
A Deep Reinforcement Learning approach for hierarchical
edge devices collaboration
Mohamed Amine Ghamri1,*,†, Badis Djamaa1,†, Mohamed Akrem Benatia1,† and
Issam Eddine Lakhlef1,†

1Ecole Militaire Polytechnique, Bordj El Bahri, Algiers, Algeria

Abstract
Artificial intelligence has become an integral part of modern life, with pervasive AI leveraging interconnected
devices to deliver intelligent services in real-time environments with the most challenging aspects emerging
in the domain of mobile edge computing (MEC). Deploying deep neural networks (DNNs) on such devices and
orchestrating the necessary communication require dynamic coordination, an area where reinforcement learning
(RL) has shown significant promise. In this paper, we propose a Double Deep Q-Network (DDQN) approach
for DNN inference offloading within a mobile edge computing system, efficiently addressing the challenges of
dynamic orchestration while optimizing hierarchical collaboration between edge devices. Our experimental
results demonstrate the strength of this approach, achieving superior performance in optimizing inference
offloading compared to existing solutions.

Keywords
Reinforcement Learning, Deep Neural Network, task offloading, DDQN

1. Introduction

Artificial intelligence (AI) has found applications in numerous domains, offering transformative solutions
across industries. In particular, deep neural networks (DNNs) have proven effective in tackling complex
challenges, driving innovation in areas such as healthcare [1], autonomous systems [2], and smart
cities [3]. To fully harness the power of these models, we aim to make AI pervasive—deploying these
sophisticated models across interconnected devices to provide intelligence anytime and anywhere [4].
This vision of pervasive AI involves deploying DNNs at different levels of the Internet of Things (IoT)
stack [5], enabling distributed intelligence through the use of connected objects.

One key challenge in deploying DNNs in IoT environments is the tradeoff between model accuracy and
the computing requirements associated with the limited hardware capabilities of many IoT nodes [6].
An effective strategy to address this challenge is the use of split computing [7], where DNNs are
partitioned across different layers of the IoT stack to distribute the computational load efficiently [8].
This approach involves dynamic coordination of data exchanges between different nodes, which can
be optimally managed through reinforcement learning (RL). Recognizing the potential of RL, in this
paper, we propose a Double Deep Q-Network (DDQN) based approach to make dynamic DNN inference
offloading decisions, ensuring efficient operation across resource-constrained environments. Our
results demonstrate the effectiveness of this method, showing promising improvements over existing
approaches.

The remainder of this paper is structured as follows: Section 2 provides an overview of related work,
Section 3 details our proposed approach, and Section 4 presents the results of our experiments. Finally,
we conclude by summarizing our contributions and offering directions for future research.

TACC’2024The 4th Tunisian-Algerian Conference on applied Computing, December 17-18, 2024, Constantine, Algeria
*Corresponding author.
†
These authors contributed equally.
$ mohammedamine.ghamri@emp.mdn.dz (M. A. GHAMRI); badis.djamaa@emp.mdn.dz (B. DJAMAA);
akrem.benatia@emp.mdn.dz (M. A. BENATIA); issameddine.lakhlef@emp.mdn.dz (I. E. LAKHLEF)
� 0009-0002-1439-033X (M. A. GHAMRI); 0000-0003-2323-9316 (B. DJAMAA); 0000-0003-1779-2705 (M. A. BENATIA);
0009-0001-3845-891X (I. E. LAKHLEF)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mohammedamine.ghamri@emp.mdn.dz
mailto:badis.djamaa@emp.mdn.dz
mailto:akrem.benatia@emp.mdn.dz
mailto:issameddine.lakhlef@emp.mdn.dz
https://orcid.org/0009-0002-1439-033X
https://orcid.org/0000-0003-2323-9316
https://orcid.org/0000-0003-1779-2705
https://orcid.org/0009-0001-3845-891X
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related work

Reinforcement learning (RL) has proven to be an effective approach for handling sequential decision-
making problems, especially in dynamic environments. This makes it well-suited for managing system
dynamics in DNN inference offloading. In [9], the authors proposed MECI, an RL-based approach
built on Q-learning, where each device maintains its own Q-table to dynamically decide on offloading
decisions, such as selecting one of several possible cut layers and choosing the target server. While
this approach effectively handled the problem, its main limitation lies in the inability of Q-learning
to cope with complex state spaces, especially as the number of devices grows, which is a typical
scenario as stated in [10]. To address this limitation, the authors of [9] later introduced DMECI, a deep
reinforcement learning (DRL) approach based on an actor-critic framework. In this method, the Q-value
estimation is replaced by deep neural network (DNN) function approximators, leveraging both target
and policy networks. Similarly, the work presented in [11] addressed DNN inference offloading with a
simplified setup involving only a single cut layer. They used an improved version of Deep Q-Networks
(DQN), which employs two neural networks for value estimation and an additional replay memory to
accelerate convergence. Their goal was to carry out classification tasks until a target confidence level
was reached.

In [12], the authors addressed DNN inference distribution in an IoT environment with a focus
on security and hardware limitations. Their innovative approach involved distributing portions of
intermediate feature maps across different devices for a collaborative inference process, which they
optimized using the DQN algorithm, showing promising results. Additionally, in [13], the authors
framed the inference distribution as a Markov decision process (MDP) in a mobile edge computing
(MEC) environment for signal classification, targeting distributed inference with high accuracy. They
adopted an actor-critic framework with the Deep Deterministic Policy Gradient (DDPG) algorithm,
which produced favorable outcomes. In the context of vehicular edge computing, the work in [14]
tackled task offloading by employing a deep RL approach using an actor-critic structure with the DDPG
algorithm. Moreover, in another MEC environment, [15] framed the task offloading problem as a
multi-objective optimization targeting quality of service (QoS) requirements using the DQN algorithm.

Table 1
Task offloading works using RL

Category Work Env Algorithm

Policy-based
[9]
[14]
[13]

MEC
VEC
MEC

A2C
DDPG
DDPG

Policy-free

[9]
[12]
[11]
[15]

MEC
IoT

MEC
MEC

Q-Learning
DQN
DQN
DQN

As summarized in Table 1, existing studies commonly address the distributed inference offloading
problem by leveraging reinforcement learning (RL) approaches and their deep variants, which have
proven effective in handling complex state spaces. These RL methods involve formulating the problem
as a Markov Decision Process (MDP), requiring a well-designed state space, action space, and a reward
function aligned with the desired objectives.

These studies can be categorized into policy-based and value-based approaches. Policy-based methods,
such as those employing the actor-critic framework [14, 13, 9], use two neural networks: the critic
network for estimating value functions and the actor network for estimating the policy. Value-based
approaches, on the other hand, focus on estimating the quality or value function for a given state and
action, and then follow a greedy policy to derive the optimal course of action. This approach resembles
the trial-and-error process of an agent learning to navigate a stochastic environment. One notable
algorithm in the value-based category is the Deep Q-Network (DQN), which utilizes two sets of neural
networks. Improvements to DQN, such as the addition of a replay memory in [11], have significantly

Figure 1: Q-Network illustration

enhanced its performance. A further advancement is the Double Deep Q-Network (DDQN), introduced
in [16], which has demonstrated considerable success in both edge and cloud environments [17, 18].
Given its effectiveness, DDQN forms the foundation of our work. In our study, we tackle the problem
of DNN inference offloading using the DDQN algorithm that will be detailed in next section.

3. DDQN approach

3.1. DDQN algorithm

The Double DQN algorithm [16] aims to mitigate the overestimation problem found in traditional
Q-learning. In standard Q-learning and DQN, the same parameters (the online Q network) are used
for both action selection and evaluation, which can result in inflated Q-value estimates, especially for
actions consistently given higher values. Double DQN addresses the overestimation issue in traditional
Q-learning by introducing "target networks" Instead of using a single set of parameters for both action
selection and evaluation, Double DQN uses two separate networks: the online network for selecting
actions and the target network for evaluating Q-values. The target network, updated periodically
with the online network’s parameters, provides more stable and less optimistic estimates, reducing
overestimation during evaluation.

During training, the parameters of the online network are updated by minimizing the loss function,
commonly using the Mean Squared Error (MSE) between the Q-value estimated by the online network
and the target value generated by the target network. This process begins by randomly sampling state
transitions from a replay memory buffer, which holds a collection of past actions and states. Unlike
traditional Q-learning that relies on matrix-based operations, these updates are processed by neural
networks guided by the Bellman equation.

Figure 1 illustrates the Q-Network and its connection to the replay memory buffer, which stores
tuples representing individual experiences. Each tuple contains the current state, the chosen action, the
resulting new state after action execution, the observed reward, and an indication of episode termination.
These stored experiences are sampled to compute the Bellman equation term using the target network’s
inference. The online network is then optimized through gradient descent to approach this target
Bellman value. As shown in Figure 1, both the online and target networks share identical architectures.
Each network is composed of multilayer perceptrons (MLPs) that receive a flattened representation of
the state space (as detailed in Section 3.3) and output value estimates for each possible action.

By decoupling the action selection and evaluation processes, Double DQN reduces the likelihood
of overestimating Q-values, leading to more stable and accurate learning. This approach has been
shown to improve the performance and training stability of deep reinforcement learning algorithms,
particularly in environments with large state spaces or complex dynamics.

3.2. System model

We operate in a mobile edge computing (MEC) system comprising multiple edge devices of number 𝐼 ,
each equipped with a deployed DNN model. All devices are connected to an edge server via wireless
communication, which also hosts a DNN model to handle any remaining processing tasks. The DNN
models are partitioned into 𝐿𝑖 segments, indexed by 𝑗 for each device 𝑖, with each segment generating
a number of floating-point operations denoted as 𝐹 𝑖

𝑗 . The partitioning is achieved using cut layers,
which in our current work are selected as pooling layers due to their smaller output sizes, facilitating
more efficient wireless transmission. When a device 𝑖 performs inference up to a selected cut layer
𝑙𝑖(𝑡), the computing delay is directly proportional to the number of layers processed and the device’s
hardware characteristics, such as CPU frequency 𝑓 𝑖. This delay is determined by the following formula:

𝑑𝑖𝑐(𝑡) =

𝐿𝑖−1∑︁
𝑗=0

𝑢(𝑙𝑖(𝑡)− 𝑗)× 𝜑× 𝐹 𝑖
𝑗

𝑓 𝑖
(1)

𝜑 denotes the device’s computing performance (number of cycles per flop), and 𝑢 is defined as:

𝑢(𝑥) =

{︃
0, if 𝑥 < 0

1, if 𝑥 >= 0

The remaining computation is carried out on the server side, where the CPU frequency is 𝑓𝑠, as
determined by the following formula:

𝑑𝑠𝑐(𝑡) =

∑︀𝐿𝑖−1
𝑗=0 𝑢(𝑗 − 𝑙𝑖(𝑡))× 𝜑× 𝐹 𝑠

𝑗

𝑓𝑠
(2)

We adopt a linear model to estimate the energy consumption during computation, as outlined in [19].
Given the energy efficiency coefficient 𝜌𝑖𝑐the energy consumption is defined as:

𝑒𝑖𝑐(𝑡) = 𝑑𝑖𝑐(𝑡)× (𝑓 𝑖)3 × 𝜌𝑖𝑐 (3)

For the communication delay, we use Shannon’s formula, which relates the transmission delay to the
output data size from the partial inference 𝑛𝑖𝑗 , the transmission power of the device 𝜌𝑖, and the network
bandwidth 𝑊 , resulting in the following formula:

𝑑𝑖𝑇 (𝑡) =
𝑛𝑖𝑗

𝑊
𝐼 𝐿𝑜𝑔(1 +

𝜌𝑖𝑇 𝑔𝑖(𝑡)

𝜎2)
(4)

Here, 𝜎2 represents the spectral noise, while 𝑔𝑖(𝑡) denotes the time-varying channel gain between
the device and the server, capturing the fluctuating network conditions over time. It is important to
note that the available bandwidth is equally divided among all devices, which is not the most efficient
allocation strategy, as the computing demands of individual devices usually vary. Nevertheless, we
adopt this approach since our current focus is on the reinforcement learning method rather than
optimizing resource allocation. We will also note that 𝑛𝑖0 is equal to the initial input size multiplied by
the compression rate 𝑐𝑖(𝑡). And the transmission energy consumption formula is given by :

𝑒𝑖𝑡(𝑡) = 𝑑𝑖𝑇 (𝑡)𝜌
𝑖
𝑇 (5)

Given 𝜆𝑖 arrived input data, and a corresponding selected cut layer 𝑙𝑖(𝑡), the total delay is equal to:

𝐷𝑖(𝑡) = 𝜆𝑖(𝑡)

𝐿𝑖−1∑︁
𝑗=0

⎛⎝𝜑𝑢 (𝑙𝑖(𝑡)− 𝑗)𝐹 𝑖
𝑗

𝑓 𝑖
+
𝜑𝑢 (𝑗 − 𝑙𝑖(𝑡))𝐹 𝑠

𝑗

𝑓𝑠

𝐼

+
𝑛𝑖𝑗

𝑊
𝐼 log(1 +

𝜌𝑖𝑇 𝑔𝑖(𝑡)

𝜎2)

⎞⎠ (6)

3.3. Problem formulation

By presenting our system model, we arrive at the formulation of the optimization problem, which
involves:

Minimize
1

𝐸

𝐸∑︁
𝑡=0

𝐼∑︁
𝑖=1

𝐷𝑖(𝑡)

This is achieved by determining the decision variables 𝑙𝑖(𝑡) and 𝑐𝑖(𝑡), while accounting for the
stochastic variations in network conditions 𝑔𝑖(𝑡) and the data arrival rate 𝜆𝑖(𝑡). Consequently, solving
this problem is NP-hard, necessitating the use of a reinforcement learning approach that sequentially
optimizes the decision variables through a learned policy. However, prior to this, we need to model our
problem as a Markov Decision Process (MDP), which involves defining the state, action, and reward
structures.

• State : We need to monitor the data arrival rate 𝜆𝑖(𝑡), the network conditions through 𝑔𝑖(𝑡), and
the current workloads of both the device and server. These will be represented as the available
computing and transmission queues sizes Ψ𝐶

𝑖 (𝑡) and Ψ𝑇
𝑖 (𝑡) respectively, and also the computing

queue size for the server 𝜓𝑆(𝑡). The partial observations from each device will be consolidated
into a global observation. This aggregation will consequently define our state space as follows:

𝑆(𝑡) = (𝜆(𝑡), 𝐺(𝑡), 𝜓𝐶(𝑡), 𝜓𝑇 (𝑡), 𝜓𝑆(𝑡)) (7)

• Action : Each device must determine both the cut layer at which to perform data inference and
the compression rate to apply. Consequently, the action space will encompass the collective
actions of all devices, resulting in:

𝐴(𝑡) = (𝐶(𝑡), 𝐿(𝑡)) (8)

with 𝐶(𝑡) = (𝑐1(𝑡), ...𝑐𝑖(𝑡), ...𝑐𝐼(𝑡)) and 𝐿(𝑡) = (𝑙1(𝑡), ..., 𝑙𝑖(𝑡), ..., 𝑙𝐼(𝑡))

• Reward : Since our objective is to optimize the average service delay, we choose to maximize its
dual aspect, known as throughput. In this context, we reward the agent for each data completion
within the system, specifically the total number of completed tasks 𝒯 𝑖(𝑡) across all devices:

𝑅(𝑡) =
𝐼∑︁

𝑖=1

𝒯 𝑖(𝑡) (9)

3.4. Algorithm description

In our work, we consider a single agent operating on the server side, which manages two Q networks
(the online and target networks) and maintains a memory buffer 𝐷 for storing experiences. This
agent is responsible for observing the system state by gathering information from the devices and
the environment, formatting this data in accordance with Section 3.3, and subsequently determining
the actions for each device using an epsilon-greedy policy. This approach involves selecting random
actions with a probability of epsilon to encourage exploration, while also enabling exploitation by
utilizing the online Q network to estimate the Q values for each action combination, ultimately selecting
the action with the highest Q value [20]. Subsequently, the corresponding actions are dispatched to
each device, prompting them to execute these tasks. This includes compressing the input data at the
specified rate and carrying out DNN inference up to the designated cut layer. Afterward, the devices
send the intermediate inference results to the server, which completes the remaining computations and
returns the final results to the respective devices. Once this cycle is completed, each device receives a
reward based on the formulation outlined in Section 3.3, and the results are transmitted to the server
for aggregation. The entire environment then transitions to a new state 𝑠′. This experience is recorded
in the replay buffer for future use in updating the Q networks. The online Q network is updated once a

sufficient number of experiences have been gathered, specifically a batch size of stored experiences.
This update utilizes the standard Bellman equation, which establishes the relationship between the
Q value of the current state 𝑠 and that of the subsequent state 𝑠′. The key distinction in the DDQN
approach lies in applying this equation using the target network, leading to the following formulation:

𝑄online(𝑠, 𝑎|𝜃) ∼ (1− 𝛼) ·𝑄online(𝑠, 𝑎|𝜃) + 𝛼 ·
[︂
𝑅(𝑠, 𝑎) + 𝛾 ·max

𝑎′
𝑄target(𝑠

′, 𝑎′|𝜃)
]︂

(10)

Backpropagation is then performed to minimize the mean squared error between the calculated value
and the stored value. After a predetermined number of iterations, determined by a constant 𝐶 , the
parameters of the target network are updated by copying those of the online Q network. To facilitate
the agent’s transition from exploration to increased exploitation, the epsilon value will be gradually
decreased in a linear manner until it reaches a predetermined minimum. This iterative process will
persist for a defined number of training episodes. The algorithm is outlined in Algorithm 1.

Algorithm 1 Double DQN (RL module at the server side)

Initialize Q-networks 𝑄online and 𝑄target for the server with random weights
Initialize replay memory 𝐷
Set target network update frequency 𝐶
Set discount factor 𝛾
Set exploration parameters, 𝜖, 𝜖min, 𝜖decay
for each episode 𝑒 do

Observe the initial state from state tracking module
for each time step 𝑡 in 𝑒 do

Select action using 𝜖-greedy policy based on 𝑄online
Distribute the actions to the devices
Execute Inference Tasks
Receive reward and observe the next state 𝑠′

Store (𝑠, 𝑎, 𝑟, 𝑠′, done) in replay memory 𝐷
if length of 𝐷 ≥ replay batch size then

Sample a random batch from replay memory 𝐷
for each sample do

Calculate target Q-values using 𝑄target and Bellman equation
Update 𝑄online using backpropagation

end for
end if
if 𝑡 is a multiple of 𝐶 then

Update 𝑄target weights with 𝑄online weights
end if
𝜖𝑖 ← epsilon-decay(𝜖𝑖𝑑𝑒𝑐𝑎𝑦, 𝜖

𝑖
𝑚𝑖𝑛)

end for
end for

4. Results

4.1. Environment

We developed a simulated environment consisting of a scenario with three edge devices, characterized
by the parameters detailed in Table 2. In this setup, the VGG16 classification model is deployed on
either the devices or the server. We designated three distinct cut layers—specifically, layers 3, 10, and
18—corresponding to distributed pooling layers, and simulated data collection by randomly sampling
from a subset of the ImageNet dataset [21], which consists of 500 images. For the implementation of the

classification model, we utilized TensorFlow [22], which also facilitated the collection of intermediate
output sizes and the number of floating-point operations (FLOPs) through the TensorFlow Profiler. The
agent was designed to comply with the Gymnasium interface [23], while the DDQN algorithm was
implemented using the OpenAI Stable-Baselines3 framework [24].

Table 2
System parameters settings

Parameter Name Value
Bandwidth (W) 45 MHz
Spectral Noise (𝜎2) -104 dbm
Device transmit power (𝜌𝑖𝑇) 20 dbm
Device CPU frequency (𝑓 𝑖) 0.45 GHz
Device energy efficiency (𝜌𝑖𝑐) 10−28

Server CPU frequency (𝑓𝑠) 20 GHz
CPU cycles per flop (𝜑) 4
Number of bits per float 32
Timestep duration (𝜏) 900 mS

For the essential hyperparameters required to train the DDQN model, we adhered to the values
specified in Table 3.

Table 3
DDQN Learning Hyperpramaters

Parameter Name Value
Episode Length (𝐸) 16
Learning rate (𝛼) 0.001
Target Network update frequency (𝐶) 160
Batch size 48
Discount factor (𝛾) 0.9
Initial Exploration probability (𝜖) 1.0
Exploration fraction (𝜖) 0.1
Final Exploration probability (𝜖) 0.01

4.2. Convergence

Figure 2a represents the evolution of rewards over successive episodes. Despite some noise, the trend
shows a clear upward trajectory as the episodes progress, indicating that the reinforcement learning
agent is successfully improving its policy, resulting in consistently higher rewards. While Figure 2b
illustrates the evolution of the loss function, showing a decreasing trend. This indicates that the neural
networks are successfully training and adapting well to the accumulated experiences. Through these
experiments, we demonstrated the convergence and learning progress of the DDQN algorithm.

4.3. Comparison

In this section, we aim to evaluate the performance of our reinforcement learning approach compared
to static configurations, as well as to benchmark it against existing state-of-the-art RL solutions.
We use several performance metrics, including the evolution of the episodic cumulative reward, the
latency—represented by the average service delivery delay derived from the throughput (i.e., the number
of completed inference tasks per episode)—and energy consumption resulting from computation and
transmission. The visible plots represent values averaged over 10 episodes. To achieve the first objective,
we compare our approach with two benchmarks: "edge," where the inference is performed entirely
on the devices, and "central," where the inference is fully offloaded to the edge server. For the second
objective, we benchmark against the actor-critic approach (A2C), commonly used in state-of-the-art
works [9, 14, 13], as well as the widely adopted DQN [11, 12]. The results are presented in Figure 3.

(a) Episode rewards evolution (b) Q Network training progress

Figure 2: DDQN Training

One notable observation is the marginal superiority of the central approach over the edge solution in
terms of system throughput. However, this advantage is contingent upon favorable network conditions,
where server performance in computing becomes the guiding factor. As anticipated, the edge solution
exhibits stable behavior across varying network conditions. Furthermore, the reinforcement learning
solutions (DDQN, DQN and A2C) demonstrate superior adaptability after sufficient training episodes,
outperforming the former approaches (edge and central).

Figure 3: Performance metrics comparison

For the comparison of reinforcement learning approaches, the results demonstrate that the policy-free
methods (DQN and DDQN) both outperform the A2C approach in terms of learning behavior, showing
greater stability and higher reward values. Additionally, these approaches achieve better performance
metrics, such as increased throughput, which leads to reduced latency. Moreover, the DDQN approach
exhibits more stability compared to DQN, as observed in the results. This highlights the superiority
of the DDQN algorithm over other deep reinforcement learning methods. This experiment serves as
empirical validation of the findings in [16] within the context of DNN inference offloading, showing
that DDQN improves Q-value estimation stability by reducing overestimation bias.

5. Conclusion

In this work, we tackled the challenging problem of DNN inference offloading using a reinforcement
learning approach, specifically leveraging the DDQN algorithm due to its robust capabilities. Our results
demonstrated its competitive performance against state-of-the-art solutions. Future research could

focus on refining the MDP design by incorporating additional state and action elements, enhancing
the system’s adaptability. Additionally, shaping the reward function to encompass a broader range of
objectives, such as more efficient resource management or explicit energy optimization, offers promising
directions for further improving the system’s performance.

Declaration on Generative AI and AI-assisted Technologies

During the preparation of this work, the authors used OpenAI’s ChatGPT (GPT-4-turbo, February
2024 version) in order to: Grammar and spelling check, as well as language refinement. After using
this service, the authors reviewed and edited the content as needed and take full responsibility for the
publication’s content.

References

[1] G. S. Nadella, S. Satish, K. Meduri, S. S. Meduri, A systematic literature review of advancements,
challenges and future directions of ai and ml in healthcare, International Journal of Machine
Learning for Sustainable Development 5 (2023) 115–130.

[2] A. Kondam, A. Yella, Artificial intelligence and the future of autonomous systems, Innovative
Computer Sciences Journal 9 (2023).

[3] H. Herath, M. Mittal, Adoption of artificial intelligence in smart cities: A comprehensive review,
International Journal of Information Management Data Insights 2 (2022) 100076.

[4] E. Baccour, N. Mhaisen, A. A. Abdellatif, A. Erbad, A. Mohamed, M. Hamdi, M. Guizani, Pervasive
ai for iot applications: A survey on resource-efficient distributed artificial intelligence, IEEE
Communications Surveys & Tutorials 24 (2022) 2366–2418.

[5] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things: Architecture,
enabling technologies, security and privacy, and applications, IEEE internet of things journal 4
(2017) 1125–1142.

[6] C. Surianarayanan, J. J. Lawrence, P. R. Chelliah, E. Prakash, C. Hewage, A survey on optimization
techniques for edge artificial intelligence (ai), Sensors 23 (2023) 1279.

[7] S.-Y. Kim, H. Ko, Distributed split computing system in cooperative internet of things (iot), IEEE
Access (2023).

[8] Y. Matsubara, M. Levorato, F. Restuccia, Split computing and early exiting for deep learning
applications: Survey and research challenges, ACM Computing Surveys 55 (2022) 1–30.

[9] Y. Xiao, L. Xiao, K. Wan, H. Yang, Y. Zhang, Y. Wu, Y. Zhang, Reinforcement learning based energy-
efficient collaborative inference for mobile edge computing, IEEE Transactions on Communications
71 (2022) 864–876.

[10] S. R. Department, Iot: Number of connected devices worldwide 2012–2025 (2020).
[11] K. Qu, W. Zhuang, W. Wu, M. Li, X. Shen, X. Li, W. Shi, Stochastic cumulative dnn inference with

rl-aided adaptive iot device-edge collaboration, IEEE Internet of Things Journal (2023).
[12] E. Baccour, A. Erbad, A. Mohamed, M. Hamdi, M. Guizani, Rl-distprivacy: Privacy-aware distributed

deep inference for low latency iot systems, IEEE Transactions on Network Science and Engineering
9 (2022) 2066–2083.

[13] W. Wu, P. Yang, W. Zhang, C. Zhou, X. Shen, Accuracy-guaranteed collaborative dnn inference
in industrial iot via deep reinforcement learning, IEEE Transactions on Industrial Informatics 17
(2020) 4988–4998.

[14] W. Shi, L. Chen, X. Zhu, Task offloading decision-making algorithm for vehicular edge computing:
A deep-reinforcement-learning-based approach, Sensors 23 (2023) 7595.

[15] I. Rahmati, H. Shah-Mansouri, A. Movaghar, Qoco: A qoe-oriented computation offloading
algorithm based on deep reinforcement learning for mobile edge computing, arXiv preprint
arXiv:2311.02525 (2023).

[16] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, in:
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[17] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, P. Li, A double deep q-learning model for
energy-efficient edge scheduling, IEEE Transactions on Services Computing 12 (2019) 739–749.
doi:10.1109/TSC.2018.2867482.

[18] A. Iqbal, M.-L. Tham, Y. C. Chang, Double deep q-network-based energy-efficient resource
allocation in cloud radio access network, IEEE Access 9 (2021) 20440–20449. doi:10.1109/
ACCESS.2021.3054909.

[19] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in cloud data centers,
Concurrency and Computation: Practice and Experience 24 (2012). URL: https://api.semanticscholar.
org/CorpusID:10061036.

[20] O. Berger-Tal, J. Nathan, E. Meron, D. Saltz, The exploration-exploitation dilemma: a multidisci-
plinary framework, PloS one 9 (2014) e95693.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al., Imagenet large scale visual recognition challenge, International journal of
computer vision 115 (2015) 211–252.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL: https://www.tensorflow.org/, software available from
tensorflow.org.

[23] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão, A. Kallinteris,
M. Krimmel, A. KG, et al., Gymnasium: A standard interface for reinforcement learning environ-
ments, arXiv preprint arXiv:2407.17032 (2024).

[24] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, M. Chevalier-Boisvert, J. Kubricht,
A. Nichol, B. Hill, J. Pachocki, et al., Stable baselines3, https://github.com/DLR-RM/
stable-baselines3, 2020.

http://dx.doi.org/10.1109/TSC.2018.2867482
http://dx.doi.org/10.1109/ACCESS.2021.3054909
http://dx.doi.org/10.1109/ACCESS.2021.3054909
https://api.semanticscholar.org/CorpusID:10061036
https://api.semanticscholar.org/CorpusID:10061036
https://www.tensorflow.org/
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	1 Introduction
	2 Related work
	3 DDQN approach
	3.1 DDQN algorithm
	3.2 System model
	3.3 Problem formulation
	3.4 Algorithm description

	4 Results
	4.1 Environment
	4.2 Convergence
	4.3 Comparison

	5 Conclusion

