
A New Atomic Broadcast Protocol for Asynchronous
Distributed Systems⋆

Nadjette Rebouh1,∗,†, Louiza Bouallouche-Medjkoune2,†

1Research Unit LaMOS, Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria
1Research Unit LaMOS, Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria

Abstract
Blockchains are decentralized and immutable ledgers that ensure secure transaction recording. In these
systems, the atomic broadcast is pivotal, ensuring consistent transaction delivery to all participants. It
ensures either all nodes receive a transaction or none, preserving ledger integrity. This paper addresses
the atomic broadcast problem in asynchronous systems. The existing atomic broadcast protocols suffer
from relying on strong temporal assumptions and generating a significant number of messages. In
response, we propose a novel protocol based on the rotating coordinator principle for message ordering
and the ♢𝑆 failure detector for fault tolerance. It has been demonstrated that ♢𝑆 is the minimal and
sufficient class of failure detectors to solve the atomic broadcast in asynchronous systems. Simulation
results, conducted using the Neko simulator, demonstrate significant enhancements in latency and
message throughput compared to two existing protocols, implemented within the same simulator. The
robustness and efficiency of the proposed solution are convincingly demonstrated through extensive
simulations. This research contributes valuable insights into enhancing the reliability and performance
of atomic broadcast protocols, crucial for the development of resilient and scalable distributed systems
in blockchain technology and beyond.

Keywords
Blockchain Systems, Atomic Broadcast, Distributed System, Failure Detectors, Rotating Coordinator,
Agreement Problem

1. Introduction

Blockchains represent a fascinating intersection of two prominent fields in computer science:
distributed systems and cryptography. At its core, blockchains are distributed systems composed
of a network of interconnected nodes, each maintaining a copy of the ledger. and participating
in the consensus process. Blockchains, as decentralized and immutable ledgers, ensure secure
transaction recording, resilience, fault tolerance, and consistency, making it a revolutionary
technology for various applications, from financial transactions to supply chain management
[1], [2]. However, maintaining consistency across distributed systems or distributed ledgers
presents significant challenges. This is primarily due to the inevitable concurrency in such

TACC’2024, The 4th Tunisian-Algerian Conference on applied Computing, December 17-18, 2024, Constantine, Algeria
⋆
You can use this document as the template for preparing your publication. We recommend using the latest version
of the ceurart style.

∗Corresponding author.
†
These authors contributed equally.
Envelope-Open nadjette.rebouh@univ-bejaia.dz (N. Rebouh); louiza.medjkoune@univ-bejaia.dz (L. Bouallouche-Medjkoune)
Orcid 0000-0002-8821-8543 (N. Rebouh); 0000-0003-2849-6258 (L. Bouallouche-Medjkoune)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:nadjette.rebouh@univ-bejaia.dz
mailto:louiza.medjkoune@univ-bejaia.dz
https://orcid.org/0000-0002-8821-8543
https://orcid.org/0000-0003-2849-6258
https://creativecommons.org/licenses/by/4.0


systems, combined with the difficulty of providing global system control and the presence of
failures (crashes or byzantine). This difficulty is significantly reduced by relying on group com-
munication primitives that offer better guarantees than standard point-to-point communication.
In these systems, the atomic broadcast (with reduction to consensus) is pivotal, ensuring consis-
tent transaction delivery to all participants. It ensures either all nodes receive a transaction or
none, preserving the systems integrity [3], [4], [5].

Several algorithms solving the atomic broadcast problem in a distributed systems have been
proposed in the literature. These algorithms can be classified according to twomain criteria: The
message ordering approach and the fault tolerance mechanism implemented [6], [7]. Several
approaches have been employed to enforce message order, either relying on a single entity to
enforce delivery order uniqueness (the coordinator principle) or leveraging the system structure,
which demands fewer control messages but at the expense of other characteristics [8]. However,
the chosen fault tolerance approach plays a pivotal role in the correctness, efficiency, and
complexity of the atomic broadcast protocol. Furthermore, the type of failures supported by
the system significantly impacts the protocol performance and the system as a whole. The
challenge then lies in designing a simple and efficient atomic broadcast protocol based on
minimal temporal assumptions inherent in the necessary and sufficient failure detector for
fault tolerance, the optimal process structure within the system, and the appropriate message
ordering technique, while also considering the type of tolerated failures.

This paper presents a new atomic broadcast protocol for all types of asynchronous distributed
systems. The protocol is based on the utilization of unreliable failure detectors ♢𝑆 for fault
tolerance [3]. This class of failure detectors incorporates the minimal synchrony assumptions
to address a given agreement problem [9]. Consequently, the protocol requires a majority of
correct processes relative to the number of tolerated failures. Accordingly, the protocol generates
fewer control messages necessary for the system execution and correction. Consequently, the
protocol leverages the unique output of the failure detector to designate it as the coordinator
for imposing message delivery order. Participating processes behave symmetrically to ensure
system integrity through a fully centralized approach.
The paper is structured as follows. Section 2 surveys some related work. Section 3 intro-

duces the system model and, formally, defines the concepts. Then, Section 4 presents the
proposed atomic broadcast protocol and Section 5 proves its correctness. Section 6 evaluates
the performances of the proposed protocol. Finally, Section 7 concludes the paper.

2. Related Work

In [6], authors discuss various protocols and approaches for achieving atomic broadcast, includ-
ing both pessimistic and optimistic strategies. Pessimistic approaches typically rely on atomic
broadcast protocols, where messages are delivered to all processes in a predefined order.
Two classes of atomic broadcast protocols have been identified according to the ordering

of messages and the fault tolerance mechanism used. Token-based solutions rely on the ring
structure of processes to transmit the order information handled by a token. They have been
divided into two classes according to the fault tolerance mechanism used: [10], [11], [12] are
based on group membership service while [13], [14] are failure detector based protocols.



In [3], they rely on a collaboration between the coordinator principle and the consensus to
achieve the ordering task in a centralized manner. However, in [15], they use the same approach
as [3] but in a decentralized manner. In this paper, we use the same approach but without the
use of the consensus problem as a building block. The processes communicate directly with the
coordinator of the round and get the appropriate information to decide on the set of messages
to be atomically delivered.
In blockchain systems, the atomic broadcast protocols tolerate Byzantine failures when the

processes are distributed across a decentralized network of nodes. These protocols ensure fault
tolerance, allowing the system to maintain the consistency and integrity of data even in the
presence of malicious processes or Byzantine faults [16], [17], [18], [19], [20].

3. Computation Model and Definitions

In this section, we present the system model and some definitions related to our study.

3.1. Computation Model

We consider an asynchronous distributed system composed of a set Π = {𝑝0, …, 𝑝𝑛−1} of 𝑛
processes, connected by reliable communication channels forming a fully connected network.
Processes can only tolerate failures by permanent crashes. We assume a majority of correct
processes (𝑓 < 𝑛/2; where 𝑓 represents the maximum number of faulty processes). The system
is augmented with the unreliable failure detector ♢𝑆.

3.2. Unreliable Failure Detectors

Informally, a failure detector consists of a set of modules, each attached to a process: The
module attached to a process maintains a set of suspected faulty processes. A failure detector
is considered unreliable because it may suspect a correct process as well as fail to suspect a
genuinely faulty process. Chandra and Toueg [3] defined eight classes of failure detectors
based on two properties: Completeness (a liveness property ensuring that faulty processes will
eventually be suspected) and Accuracy (a safety property restricting false suspicions about
correct processes). In this paper, we consider the ♢𝑆 class defined as follows:

• Strong completeness: Every faulty process will eventually be permanently suspected by
every correct process.

• Weak ultimate accuracy: There exists a moment from which at least one correct process
is never suspected again.

Chandra et al. [9] showed that ♢𝑆 is the weakest class of failure detectors and is the minimal
and necessary class to solve the atomic broadcast problem in an asynchronous distributed
system (by reduction to the consensus problem).



3.3. Reliable Broadcast

This problem ensures an atomic delivery of messages to the processes of the system (a message
sent by a process is received by all processes) [4]. It is defined using two communication
primitives 𝑅 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡() and 𝑅 − 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(). Formally, it is specified by the following properties:

1. Agreement: If a correct process broadcasts a message 𝑚, then inevitably all correct
processes deliver this message;

2. Validity: If a process delivers a message 𝑚, then 𝑚 has been broadcast by at least one
process;

3. Integrity: A message delivery occurs at most once.

3.4. Atomic Broadcast

The atomic broadcast is an extension of the reliable broadcast. In addition to ensuring that
all processes receive the same number of messages (reliable broadcast), it also ensures the
same delivery order of these messages [4]. It is defined using two communication primitives:
𝐴 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡() and 𝐴 − 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(). Atomic validation in the context of transactional databases
and blockchain systems is an example of an application using the atomic broadcast primitives.
This problem concerns the dissemination and delivery of messages by processes. More formally,
atomic broadcast is completely defined by the properties of reliable broadcast plus the following
order property:

• Total order: If a correct process delivers a message 𝑚 before message 𝑚′, then all processes
deliver 𝑚 before message 𝑚′.

3.5. Data structures and messages

Each correct process, participating in the atomic broadcast protocol, emits and receives messages
of various types:

1. 𝑣𝑜𝑡𝑒: To elect the new coordinator for the current round;
2. 𝑐𝑎𝑛𝑐𝑒𝑙: When the process wants to cancel the processing done during the current round;
3. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛: As soon as the coordinator receives a sufficient number of votes, it broadcasts

this message to inform the other processes of its decision regarding the order of the
message list to be atomically delivered.

4. 𝑠𝑖𝑚𝑝𝑙𝑒: A simple message broadcast by a correct process to participate in the application
tasks.

The first three messages are control messages, while the last message leads to a system
evolution (its execution). To achieve this, a process manipulates the following data structures:

• 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖: A list containing the messages identifiers (𝑖𝑑𝑚𝑠𝑔) and it does not allow dupli-
cation of elements.

• 𝑖𝑑𝑚𝑠𝑔: A data structure composed of two integers, the first representing the message
sender number and the second is the timestamp of this message. The use of this structure
guarantees the uniqueness of broadcast messages.



• 𝑢𝑛𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖: The list of broadcast messages that have not been yet ordered.
• 𝑟𝑜𝑢𝑛𝑑: An integer representing the current round, initially set to zero.
• 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖: An array of integers containing the votes of the processes according to their
identifiers (∀𝑗 ∈ Π: 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖[𝑗] = ?).

• 𝑡𝑟𝑢𝑠𝑡𝑖: An integer containing the number of positive votes (vote=1) present in 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖.
• 𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑖: An integer containing the number of negative votes (vote=2) present in 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖.
• 𝑡𝑒𝑚𝑝: A list containing all messages belonging to rounds succeeding the current round.

4. The Atomic Broadcast Protocol

The section is devoted to the description and the algorithm of the proposed solution.

4.1. The proposed protocol description

The principle of the protocol is quite straightforward. It operates in a series of asynchronous
rounds. During each round, a process is elected (rotating coordinator) to enforce the list of
messages to be delivered by all correct processes. The algorithm relies on the use of the failure
detector ♢𝑆 to provide the list of faulty processes in the system. To achieve this, the use of
communication primitives, reliable broadcast, is paramount to ensure messages sending and
receiving. The algorithm unfolds in two tasks:

1. Task1: It consists of two phases:
a) Phase1: Each process broadcasts its messages by invoking the𝑅−𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 primitive

(which is the indirect implementation of 𝐴 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡).
b) Phase2: During this phase, each process 𝑝𝑖 must vote for one of two values: (1) If it

does not suspect the coordinator process 𝑝𝑐; (2) If it suspects it to be faulty based
on the list of faulty processes provided by the failure detector ♢𝑆 attached to this
process. The process 𝑝𝑖 can only cast one vote during a round.

2. Task2: Upon receiving a message 𝑚, the process 𝑝𝑖 must perform one of the following
treatments depending on the type of the received message:
a) 𝑚 is a simplemessage: 𝑝𝑖 adds𝑚 to its 𝑢𝑛𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖 and places themessage identifier

in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖.
b) 𝑚 is a vote message: 𝑝𝑖 updates 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖 and its local variables 𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑖 and 𝑡𝑟𝑢𝑠𝑡𝑖.

Two cases can be considered:
• 𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑖 ≥ (𝑛 − 𝑓 ): 𝑝𝑖 broadcasts a 𝑐𝑎𝑛𝑐𝑒𝑙 message to start a new round.
• 𝑡𝑟𝑢𝑠𝑡𝑖 ≥ (𝑛 − 𝑓 ) and 𝑝𝑖 is the coordinator: In this case, 𝑝𝑖 decides and broadcasts
its 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑐.

c) 𝑚 ∈ 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖: If the round number of 𝑚 (𝑟𝑜𝑢𝑛𝑑𝑚) is equal to the current round,
𝑝𝑖 delivers its recorded messages in the 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖 according to the coordinator
imposed order and initiates a new round. However, if 𝑟𝑜𝑢𝑛𝑑𝑚 is greater than the
current round, the process 𝑝𝑖 adds the message 𝑚 to the temporary list 𝑡𝑒𝑚𝑝.

d) 𝑚 is a 𝑐𝑎𝑛𝑐𝑒𝑙 message: If 𝑟𝑜𝑢𝑛𝑑𝑚 is equal to the current round, 𝑝𝑖 initiates a new
round. However, if 𝑟𝑜𝑢𝑛𝑑𝑚 is greater than the current round, the process 𝑝𝑖 adds the
message 𝑚 to the temporary list 𝑡𝑒𝑚𝑝.



4.2. The proposed protocol

This section presents the atomic broadcast solution (Algorithm 1).

Algorithm 1 The atomic broadcast protocol
1: TASK1
2: PHASE1: Message sending
3: 𝑅 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑠𝑖𝑚𝑝𝑙𝑒)
4: PHASE2: Vote sending
5: 𝑝𝑐 ← round 𝑚𝑜𝑑 n ;
6: if (𝑝𝑐 ∈ 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑𝑖) then 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖[𝑖] ← 1 ;
7: else
8: 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖[𝑖] ← 2
9: 𝑅 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑟𝑜𝑢𝑛𝑑𝑖, 𝑣𝑜𝑡𝑒𝑖)
10: TASK2
11: upon receiving 𝑚 do
12: 𝑠𝑤𝑖𝑡𝑐ℎ(𝑚):
13: case simple
14: 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖 ← 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖 ∪ 𝑖𝑑𝑚𝑠𝑔;
15: 𝑢𝑛𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖 ← 𝑢𝑛𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖 ∪ 𝑚;
16: case vote
17: 𝑡𝑎𝑏_𝑣𝑜𝑡𝑒𝑖[𝑗] ← 𝑣𝑜𝑡𝑒𝑗; 𝑣𝑜𝑡𝑒𝑗 refers to the vote casted by the process 𝑝𝑗 ;

18: update ( 𝑡𝑟𝑢𝑠𝑡𝑖 and 𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑖)
19: if ((𝑝𝑐 = 𝑝𝑖) and (𝑡𝑟𝑢𝑠𝑡𝑖 ≥ (𝑛 − 𝑓)) then

𝑅 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡𝑖, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛) ;
20: if (𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑖 ≥ (𝑛 − 𝑓)) then 𝑅 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑟𝑜𝑢𝑛𝑑𝑖, 𝑐𝑎𝑛𝑐𝑒𝑙) ;
21: case decision
22: if (𝑚𝑟𝑜𝑢𝑛𝑑 = 𝑟𝑜𝑢𝑛𝑑 ) then atomically deliver all messages in some

deterministic order imposed by the
coordinator process and start a new round ;

23: else
24: 𝑡𝑒𝑚𝑝𝑖 ← 𝑡𝑒𝑚𝑝𝑖 ∪ 𝑚;
25: case cancel
26: if (𝑚𝑟𝑜𝑢𝑛𝑑 = 𝑟𝑜𝑢𝑛𝑑 ) then start a new round;
27: else
28: 𝑡𝑒𝑚𝑝𝑖 ← 𝑡𝑒𝑚𝑝𝑖 ∪ 𝑚;
29: 𝑒𝑛𝑑𝑠𝑤𝑖𝑡𝑐ℎ

5. Correctness Proof

The atomic broadcast protocol must ensure the two properties of safety and liveness
encapsulated within the properties defining this problem.



Lemma 1. If a process delivers a message 𝑚, then 𝑚 has been broadcast by at least one process
(validity property).

Proof. The use of reliable broadcast primitives ensures this lemma.

Lemma 2. If a correct process delivers a message 𝑚, then inevitably all correct processes deliver
𝑚 (agreement property).

Proof. The use of the reliable broadcast primitives ensures that inevitably all processes deliver
the same set of messages or none of them. By using the coordinator principle, we ensure that
any message sent by a correct process will be delivered by all correct processes as soon as the
coordinator broadcasts its final ordered list of messages.

Lemma 3. For any message 𝑚, each correct process delivers the message 𝑚 at most once, and
only if 𝑚 has previously been broadcast by a certain correct process (integrity property).

Proof. This property is guaranteed by the use of the reliable broadcast primitives.

Lemma 4. If two correct processes 𝑝 and 𝑞 deliver two messages 𝑚 and 𝑚′, then 𝑝 delivers 𝑚
before 𝑚′ if, and only if, 𝑞 delivers 𝑚 before 𝑚′ (total order property).

Proof. This property is guaranteed by broadcasting the coordinator list of messages. Once a
process is elected as the coordinator of the current round, it will impose its list of messages to
be atomically delivered by all the correct processes. This list will be broadcast to the processes
through the reliable broadcast primitive 𝑅 − 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡. Therefore, all correct processes will
deliver their messages according to the order imposed by the coordinator, which will be the
same for every process.

Theorem.The algorithm in Algorithm 1 implements the primitives of the atomic broadcast.

Proof. The proof follows directly from the four lemmas.

6. Performance Evaluation

In this section, we evaluate the performance of the proposed protocol. To do so, we utilize a
well-known simulator in distributed systems, Neko [21].

6.1. Simulation model

In our work, we employ the same simulation model as [22] Fig. 1.
The parameter 𝜆 (𝜆 ≥ 0) indicates the relative speed of processing a message on a process

compared to its transmission on the network. Different values for modeling the network
environment were chosen (𝜆 = 0.1, 𝜆 = 1, 𝜆 = 10). The values of 𝜆 are selected based on the
approach followed in [23]:

• 𝜆 = 1: Indicates that the processor processing and network transmission have the same
cost;



Figure 1: The simulation model.

• 𝜆 = 10: Indicates that the processor processing is higher compared to network transmis-
sion;

• 𝜆 = 0.1: Indicates that network transmission is higher compared to processor processing.

6.2. Simulation results

In this section, we present the simulation results obtained by comparing the proposed protocol
with two other protocols existing in the literature [3] (referred to as 𝐶𝑇96) and [13] (referred to
as 𝐸𝑆11). To undertake this task, we consider two execution scenarios:

1. Execution without process crashes (failure-free execution),
2. Execution with process crashes.

6.2.1. Performance Metrics

We consider a single metric for evaluating the performance of our protocol in two execution
scenarios, with and without process crashes. This metric is the Latency, denoted as 𝐿, which is
measured by varying the overall atomic emission rate, referred to as throughput (𝑇: Representing
the number of messages broadcast per second). For a single atomic emission, the latency 𝐿 is
calculated as follows:

𝐿 = 1
𝑛
(
𝑛−1
∑
𝑖=1

𝑡𝑖) − 𝑡𝑎

Where:

• 𝑖 ∈ 0, 1, ..., 𝑛 − 1: Represents the number of processes in the system;
• 𝑡𝑎: Represents the time of broadcasting 𝑅 − 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑚);
• 𝑡𝑖: Represents the time of consumption 𝐴 − 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚) (message validation by the process
𝑝𝑖).



6.2.2. Execution without process crashes

In this section, we present the simulation results in terms of latency/ throughput. We consider
a number of processes 𝑛 = 5 for our proposal and that of 𝐶𝑇96, and 𝑛 = 7 for 𝐸𝑆11, 1, while
varying the values of 𝜆 (0.1, 1, 10), in a scenario without process failures.

Figure 2: Latency vs Throughput: Execution without crashes (𝜆 = 0.1).

Through the obtained results in Fig. 2, Fig. 3, and Fig. 4, we notice that our proposal outper-
forms in terms of latency compared to 𝐶𝑇96 and 𝐸𝑆11. In the case where 𝜆 = 0.1, our proposal
practically overlaps with that of 𝐸𝑆11. As soon as the throughput exceeds 800 msgs/s (Fig. 4), the
protocol 𝐸𝑆11 reaches its limits, unlike our protocol which experiences a considerable increase
but remains operational.

6.2.3. Execution with process crashes

In this section, we present the simulation results in terms of latency and throughput. We
consider 𝑛 = 5 as the total number of processes for our proposal, 𝑛 = 7 for 𝐸𝑆11, and 𝑓 = 2 as
the maximum number of crashed processes for both protocols. We also vary the values of 𝜆
(0.1, 1, 10) in an environment with process failures.

Through the obtained results in Fig. 5, Fig. 6, and Fig. 7, we observe that 𝐸𝑆11 outperforms
our proposal in the case of low throughput. However, once this throughput exceeds a certain
threshold, the latency of our protocol improves significantly, while the protocol of 𝐸𝑆11
becomes non-operational.

1Since the number of processes required to support two failures is 𝑛 = 7 in [13], and 𝑛 = 5 in our proposal and [3]



Figure 3: Latency vs Throughput: Execution without crashes (𝜆 = 1).

Figure 4: Latency vs Throughput: Execution without crashes (𝜆 = 10).

7. Conclusion

This paper proposed a distributed protocol addressing the atomic broadcast problem in an
asynchronous system. This protocol combines two approaches for message ordering and fault
tolerance, including the rotating coordinator principle and the unreliable failure detector ♢𝑆.
Through simulation results obtained using the distributed systems simulator Neko, we observed



Figure 5: Latency vs Throughput: Execution with crashes (𝜆 = 0.1).

Figure 6: Latency vs Throughput: Execution with crashes (𝜆 = 1).

that our proposal exhibits a remarkable improvement in terms of protocol latency and the
number of messages generated compared to two other reference protocols implemented in the
same simulator.



Figure 7: Latency vs Throughput: Execution with crashes (𝜆 = 10).

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Bitcoin.org (2008). URL:
https://bitcoin.org/bitcoin.pdf.

[2] R. Wattenhofer, Blockchain science: Distributed ledger technology, Inverted Forest
Publishing (2019).

[3] T. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, Journal
of the ACM (JACM) 43 (1996) 225–267.

[4] V. Hadzilacos, S. Toueg, A modular approach to fault-tolerant broadcasts and related
problems, Technical Report, Technical Report, Cornell University, 1994.

[5] M. Ferdous, M. Chowdhury, M. Jabed, M. Hoque, A survey of consensus algorithms
in public blockchain systems for crypto-currencies, Journal of Network and Computer
Applications 182 (2021) 103035.

[6] X. Defago, A. Schiper, P. Urban, Total order broadcast and multicast algorithms: Taxonomy
and survey, ACM Computing Surveys (CSUR) 36 (2004) 372–421.

[7] Y. Xiao, N. Zhang, W. Lou, Y. Hou, A survey of distributed consensus protocols for
blockchain networks, IEEE Communications Surveys & Tutorials 22 (2020) 1432–1465.

[8] R. Ekwall, A. Schiper, A fault-tolerant token-based atomic broadcast algorithm, IEEE
Transactions on Dependable and Secure Computing 8 (2010) 625–639.

https://bitcoin.org/bitcoin.pdf


[9] T. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus,
Journal of the ACM (JACM) 43 (1996) 685–722.

[10] J. Chang, N. Maxemchuk, Reliable broadcast protocols, ACM Transactions on Computer
Systems (TOCS) 2 (1984) 251–273.

[11] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, P. Ciarfella, The totem single-ring ordering
and membership protocol, ACM Transactions on Computer Systems (TOCS) 13 (1995)
311–342.

[12] P. Jalili-Marandi, M. Primi, N. Schiper, F. Pedone, Ring paxos: High-throughput atomic
broadcast, The Computer Journal 60 (2017) 866–882.

[13] R. Ekwall, A. Schiper, A fault-tolerant token-based atomic broadcast algorithm, IEEE
Transactions on Dependable and Secure Computing 8 (2011) 625–639.

[14] N. Rebouh, A. Ifeticene, N. Aidoun, L. Bouallouche-Medjkoune, Failure detector-ring
paxos-based atomic broadcast algorithm, International Journal of Critical Computer-Based
Systems 7 (2017) 78–90.

[15] A. Mostefaoui, M. Raynal, Low cost consensus-based atomic broadcast, in: Proceedings.
2000 Pacific Rim International Symposium on Dependable Computing, IEEE, 2000, pp.
45–52.

[16] M. Yin, D. Malkhi, M. K. Reiter, G. Gueta, I. Abraham, Hotstuff: Bft consensus with
linearity and responsiveness, in: Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, 2019, pp. 347–356.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, E. Wong, Zyzzyva: speculative byzantine fault
tolerance, in: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, 2007, pp. 45–58.

[18] S. Liu, P. Viotti, C. Cachin, V. Quema, M. Vukolic, {XFT}: Practical fault tolerance beyond
crashes, in: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 485–500.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling byzantine
agreements for cryptocurrencies, in: Proceedings of the 26th symposium on operating
systems principles, 2017, pp. 51–68.

[20] M. Castro, B. Liskov, et al., Practical byzantine fault tolerance, in: OsDI, volume 99, 1999,
pp. 173–186.

[21] P. Urban, X. Defago, A. Schiper, Neko: A single environment to simulate and prototype
distributed algorithms, in: Proceedings 15th International Conference on Information
Networking, IEEE, 2001, pp. 503–511.

[22] P. Urban, X. Defago, A. Schiper, Contention-aware metrics for distributed algorithms:
Comparison of atomic broadcast algorithms, in: Proceedings Ninth International Con-
ference on Computer Communications and Networks (Cat. No. 00EX440), IEEE, 2000, pp.
582–589.

[23] P. Urban, I. Shnayderman, A. Schiper, Comparison of failure detectors and group mem-
bership: Performance study of two atomic broadcast algorithms, in: 2003 International
Conference on Dependable Systems and Networks, 2003. Proceedings., IEEE Computer
Society, 2003, pp. 645–645.


	1 Introduction
	2 Related Work
	3 Computation Model and Definitions
	3.1 Computation Model
	3.2 Unreliable Failure Detectors
	3.3 Reliable Broadcast
	3.4 Atomic Broadcast
	3.5 Data structures and messages

	4 The Atomic Broadcast Protocol
	4.1 The proposed protocol description
	4.2 The proposed protocol

	5 Correctness Proof
	6 Performance Evaluation
	6.1 Simulation model
	6.2 Simulation results
	6.2.1 Performance Metrics
	6.2.2 Execution without process crashes
	6.2.3 Execution with process crashes


	7 Conclusion

