3.019e+01 3.070e+01 | 3.155e+01 | 3.136e+01 | 3.096e+01 3.098e+01 3.018e+01
Best 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.000e+02 | 4.497e+02 4.491e+02 | 4.000e+02
Worst | 4.491e+02 | 4.491e+02 | 4.491e+02 | 4.491e+02 | 4.718e+02 | 7.436e+03 | 4.491e+02 | 4.491e+02 4.491e+02 | 4.727e+02
Fy | Mean | 4.320e+02 | 4.364e+02 | 4.357e+02 | 4.231e+02 | 4.449e+02 | 6.637e+02 | 4.279e+02 | 4.491e+02 4.491e+02 4.263e+02
STD 3.960e+01 | 4.184e+01 | 4.228e+01 | 3.354e+01 | 4.835e+01 | 1.307e+03 | 3.670e+01 | 4.992e+01 4.992e+01 3.671e+01
ET 3.056e+01 | 3.058e+01 | 3.041e+01 | 3.096e+01 2.963e+01 | 3.006e+01 | 3.045e+01 | 2.999e+01 3.036e+01 3.132e+01
Best 6.468e+02 | 6.602e+02 | 6.484e+02 | 6.471e+02 | 6.838e+02 | 6.399e+02 | 6.509e+02 | 6.716e+02 6.658e+02 | 6.560e+02
Worst | 6.956e+02 | 6.993e+02 | 6.940e+02 | 7.069e+02 | 7.291e+02 | 6.848e+02 | 6.946e+02 | 6.722e+02 6.666e+02 | 6.984e+02
F3 | Mean | 6.701e+02 | 6.756e+02 | 6.684e+02 | 6.755e+02 7.090e+02 | 6.695e+02 | 6.695e+02 | 6.718e+02 6.665e+02 6.704e+02
STD 7.222e+01 | 7.745e+01 | 7.078e+01 | 7.801e+01 1.114e+02 | 7.149e+01 | 7.135e+01 | 7.304e+01 6.759e+01 | 7.257e+01
ET 3.492e+01 | 3.599e+01 | 3.579e+01 | 3.444e+01 3.439e+01 | 3.486e+01 | 3.436e+01 | 3.462e+01 3.457e+01 3.442e+01
Best 9.025e+02 | 8.826e+02 | 8.998e+02 | 9.055e+02 | 9.900e+02 | 8.826e+02 | 8.776e+02 | 9.383e+02 8.876e+02 | 8.836e+02
Worst | 1.044e+03 | 9.691e+02 | 1.093e+03 | 1.158e+03 1.133e+03 | 9.980e+02 | 1.106e+03 | 9.393e+02 8.945e+02 1.003e+03
Fy | Mean | 9.481e+02 | 9.278e+02 | 9.859e+02 | 1.006e+03 | 1.073e+03 | 9.241e+02 | 9.695e+02 | 9.383e+02 8.941e+02 | 9.491e+02
STD 1.563e+02 | 1.319e+02 | 1.946e+02 | 2.226e+02 | 2.803e+02 | 1.288e+02 | 1.810e+02 | 1.407e+02 | 9.568e+01 | 1.550e+02
ET 3.228e+01 | 3.028e+01 | 3.137e+01 | 3.118e+01 3.063e+01 | 2.985e+01 | 3.106e+01 | 3.308e+01 3.173e+01 3.089e+01
Best 2.867e+03 | 2.416e+03 | 3.119e+03 | 2.762e+03 | 5.240e+03 | 2.117e+03 | 3.150e+03 | 3.032e+03 2.390e+03 | 2.981e+03
Worst | 5.959e+03 | 4.425e+03 | 7.872e+03 | 8.900e+03 | 1.916e+04 | 5.384e+03 | 7.895e+03 | 3.099e+03 2.430e+03 | 7.221e+03
F5 | Mean | 4.733e+03 | 3.294e+03 | 4.777e+03 | 5.268e+03 | 7.352e+03 | 3.616e+03 | 5.587e+03 | 3.064e+03 2.413e+03 | 4.382e+03
STD 3.976e+03 | 2.506e+03 | 4.100e+03 | 4.657e+03 | 6.977e+03 | 2.850e+03 | 4.949e+03 | 2.201e+03 | 1.539e+03 | 3.689e+03
ET 3.100e+01 3.181e+01 3.233e+01 3.056e+01 3.129e+01 | 3.191e+01 | 3.109e+01 3.137e+01 3.178e+01 3.291e+01
Best 1.878e+03 | 1.932e+03 | 2.040e+03 | 2.110e+03 1.853e+03 | 1.863e+03 | 2.006e+03 | 4.681e+03 3.471e+03 1.909e+03
Worst | 2.044e+04 | 1.477e+04 | 1.882e+10 | 1.042e+10 | 3.074e+10 | 8.670e+09 | 2.695e+10 | 6.138e+03 4.936e+03 | 2.043e+04
Fs | Mean | 1.124e+04 | 4.355e+03 | 6.274e+08 | 3.472e+08 | 5.613e+09 | 7.325e+08 | 2.977e+09 | 5.389e+03 3.952e+03 | 8.193e+03
STD 1.18%+04 | 4.070e+03 3.495e+09 1.934e+09 1.234e+10 | 2.210e+09 | 8.484e+09 3.676e+03 2.212e+03 | 8.828e+03
ET 3.216e+01 | 2.958e+01 | 3.023e+01 | 3.184e+01 2.998e+01 | 3.006e+01 | 3.151e+01 | 3.063e+01 3.196e+01 3.014e+01
Best 2.093e+03 | 2.122e+03 | 2.086e+03 | 2.139e+03 | 2.219e+03 | 2.136e+03 | 2.087e+03 | 2.362e+03 2.438e+03 | 2.098e+03
Worst | 2.561e+03 | 2.747e+03 | 2.720e+03 | 2.779e+03 | 2.722e+03 | 2.576e+03 | 2.507e+03 | 2.373e+03 2.449e+03 | 2.627e+03
F7 | Mean | 2.330e+03 | 2.289e+03 | 2.401e+03 | 2.404e+03 | 2.451e+03 | 2.286e+03 | 2.323e+03 | 2.371e+03 2.446e+03 | 2.337e+03
STD 3.562e+02 | 3.229e+02 | 4.497e+02 | 4.356e+02 | 4.753e+02 | 3.235e+02 | 3.498e+02 | 3.774e+02 4.535e+02 3.742e+02
ET 3.795e+01 | 3.910e+01 | 3.746e+01 | 3.845e+01 3.922e+01 | 3.842e+01 | 3.790e+01 | 3.906e+01 3.790e+01 3.910e+01
Best 2.293e+03 | 2.253e+03 | 2.225e+03 | 2.236e+03 | 2.248e+03 | 2.234e+03 | 2.235e+03 | 2.354e+03 2.238e+03 | 2.253e+03
Worst | 3.011e+03 | 3.018e+03 | 2.878e+03 | 2.894e+03 | 2.892e+03 | 3.024e+03 | 1.963e+05 | 2.370e+03 2.251e+03 | 3.014e+03
Fs | Mean | 2.620e+03 | 2.665e+03 | 2.460e+03 | 2.543e+03 2.620e+03 | 2.593e+03 | 8.979e+03 | 2.360e+03 2.243e+03 2.554e+03
STD 4.627e+02 | 5.031e+02 | 3.271e+02 | 4.073e+02 | 4.558e+02 | 4.323e+02 | 3.604e+04 | 1.627e+02 4.372e+01 | 3.996e+02
ET 3.993e+01 | 4.124e+01 | 4.122e+01 | 4.065e+01 4.229e+01 | 4.013e+01 | 4.103e+01 | 4.251e+01 4.154e+01 4.132e+01
Best 2.481e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03 | 2.481e+03 | 2.400e+03 | 2.481e+03 | 2.481e+03 2.481e+03 | 2.481e+03
Worst | 2.481e+03 | 2.481e+03 | 5.236e+03 | 2.481e+03 | 5.308e+03 | 3.716e+03 | 5.634e+03 | 2.481e+03 2.481e+03 | 2.481e+03
Fy | Mean | 2.481e+03 | 2.481e+03 | 2.617e+03 | 2.481e+03 2.669e+03 | 2.520e+03 | 2.586e+03 | 2.481e+03 2.481e+03 2.481e+03
STD 1.839e+02 | 1.839e+02 | 6.386e+02 | 1.839e+02 | 8.098e+02 | 3.182e+02 | 6.450e+02 | 1.839e+02 1.839e+02 | 1.839e+02
ET 3.741e+01 | 3.660e+01 | 3.719e+01 | 3.735e+01 3.649e+01 | 3.573e+01 | 3.672e+01 | 3.692e+01 3.580e+01 3.547e+01
Best 2.501e+03 | 3.987e+03 | 2.849e+03 | 3.894e+03 | 4.223e+03 | 2.501e+03 | 2.501e+03 | 4.580e+03 5.682e+03 | 2.501e+03
Worst | 6.271e+03 | 6.422e+03 | 5.851e+03 | 6.539e+03 6.367e+03 | 6.285e+03 | 6.093e+03 | 5.078e+03 5.682e+03 6.030e+03
Fip | Mean | 4.869e+03 | 5.268e+03 | 5.169e+03 | 5.152e+03 | 5.422e+03 | 4.961e+03 | 5.141e+03 | 4.798e+03 5.682e+03 | 5.210e+03
STD 2.688e+03 | 2.970e+03 | 2.877e+03 | 2.861e+03 | 3.140e+03 | 2.731e+03 | 2.884e+03 | 2.445e+03 | 3.338e+03 | 2.944e+03
ET 3.471e+01 3.462e+01 3.521e+01 3.501e+01 3.368e+01 | 3.477e+01 | 3.511e+01 3.489e+01 3.418e+01 3.434e+01
Best 2.600e+03 | 2.900e+03 | 2.600e+03 | 2.600e+03 | 2.900e+03 | 2.600e+03 | 2.600e+03 | 2.900e+03 2.900e+03 | 2.600e+03
Worst | 9.703e+03 | 8.531e+03 | 3.000e+03 | 3.000e+03 | 3.000e+03 | 3.000e+03 | 1.153e+04 | 2.900e+03 6.712e+03 | 8.582e+03
Fi1 | Mean | 4.000e+03 | 3.215e+03 | 2.883e+03 | 2.901e+03 | 2.903e+03 | 2.883e+03 | 3.613e+03 | 2.900e+03 3.044e+03 | 3.273e+03
STD 2.585e+03 | 1.266e+03 | 3.057e+02 | 3.191e+02 | 3.091e+02 | 3.189e+02 | 2.425e+03 | 3.051e+02 | 8.277e+02 | 1.507e+03
ET 3.911e+01 3.855e+01 3.865e+01 3.795e+01 3.809e+01 | 3.941e+01 | 3.778e+01 3.873e+01 3.875e+01 3.893e+01
Best 3.273e+03 | 3.401e+03 | 3.160e+03 | 2.900e+03 | 3.502e+03 | 3.485e+03 | 3.026e+03 | 3.728e+03 3.351e+03 | 3.191e+03
Worst | 4.180e+03 | 4.755e+03 | 4.471e+03 | 2.900e+03 | 5.242e+03 | 5.519e+03 | 4.665e+03 | 4.015e+03 5.705e+03 | 4.254e+03
Fia | Mean | 3.795e+03 | 4.139e+03 | 3.648e+03 | 2.900e+03 | 4.326e+03 | 4.247e+03 | 3.546e+03 | 3.838e+03 5.248e+03 | 3.695e+03
STD 1.142e+03 | 1.496e+03 | 1.025e+03 | 2.034e+02 | 1.715e+03 | 1.645e+03 | 9.289e+02 | 1.160e+03 2.715e+03 | 1.049e+03
ET 4.047e+01 | 3.979e+01 | 4.050e+01 | 4.044e+01 4.05Te+01 | 3.976e+01 | 3.985e+01 | 4.058e+01 4.118e+01 3.997e+01
Mean Rank | 5.6667 5.0000 5.5833 5.3333 8.0833 5.1667 6.2500 4.0000 4.5833 5.3333

well-documented limitations. This study confirms the importance of exploring alternative initialization
methods.

Our findings demonstrated the effectiveness of various initialization schemes, including probabilistic
distributions and low-discrepancy sequences, in influencing the performance of the AHO algorithm.
Specifically, the experimental results on the CEC 2022 benchmark functions revealed that AHO’s
sensitivity to initialization schemes varies depending on the problem at hand. Some functions were



Table 5
Friedman test rankings of execution time for different dimensions

Dimension D() D1 D2 D5 D4 D5 D(, Sl SQ S5
D =10 6.5000 | 6.5000 | 5.4167 | 4.0833 | 4.1667 | 59167 | 5.7500 | 5.2500 | 5.0833 | 6.3333
D =20 6.1667 | 5.1667 | 6.4167 | 5.2500 | 4.3333 | 4.8333 | 4.6667 | 6.8333 | 6.0833 | 5.2500

more responsive to the choice of initialization, while others were relatively insensitive. Notably, the
results showed that low-discrepancy sequences were particularly effective and exhibited greater stability,
especially in higher dimensions. They consistently achieved the best results across most functions,
underscoring their suitability as a robust initialization strategy, particularly in more complex and
higher-dimensional optimization problems. This suggested that problem-specific characteristics, along
with dimensionality, play a key role in determining the most appropriate initialization strategy.

Moving forward, we intend to conduct an in-depth study on the parameter initialization of MAs more
broadly. In particular, we aim to explore innovative methods for automatic parameter initialization,
which could further improve the adaptability and performance of these algorithms across a wide
range of optimization problems. By incorporating novel approaches, such as hybrid techniques and
dynamic parameter tuning, we seek to develop frameworks that allow metaheuristics to adjust their
key parameters in response to the problem landscape. Additionally, we will focus on the exploration of
hyper-parameter optimization strategies to systematically identify the most suitable configurations for
enhancing both convergence speed and solution quality.

Declaration on Generative Al

The authors have not employed any Generative Al tools.
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