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Abstract 
The article presents an adaptive method for identifying characteristic traffic modes in the urban transport 
environment based on cluster analysis. The developed hierarchical model of classification of transport 
patterns provides analysis at different levels of detail – from local changes at individual intersections to 
global modes of operation of the entire network. The proposed multidimensional methodology for 
assessing the similarity of transport states considers average values, variability, dynamics of changes and 
time dependencies, providing higher classification accuracy than traditional approaches. Adaptive analysis 
of time windows automatically adjusts the duration of the study interval depending on the dynamics of 
traffic flow, allowing you to effectively identify both short-term changes and long-term cyclical patterns. 
The developed hybrid clustering algorithm, integrating HDBSCAN and k-means methods, demonstrates 
high noise immunity while maintaining computational efficiency. The method’s effectiveness was 
confirmed experimentally on a simulation model of the transport network of the city of Khmelnytskyi, 
where four basic traffic scenarios were successfully identified. The analysis of the silhouette coefficients 
showed the advantage of the HDBSCAN method with an index of 0.37 over the k-means with an index of 
0.26 at K = 6, which confirms the effectiveness of the automatic determination of the optimal number of 
clusters. The results create the basis for optimizing urban transport management, improving traffic safety 
and improving the quality of transport services. 
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1. Introduction 

The rapid development of urban infrastructure and the increasing use of vehicles pose significant 
challenges for traffic management. Large volumes of data on traffic flows open up opportunities for 
their analysis and optimization of urban transport systems. Clustering methods are especially 
promising for identifying hidden patterns and grouping transport modes according to similar 
characteristics [1, 2]. They allow for analyzing complex interactions that are difficult to identify 
with traditional methods. The identification of characteristic traffic patterns is complicated by 
temporal and spatial variations, high data dimensionality and the dynamic nature of urban traffic 
[3]. Clustering techniques help identify natural groups in transport data, and recent advances in 
machine learning have expanded their capabilities for analyzing traffic flows. 

However, existing approaches have limitations regarding computational efficiency, real-time 
processing capabilities, and the ability to analyze long-term time patterns. Many studies do not 
consider long-term trends and the influence of external factors on movement. 
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The study aims to overcome these limitations by developing an improved approach to 
identifying characteristic driving modes. The main scientific contribution of the article is: 

• Development of a hierarchical model of classification of transport patterns at different 
levels of detail. 

• Creation of a multidimensional methodology for assessing the similarity of transport states 
• Development of a method of adaptive analysis of time windows. 
• Creation of a hybrid clustering algorithm with an innovative pattern validation mechanism. 
The proposed approach integrates traditional clustering and machine learning methods to 

analyze traffic patterns and improve urban traffic management effectively. 
The remainder of the paper is structured as follows: Sect. 2 reviews the literature on developing 

clustering methods in transport systems with an analysis of their limitations. Sect. 3 presents the 
developed adaptive method for identifying characteristic traffic modes with its mathematical 
formulation. Sect. 4 describes the results of an experimental study on a simulation model of the 
transport network of the city of Khmelnytskyi. Sect. 5 addresses analysis and discussing the received 
result with accent on the practical application of the method. Sect. 6 presents the study’s conclusions, 
emphasizing key scientific contributions. 

2. Related works 

The development of transport systems and information technologies leads to the generation of 
significant amounts of data on the movement of vehicles, and clustering methods allow you to 
identify hidden patterns and group objects according to similar characteristics. 

In the field of traffic analysis, research [4–6] were focused on the development of methods for 
classifying traffic conditions. However, there is a need to consider the landscape features of roads, 
traffic priorities, and other aspects [7, 8]. In research [4], a hybrid method combining K-medoids 
and spectral clustering is proposed, and in [5] a spatially constrained hierarchical clustering 
algorithm for traffic forecasting has been developed. Researches [9, 10] presented a Bayesian model 
of ensemble clustering of Gaussian processes and an improved clustering scheme based on self-
learning. Researches [11, 12] proposed methodologies for assessing traffic conditions based on GPS 
data. However, these studies are limited to a short analysis period and do not sufficiently consider 
external factors. 

In transport networks and communication systems, works [13-16] proposed various clustering 
approaches to improve VANET networks, including routing protocols and Harris Hawks 
optimization. Research [17] presented an approach to identify patterns of mobility, and in [18] the 
clustering of data on road accidents has been studied. The combination of structural ontology 
alignment with deep explanatory learning through transition matrices reveals patterns of urban 
traffic flows during clustering [19, 20]. Works [21, 22] considered hierarchical clustering in 
transport systems, but problems with scalability and data security were identified. 

To analyze the traffic trajectories, studies [23–25] focused on clustering the trajectories of 
different vehicles, and in research [26] an overview of the clustering of public transport users was 
carried out. Works [27–29] investigated the application of deep learning for clustering trajectories. 
The main limitations include low accuracy in measuring trajectory similarities and parameter 
sensitivity. Based on research analysis [30–32], several key areas for future research have been 
identified: the development of more effective methods for assessing the similarity of objects, the 
creation of adaptive clustering algorithms for real time, the improvement of visualization of results, 
and the development of methods for assessing the quality of clustering. Thus, the purpose of this 
study is to develop a comprehensive method for identifying characteristic traffic modes in the urban 
transport environment to increase the efficiency of urban traffic flow management 

3. Adaptive method for identifying characteristic driving modes  

Consider the urban transport network, presented in the form of an oriented graph 
𝐺𝐺 =  (𝑉𝑉,𝐸𝐸), (1) 

where V is the set of intersections, E is the set of road segments connecting them.  



The state of the transport network at any given time t can be represented as a multidimensional 
vector 

𝑆𝑆(𝑡𝑡)  =  {𝑠𝑠1(𝑡𝑡), 𝑠𝑠2(𝑡𝑡), . . . , 𝑠𝑠𝑛𝑛(𝑡𝑡)}, (2) 
where si(t) represents the state of the intersection i at time t and is also a vector 

𝑠𝑠𝑖𝑖(𝑡𝑡)  =  {𝑞𝑞𝑖𝑖,1(𝑡𝑡), 𝑞𝑞𝑖𝑖,2(𝑡𝑡), . . . , 𝑞𝑞𝑖𝑖,𝑚𝑚𝑖𝑖(𝑡𝑡)}, (3) 
where qi,j(t) – represents the length of the queue in the direction j at the intersection i at time t, 
mi is the number of possible directions of movement at intersection i. 

For the time interval [t0, tN], we get the sequence of network states SSN = {S(t0), S(t1), ..., S(tN)}. The 
segmentation function φ: SSN → SW maps the output time series to a sequence of windows: SW = 
{W1, W2, ..., Wk},  

𝑊𝑊𝑘𝑘  =  {𝑆𝑆(𝑡𝑡) | 𝑡𝑡 ∈  [𝑡𝑡0  +  (𝑘𝑘 − 1)Δ𝑡𝑡, t0  +  𝑘𝑘Δ𝑡𝑡]}. (4) 
For each window Wk,  we calculate the vector of characteristics  

𝐹𝐹𝑡𝑡𝐹𝐹𝑘𝑘 =  {𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘 ,𝛿𝛿𝑘𝑘 , 𝜏𝜏𝑘𝑘}, (5) 
where μk is the average state of traffic, σk is the standard deviation, δk is the rate of change of flows, 
τk is the time dependencies. 

The measure of similarity between windows is defined as follows 

sim�𝑊𝑊𝑖𝑖,𝑊𝑊𝑗𝑗� =  exp −
�𝐹𝐹𝑡𝑡𝐹𝐹(𝑊𝑊𝑖𝑖) − 𝐹𝐹𝑡𝑡𝐹𝐹�𝑊𝑊𝑗𝑗��

2𝛼𝛼²
, 

(6) 

where Ftr(Wi) and Ftr(Wj) are the vectors of the characteristics of the Wi  and Wj windows, 𝛼𝛼 is the 
scaling parameter. 

A sequence of windows is considered a pattern if for all j ∈ [i, i+k−1] 
sim�𝑊𝑊j,𝑊𝑊𝑗𝑗+1� > 𝜃𝜃threshold. (7) 

Pattern stability is defined as 
𝑆𝑆𝑡𝑡𝑆𝑆(𝑃𝑃𝐹𝐹𝑃𝑃) =  min𝑗𝑗,𝑘𝑘 ∈ 𝑃𝑃𝑃𝑃𝑛𝑛 sim�𝑊𝑊𝑗𝑗,𝑊𝑊𝑘𝑘�. (8) 

The optimal window size is defined as 
Δ𝑡𝑡 =  argminδ {𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠(δ) +  𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆(δ)}. (9) 

A pattern is considered defined if 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝐹𝐹𝑃𝑃)  =  𝑆𝑆𝑡𝑡𝑆𝑆(𝑃𝑃𝐹𝐹𝑃𝑃)  ·  𝐿𝐿𝜆𝜆𝑃𝑃(𝑃𝑃𝐹𝐹𝑃𝑃)  >  𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣. (10) 

For clustering, we use k-means, where the algorithm minimizes 

𝐹𝐹𝐹𝐹 = ��‖𝐹𝐹𝐹𝐹𝑡𝑡𝑖𝑖 − 𝑐𝑐𝑃𝑃𝑡𝑡𝑘𝑘‖
𝑖𝑖𝑖𝑖𝐶𝐶𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 
(11) 

and HDBSCAN with parameters mincluster_size=⌈Nob⋅scl⌉, minsamples=⌈mincluster_size⋅β⌉, ε = median 
(KNNdist)⋅γ. 

The compactness of the cluster is calculated using the formula 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) =
1

|𝐶𝐶𝑘𝑘|(|𝐶𝐶𝑘𝑘| − 1)�𝑠𝑠𝑠𝑠𝐶𝐶�𝑊𝑊𝑖𝑖,𝑊𝑊𝑗𝑗�
𝑖𝑖,𝑗𝑗

. 
(12) 

The formalized algorithm for determining patterns includes data collection and preparation, 
formation of time windows, clustering of HDBSCAN and k-means, pattern detection, and formation 
of movement modes. 

For a visual representation of the general stages of the method for determining the patterns of 
transport flows, a diagram (Figure 1) has been developed. It demonstrates the relationship between 
different stages of data processing. The diagram illustrates the full cycle from obtaining input data 
on the state of the transport network to the formation of traffic modes and the matrix of transitions 
between them, visualizing the main components of the proposed algorithm. 

The presented diagram illustrates the complex structure of the method for determining transport 
patterns, where the input data (state of intersections, queue lengths, timestamps, network topology) 
are sequentially transformed through the stages of formation of state vectors with characteristics {μ, 
σ, δ, τ}, formation of time windows, parallel clustering by k-means and HDBSCAN methods with 
subsequent selection of the optimal result, and detection of patterns according to the criteria of 
length, continuity, stability and belonging to the cluster.  



 
Figure 1: Stages of the method for determining traffic flow patterns. 
 
The analysis results are traffic modes with their characteristics (time ranges, spatial coverage, 

stability, continuity, relationships) and a transition matrix that simulates dynamic changes between 
modes, allowing prediction of future states of the transport network, identifying typical sequences 
of modes and identifying anomalous situations. 

4. Results 

To validate the proposed method for identifying characteristic traffic modes in the urban 
environment, an experimental study was conducted using a simulation model of the transport 
network of the city of Khmelnytskyi. The experiment aimed to confirm the effectiveness of the 
developed method for detecting and classifying transport patterns in conditions close to real ones. 

The experiment’s methodology was based on generating and analyzing traffic flows according to 
various traffic scenarios reflecting typical situations in the urban environment. This approach made 
it possible to assess the ability of the algorithm to recognize stable patterns in conditions of 
variability of transport data. 

Although the silhouette method provides a mathematical assessment of clustering quality, the 
final selection of the number of K clusters in transport analysis often requires a combined approach. 
The determination of K occurs empirically, taking into account the expert assessment of transport 
engineers regarding typical traffic modes in a particular transport network, the analysis of historical 
data on the characteristic states of the transport system, the specifics of the area under study, 
including the size of the city, types of roads and population density, as well as seasonal and daily 
cycles of transport activity. At the same time, experts consider a complex of interrelated factors. 
Typical driving modes such as night, morning peak, day and evening peak play a significant role. 
An important place is occupied by specific system conditions associated with mass events, holiday 
periods and repair work. Different levels of congestion, from low to critical, as well as weather 
conditions and their impact on driving modes, have a significant impact. 

The empirical approach allows you to validate and, if necessary, adjust the results of the 
mathematical estimation of the optimal number of clusters, providing a more practically significant 
clustering of transport patterns. 

A temporal sequence of traffic flows was created for the experiment, consisting of different 
traffic scenarios typical of the urban environment. Each scenario reflected a specific mode of 
movement of vehicles with variations in the intensity of flows: 

1. Morning scenario (0:00-1:00, 5:20-6:40) – characterized by the movement of vehicles toward 
the city center and the clothing market, which is typical for the morning rush hour. 

2. Evening scenario (1:00-2:00, 2:50-4:20, 6:40-7:40) – reflects the movement of vehicles from the 
city center and the clothing market, which is typical for the evening rush hour, with variations in 
the intensity of flows. 



3. Scenario of the Greceany district (2:00-2:50, 4:20-5:20, 7:40-8:50, 10:20-11:20) – represents the 
movement of vehicles from the Greceany district to the city center and the clothing market, as well 
as in the opposite direction, with different intensity. 

4. Mixed scenario (8:50-10:20) – combines elements of morning and evening scenarios with 
reduced traffic intensity in all directions. 

Each state of the transport network was presented as a multidimensional vector containing 
information. The vector representation made it possible to preserve the complete structure of 
transport data and the relationships between different directions of movement. Two clustering 
methods–HDBSCAN and k-means–were applied to identify characteristic modes of motion, 
according to the algorithm described in the previous section.  

This made it possible to compare the effectiveness of different approaches to detecting transport 
patterns and confirm the reliability of the proposed method. The use of the HDBSCAN method 
made it possible to automatically determine the optimal number of clusters without first specifying 
this parameter, which is a significant advantage in the analysis of dynamic transport data. The 
results of clustering are presented in Figure 2. 

 

  
(a) (b) 

Figure 2: (a) Clustering with HDBSCAN Transport Flow Pattern Detection, (b) Visualization of 
HDBSCAN clustering results using the UMAP method 
 

As can be seen from Figure 2a, the HDBSCAN method successfully identified four clearly 
separated clusters corresponding to the main motion scenarios: 

• Cluster 1, which corresponds to the morning scenario. 
• Cluster 2, which corresponds to the evening scenario. 
• Cluster 3, which corresponds to the scenario of the Greceani district. 
• Cluster 4, which corresponds to a mixed scenario. 
An important feature of the obtained results is the absence of intersections between clusters in 

the time dimension, which indicates high classification accuracy and clear differentiation of 
different modes of motion. This confirms the effectiveness of the proposed method for detecting 
characteristic transport patterns. 

The UMAP method was used to visualize multidimensional clustering data, which made it 
possible to display the results in two-dimensional space (Figure 2b). UMAP visualization 
demonstrates a clear separation of clusters in two-dimensional space, further confirming the 
effectiveness of the HDBSCAN method for identifying transport patterns. It is important to note 
that UMAP displays data not by time component but by the similarity of internal characteristics of 
traffic flows, which allows you to identify hidden patterns in multidimensional data. 

The k-means method was also applied to validate the results and benchmarking with a 
predetermined number of clusters K=4, corresponding to the number of scenarios in the 
experimental data. The results of clustering are presented in Figure 3a. 

Comparison of k-means results with HDBSCAN results shows high consistency between the two 
methods. K-Means also successfully identified four clusters that generally correspond to the main 
motion scenarios identified in the experimental data. Visualization of k-means results using the 



UMAP method (Figure 3b) also demonstrates a clear separation of clusters in two-dimensional 
space.  

 

  
(a) (b) 

Figure 3: (a) Results of clustering of transport flows using the k-means method (K = 4), (b) 
Visualization of k-means clustering results (K=4) using the UMAP method 

 
Increasing the number of clusters to K = 6 resulted in a more detailed but less consistent 

classification with the initial scenarios. Some scenarios have been divided into subcategories, which 
can be useful for more nuanced analysis but complicates the overall interpretation of the results. 
This confirms the advantage of the HDBSCAN method, which automatically determines the optimal 
number of clusters based on the data structure. 

Thus, the application of the HDBSCAN method made it possible to identify the optimal number 
of clusters successfully, in our case K = 4), corresponding to the main movement scenarios in the 
experimental data, without the need to pre-set this parameter.  

This result confirms the method’s effectiveness for analyzing traffic flows with a structure 
unknown in advance and demonstrates the need to involve expert assessment for cluster validation. 
An important aspect of the study was the high consistency of the results obtained using two 
different clustering methods. Such consistency confirms the stability of the identified patterns and 
the reliability of the proposed approach to identifying transport patterns. 

Additionally, an experiment was carried out using the k-means method with K = 6 to investigate 
the possibility of a more detailed classification of transport modes (Figure 6). 

 

  
(a) (b) 

Figure 4: (a) Results of clustering transport flows using the k-means method (K = 6), (b) 
Visualization of k-means clustering results (K = 6) using the UMAP method 

 
In the study, both methods demonstrated a clear separation of clusters in both the temporal 

dimension and the characteristic space, which was confirmed by UMAP imaging. This indicates the 
high quality of the clustering carried out and the ability of the proposed method to identify different 
modes of movement effectively. An experiment using k-means at K = 6 demonstrated that 
increasing the number of clusters can lead to more detailed but potentially over-classification, 
making the results difficult to interpret. This fact emphasizes the importance of optimal selection of 
the number of clusters, which is one of the key advantages of the HDBSCAN method. 



The traffic modes detected through clustering demonstrate a clear correspondence to typical 
transport scenarios in the urban environment, such as morning rush time, evening rush time and 
local traffic modes in selected areas of the city. Each cluster is characterized by a unique set of 
transport characteristics, effectively distinguishing between different transport network states. 

5. Discussion 

The experiment’s results confirm the effectiveness of the proposed method for identifying 
characteristic modes of movement. Multivariate similarity estimation, considering the mean values 
of the flows, their variability, dynamics of changes and time dependencies, provided higher 
classification accuracy than traditional approaches, which are often limited to analyzing only one or 
two parameters. The adaptive mechanism for selecting time windows has demonstrated high 
flexibility when working with traffic flows of different dynamics. During the experiment, the 
optimal window size for the morning and evening scenarios was 15–20 minutes, and for more stable 
periods, it increased to 30–40 minutes. 

A comparative analysis of the HDBSCAN and k-means methods revealed the former’s advantage 
in automatically determining the optimal number of clusters and in higher noise immunity. At the 
same time, k-means demonstrated better computing efficiency. Increasing the number of clusters in 
the k-means method from 4 to 6 resulted in a more detailed but potentially over-classification, 
making the results difficult to interpret. For the HDBSCAN algorithm, the average silhouette 
coefficient is 0.37. Clusters 2 and 3 demonstrate the highest values (0.2–0.9), while clusters 1 and 4 
have lower values (0.0–0.6) with some negative points. The average silhouette coefficient for the K-
means with 6 clusters is lower – 0.26. Only clusters 1 and 2 show relatively high values (0.1–0.7), 
while the remaining clusters (3–6) have mostly low values (0.0–0.3), indicating their potential 
redundancy. HDBSCAN demonstrates better clustering quality due to higher silhouette coefficients 
and clearer cluster separation. 

Visualization of the results by the UMAP method confirmed the effectiveness of the chosen 
approach to presenting transport data, demonstrating a clear separation of clusters in two-
dimensional space. The method has certain limitations in terms of its application in cases of changes 
in the transportation network, such as temporary road closures or changes in traffic patterns. 
However, it applies to special cases of short-term impact. From a practical point of view, the 
developed method can potentially optimize traffic light regulation, strategic planning of transport 
infrastructure and forecasting the transport situation to prevent congestion proactively. 
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6. Conclusions 

As a result of the study, a method for identifying characteristic traffic modes in the urban transport 
environment was developed and experimentally validated. The main scientific contribution was 
developing a hierarchical model for classifying transport patterns with a multidimensional 
assessment of the similarity of states, which provides analysis at different levels of detail – from 
local changes at intersections to global modes of network functioning. 

The key components of the method are an adaptive time-window mechanism that automatically 
adjusts the duration of the study interval depending on the dynamics of the transport flow, and a 
hybrid clustering algorithm that integrates HDBSCAN and k-means methods with an innovative 
pattern validation mechanism. This provides high resistance to noise and anomalies while 
maintaining computational efficiency. The analysis of the silhouette coefficients demonstrates the 
superiority of the HDBSCAN algorithm with a score of 0.37 over K-means with a score of 0.26, 



confirming the feasibility of automatically determining the optimal number of clusters for effective 
classification of traffic patterns. 

The method’s effectiveness was confirmed experimentally on a simulation model of the 
transport network of the city of Khmelnytskyi, where four basic traffic scenarios were successfully 
identified – morning, evening, specific for the Grechany district and mixed. The results create a 
methodological basis for optimizing urban transport management, improving traffic safety and 
improving the quality of transport services. 
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