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Abstract
In the past decade, the electrical energy consumption has experienced a rapid increase, contributing to economical
problems and exacerbating environmental problems. An effective solution is energy management using energy
management systems in which electrical energy consumption prediction plays a crucial role. In this paper, we
present a deep learning based approach for short-term electrical energy consumption prediction. We start by
introducing our proposed architecture that provides a structured framework for electrical energy prediction
process. Then, we present our prediction models based on LSTM and GRU. Finally, we present an experimental
study in which performance of the used models are evaluated using ”Electrical consumption profile for households
in Romania ECPHR” dataset.
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1. Introduction

In the past decade, the electrical energy consumption (EEC) has experienced a rapid increase. The
International Energy Agency recorded the largest increase in global electricity consumption in 2021,
with a rise of 1,500 TWh, or 6%, attributed to the strong economic recovery following the Covid-19
pandemic recession in 2020. This increase represents the strongest growth since 2010 [1].

In Algeria, electricity represents the second most consumed energy source with a share of 28.3%,
compared to 38.4% for natural gas [2]. Electricity demand, especially in the household sector, plays a
significant role, accounting for 40% of total consumption, and this demand continues to grow [3]. A
historic power consumption record was registered on August 14, 2022, as reported by [4], equivalent
to a demand of 16,822 MW on the national grid. This record was attributed to the high usage of air
conditioning units by citizens seeking relief during heatwave seasons.

However, excessive electricity consumption contributes to the depletion of fossil fuels and raises
issues of energy demand management, leading to increased costs and energy tariffs, contributing
to greenhouse gas emissions and exacerbating problems related to climate change [5]. Satisfying
consumers’ energy needs while managing consumption peaks and minimising environmental impact
represents one of the main challenges of the 21st century. Consequently, optimising EEC became highly
crucial.

An effective solution is to use Energy Management Systems (EMS). These systems play a crucial
role in optimising EEC by providing tools, insights, and strategies to efficiently manage and control
energy usage. In such systems, predicting EEC plays a crucial role [6]. It allows predicting future
electricity needs, adjusting production accordingly, and finding more sustainable solutions to meet
the growing demand. Predictions have become indispensable for maintaining the balance between
electricity production and consumption, especially with industrial evolution and growing demands [7].
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Deep learning (DL) can be used to predict electricity consumption in various ways. Commonly used
techniques include artificial neural networks, time series algorithms, and regression models. They can
analyse historical EEC data, along with other relevant factors such as weather, holidays, economic
trends, etc., to predict future electricity demand. Electricity providers can use these predictions to plan
and adjust production and distribution more effectively.

In this paper, we present a DL based approach for EEC prediction. The proposed approach lever-
ages the power of DL models to predict short-term EEC of a residential building (House). The main
contributions of this research work can be summarised as follows:

• Designing an architecture that provides a structured framework that organises the energy predic-
tion process.

• Developing a DL based technique based on two model, namely LSTM (Long Short-Term Memory)
and Gated Recurrent Units (GRU).

The rest of the paper is organised as follows. Section 2 discusses some recent works on EEC prediction.
Section 3 presents the details of the proposed approach and the used DL models. Section 4 evaluates
the proposed approach, while Section 5 discusses the result and performances of the used DL models.
Finally, Section 6 concludes the paper and summarises the future works.

2. Related Work

Accurately predicting household EEC has proven to be a challenging task [8],[9], particularly given the
dynamic nature of energy usage patterns. However, this topic has garnered significant attention from
researchers, driven in part by the potential of DL techniques to capture intricate relationships within
the data. This has led to the exploration of various prediction models that leverage DL techniques. In
this section, we provide a concise yet comprehensive overview of noteworthy contributions in this
dynamic domain. Early attempts at predicting household electricity load involved the utilisation of
machine learning (ML) models [10]. However, recent advancements have demonstrated that DL models
offer notably improved results compared to traditional ML algorithms. For instance, [11] introduced
an innovative scalable system named HousEEC, based on a Deep Recurrent Neural Network (DRNN).
This system aims to predict the household EEC for the upcoming day. To evaluate the performance, the
authors employed a dataset from the Pecan Street region, encompassing nearly four years of EEC data
from multiple households. However, it was observed that the model’s effectiveness was confined to
datasets with similar weather and economic conditions. In another study, [12] focused on predicting
individual household electricity load using an LSTM-RNN model. The authors utilised a four-year
dataset from the New South Wales region of Australia, collected through the Smart Grid Smart City
(SGSC) project. By comparing the LSTM model’s performance with ELM, BPNN, and KNN models, they
showcased a substantial reduction in prediction error through the LSTM architecture. Demonstrating
the effectiveness of LSTM models for EEC prediction, the authors of [13] evaluated their model’s
performance on real EEC data. The results underscored the superiority of their prediction model
over classical models, with the added benefit of enhanced performance owing to the authors’ data
preparation methodology. To enhance prediction accuracy, several studies have proposed hybrid models
that combine the strengths of different algorithms [14]. The authors of [15] presented an approach that
combines Convolutional Neural Network (CNN) and GRU models. This hybrid method was assessed
on IHEPC and AEP datasets, showcasing its superiority over other ML and DL models, particularly in
scenarios involving temperature, humidity and electricity consumption data. GRU was also combined
with LSTM in [16]. The authors of this work utilised a stacking method based on LSTM and GRU
for EEC prediction of residential buildings. The used energy data collected from buildings located in
Seoul. The experimental results demonstrated that the performance of the proposed combination in
term of prediction accuracy. Another combination that fuses CNN and LSTM models have emerged
as prevalent strategies for time series prediction. In [17], a comparative study demonstrated the
superiority of their hybrid CNN-LSTM model over various ML and DL counterparts in predictive



capabilities. Similarly, in [18], the proposal of a hybrid CNN-multi-layer bidirectional LSTM (M-BLSTM)
model showcased its predictive prowess, outperforming models like BLSTM, LSTM and CNN-LSTM,
particularly in short-term EEC prediction. Leveraging CNN’s spatial feature extraction and LSTM’s
temporal dependency modeling, [9] introduced a model that exhibited heightened accuracy compared
to conventional LSTM, BPNN, KNN, and ELM models. Moreover, [19] introduced an innovative Long-
and Short-Term Time-Series Network (LSTNet) approach, capitalizing on CNN and LSTM to identify
local connections and periodic patterns alongside an autoregressive model. This approach significantly
improved accuracy for short-term load prediction compared to ARIMA, CNN-LSTM and IPSO-LSTM
models. These diverse contributions collectively emphasise the significant potential of specific predictive
models, particularly the widely adopted and high-performing GRU and LSTM architectures, in achieving
accurate predictions of residential electricity load. Notably, the combination of these two models with
CNN has been leveraged to great effect, yielding good results in the domain of energy prediction.

3. Proposed Approach

In this section, we present our proposed approach. We start by describing the proposed architecture for
EEC prediction. Then, we give an overview on the selected DL models namely GRU and LSTM.

3.1. System Architecture

EEC prediction involves various stages such as data collection and preprocessing, feature extraction,
model training, and prediction. A clear architecture outlines how data flows between these stages
and ensures seamless integration. In this work, we elaborated a system architecture that provides a
structured framework for organising different steps of the prediction process.

Figure 1: The proposed architecture for EEC prediction.

As shown in figure 1, the prediction system is structured into four distinct layers, and the functioning
and role of each layer are detailed as follows:
- Data Collection Layer: this layer ensures the collection of energy data from different houses

through smart meters and transmits it to the next layer. This layer plays an essential role in the initial
collection of energy data at the local level.

- Communication Layer: this is gateway that transmit the data collected by smart meters from the
data collection layer to the cloud layer via the internet, using specific technologies such as optical fiber
or cellular networks.
- Cloud Layer: this layer plays an important role in our system by providing several services:



• Data Storage: the large amount of energy data from different houses requires significant storage
capacity. This is provided by the cloud layer, which offers suitable support for fast and secure
access.

• Data Processing: The data processing phase involves converting raw energy data into a struc-
tured and usable format, creating a dataset suitable for training DL models. This process includes
steps such as data cleaning, normalisation, feature extraction, and aggregation. By transforming
raw energy data into an organised and standardised dataset, it becomes possible to feed DL
models for training and prediction. The quality of the dataset greatly influences the performance
and accuracy of trained models, making data processing a critical step for EEC prediction.

• Data Analysis and Prediction: involves using data from the preprocessing phase to train the
DL model to predict future consumption based on users’ consumption history.

- Application Layer: this layer in energy prediction serves as a crucial interface between the
predictive models and end-users, providing various functionalities and features that enhance the
usability, accessibility and decision-making capabilities of the system.

3.2. Data Deep Analysis for Energy Prediction

This section presents an overview of the selected models for EEC prediction. After conducting a
comprehensive literature review of recent advances in EEC prediction, two models have demonstrated
notable performances which are LSTM and GRU.
- LSTM: introduced by [20], is a specialised type of RNN architecture designed to process, analyse,

and predict sequences of data [14], particularly useful for tasks involving time-dependent information,
such as EEC prediction. LSTMs take on the challenge of understanding patterns in sequences that span
long periods of time, something that standard RNNs often struggle to do due to the vanishing gradient
problem, where information fades as it propagates through the network [21]. The distinctive advantage
of LSTMs lies in their ability to capture and retain long-term dependencies within sequences. This
means they can effectively understand patterns and relationships that extend over long-time intervals,
a crucial aspect when dealing with data such as EEC and production, which often exhibit trends that
are not immediately obvious over short periods of time. In the context of energy prediction, where it
is essential to understand past patterns and predict future trends, LSTMs excel due to their ability to
process sequences of varying lengths and automatically learn relevant features from the data. Their
ability to store past information over long periods and selectively focus on important details makes
them a solid choice for accurately predicting EEC and production patterns over time [12].
- GRU: introduced by [22], is a type of RNN architecture similar to LSTM widely used to solve

sequence-related problems. Emerging as a simplified version of LSTM, GRUs retain the ability to
capture long-term dependencies in sequential data while having a simpler structure. One of the
advantages of GRU lies in its simplicity. With fewer parameters and computations, GRU is easier to
learn and require less memory compared to LSTM. This efficiency can be valuable when dealing with
large datasets as the training time can be reduced. In addition, GRU is less likely to overfit, which can
be useful when dealing with small datasets. GRUs are excellent at capturing short-term dependencies in
sequences, making them a suitable choice when recent context is more important than distant context.
Although their architecture is less complex than that of LSTMs, GRUs still have the ability to manage
information flow and memory in a controlled manner, which facilitates efficient sequence modelling.
Thus, GRU provide an optimised alternative to LSTM for sequence modelling tasks. Its simpler structure,
efficient learning and ability to handle short-term dependencies make it a valuable tool in various
applications such EEC prediction.

4. Evaluation and Validation

In this section, we present the experimental study conducted in order to evaluate the performances of
the selected models. First, we present the dataset selected. Then, we present our models architectures.



We finish with the training configuration for our models.

4.1. Dataset

In this work, we used the dataset ”Electrical consumption profile for households in Romania ECPHR”
[23] to train and evaluate the performance of the selected models. This dataset describes the hourly
EEC of a family of two adults and one child living in a house with an area of (100 - 150 square meters)
located in Romania. The collected data spans over a year from December 31, 2016, to December 31,
2017. As shown in figure 4, this dataset contains historical data of the house EEC and the detailed
consumption of the house appliances, lightening, and water heater. It also provides information on
residents’ habits and activities over the course of a week.

4.1.1. Exploratory Analysis of the Dataset

Before proceeding with data pre-processing and models training, we conducted an exploratory study of
the dataset using visualisation. This later, plays a crucial role in both gaining a better understanding
of the dataset and evaluating its quality. By visually representing the distribution of data of a week
(Figure 2) and a month (Figure 3), we can clearly see the consistent trends in the consumption patterns
of the residents, indicating the predictable nature of the data.

Figure 2: Electrical energy data distribution on a week.

Figure 3: Electrical energy data distribution on a month.

4.1.2. Dataset Pre-processing

In order to prepare the original dataset (Figure 4) for training the three models, a pre-processing step
was necessary. This step began by identifying missing values, which were then replaced with the mean
of the other values using the ’fillna()’ function. Similarly, the same operation was applied to outliers,
replacing them with the mean of non-outlier values. Next, a new column called ’day of week’ was
introduced, indicating whether each row corresponds to a weekday or a weekend. This column captures
potential variations in EEC behaviour based on the days of the week.

An additional column named ’activities’ was also added, specifying the activity associated with each
hour of the day. The possible values for this column are: ’Sleeping’ (when all family members are sleep-
ing), ’Inhouse activity’ (when energy-consuming activities occur within the house), and ’Unoccupied’



Figure 4: Original Dataset.

Figure 5: Dataset after adding the new columns.

(when the house is unoccupied). To represent these values with numerical data, the ’OrdinalEncoder()’
function was used. Subsequently, the dataset was normalized using the ’MinMaxScaler’ function to
bring all values to the same scale, which facilitates model learning. Figure 5 presents the dataset with
the new added columns.

Figure 6: Dataset after applying the ’series to supervised’ function.

Before making predictions, time series problems need to be reformulated as supervised learning
problems, from a sequence to pairs of input and output sequences. This was achieved using the ’series
to supervised’ function, which adds columns containing lagged values of variables for past and future
time steps. Figure 6 presents the dataset after applying the time series to supervised transformation.

Subsequently, the ’train_test_split’ function was used to divide the dataset into training, testing, and
validation sets. Finally, the ’reshape’ function was used to resize the data and adapt it to the input shape
required by the model.

4.2. Models Design

In this section, we present the models architectures designed for EEC prediction. We present the
different experimented combination before elaborating the final models architectures.

4.2.1. GRU Architecture

In order to design the architecture of the GRU model that gives best energy prediction, we tested
different configurations. We started with an initial architecture, that is composed of five layers: Input
layer, GRU layer, dropout layer, and two fully-connected dense layers. To determine the number of
neurons (units) for the GRU layer, we tested various configurations: 32 units, 40 units, and 64 units,
where the last one gave a better performance. Therefore, the initial version of the architecture starts
with an input layer that considers the dimensions of the input data. Then, a GRU layer with 64 units is
integrated to capture temporal dependencies in the data. To regularise the model and prevent overfitting,
a dropout layer is introduced with a rate of 20%. In order to enable the model to capture nonlinear
relationships in the data, a dense layer with 16 units is added. A final dense layer with a single output
unit is appended to the model to predict the output value.



In order to further enhance the model’s performance, we decided to incorporate an additional GRU
layer. Using the same technique, we tested various configurations: 64 units for the first GRU layer and
32, 40, and 64 units for the second GRU layer. The last configuration demonstrated the best performance.
Consequently, the second version of the GRU architecture is composed of an input layer, followed by
two 64 units GRU layers and a hyperbolic tangent (tanh) as an activation function. After each GRU
layer, a dropout layer with a rate of 20% is added. A final dense layer with a single unit is appended to
predict the output value.

To further enhance the model’s performance, we opted to integrate a third GRU layer. Using the
same technique, we tested various configurations: 64 units for the first and the second GRU layer and
32, 40, and 64 units for the third GRU layer. The last configuration stood out in terms of performance.
As a result, our final architecture of the GRU model consists of an input layer followed by three 64
neural units GRU layers, and utilising a hyperbolic tangent (tanh) as an activation function. The first
two GRU layers return a sequence of values rather than a single value, while the last GRU layer returns
a single value. The GRU layers capture sequential patterns in the input data. Between each GRU layer,
a dropout layer is introduced with a rate of 20% to regularise the model by randomly deactivating some
neurons during training, thereby preventing overfitting. Lastly, a dense layer with a single output unit
is added to the model, generating a single output value.

4.2.2. LSTM Architecture

Similarly to the GRU model, we tested different configurations in order to elaborate the LSTM model
architecture for energy prediction. We started with an initial architecture, that is composed of five
layers: Input layer, LSTM layer, dropout layer, and two fully-connected dense layers. We added LSTM
layers with different number of units and tested different combinations progressively. As a result, our
final architecture of the LSTM model consists of an input layer followed by three 64 neural units LSTM
layers, and utilising a hyperbolic tangent (tanh) as an activation function. Between each LSTM layer, a
dropout layer is introduced with a rate of 20% to regularise the model, thereby preventing overfitting.
Lastly, a dense layer with a single output unit is added to the model, generating a single output value.

4.3. Training Configuration

In this section, we present the training configuration. It involves the various settings and parameters
used during the training process of each model. In order to determine the best configuration, we
performed a hyperparameter tuning. Table 1 presents the optimal training configuration for our models.

Table 1
Best training configuration for our models.

Model Loss Function Optimiser Learning Rate Batch Size Number of Epochs

GRU MSE Adam 0.001 100 500
LSTM MSE Adam 0.001 100 400

5. Results and Discussion

In this section, we present comprehensive view of the proposed models’ performances. This is per-
formed using the following performance metrics: Train score, Validation score, R2 score (Coefficient of
Determination), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), MAE (Mean Absolute
Error).

“Train score” and ”Validation score” are used to assess the model’s fitting and generalisation abilities.
As shown in figure 7 the learning curves of the GRU and LSTM provide a visual representation of the
model’s performance evolution during the learning process. They show that the models’ performance



Figure 7: Training and validation score (a) GRU, (b) LSTM.

improves on both training and validation data as the amount of data used for training increases. This
trend reflects these models’ ability to effectively generalise and learn relevant patterns present in the
data.

Figure 8: Loss function curves (a) GRU, (b) LSTM.

Figure 8 presents training and validation loss curves. For both models, loss curves show both the
training and validation loss decrease, stay close to each other and plateau at similar low values. This
means that both models generalise well to new data, capturing meaningful patterns without getting
bogged down by noise or fitting the data too closely. In other words, the absences of overfitting and
underfitting.

Figure 9: Predicted EEC and real EEC curves, (a) GRU, (b) LSTM.

Figure 9 depicts the real electricity consumption and the one predicted by the GRU and LSTM models
over the course of a week. It is evident that the prediction curves closely track the real electricity
consumption fluctuations during the day and night, hour by hour, except for a few peak hours. This
variability is due to random fluctuations arising from the household occupants.



The final results summarised in Table 2demonstrate that the LSTM model stands out by delivering
the best performance in electricity consumption prediction. Performance metrics clearly showcase its
ability to effectively capture consumption trends, resulting in accurate predictions.

Table 2
Final results of the models training.

Model R2 Score MSE RMSE MAE

GRU 0.9554 0.0037 0.0611 0.032
LSTM 0.9691 0.0025 0.0509 0.0339

6. Conclusion

In this paper, we introduced a deep learning-based approach for short-term EEC prediction. Our
contribution encompassed two key aspects: an architectural framework for EEC prediction and the
design of DL prediction models LSTM and GRU. First, we presented our architecture for EEC prediction
that organises the prediction process. the proposed architecture serves a high-level design that outlines
the components, their interactions, and the organisation of the prediction system. Then, we presented
our DL predictionmodels which are LSTM andGRU. Both of them have demonstrated good performances
in term of short-term EEC prediction. However, LSTM model outperformed the GRU model across all
metrics, showing higher R2 score and lower error values. Our future work will concentrate on refining
our models’ performance by integrating additional factors that influence EEC, such as meteorological
conditions and building characteristics. This enhancement aims to further elevate the accuracy and
reliability of our predictions, contributing to more effective energy consumption management.
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