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Abstract 
This paper explores the evolution of Geographic Information Systems (GIS) architecture from monolithic 
desktop systems to distributed, cloud-native solutions, highlighting the transformative impact of artificial 
intelligence on GIS and spatial mapping. The shift from standalone systems with local storage to networked, 
client-server GIS and eventually to cloud-based architectures has enabled real-time geospatial processing, 
automation, and seamless integration with big data frameworks. While core spatial algorithms and data 
models have remained stable, advancements in storage, computation, and deployment models have 
significantly reshaped GIS capabilities. The integration of AI-driven techniques has further revolutionized 
spatial mapping by enhancing predictive analytics, automated feature extraction, and real-time geospatial 
decision-making. However, challenges remain, including high-throughput processing for large-scale 
geospatial data, complexities in AI integration, and interoperability between legacy GIS systems and modern 
cloud-native environments. Future GIS architectures are expected to focus on optimizing AI-powered spatial 
analytics, enhancing real-time geospatial computing, and leveraging microservices and serverless 
technologies for increased modularity and scalability. This review provides a comprehensive analysis of GIS 
architecture evolution and the transformative role of AI in shaping the future of geospatial technologies. 
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1. Introduction  

The evolution of GIS software architecture has been driven by the increasing complexity of spatial 
data and business demands. At the same time, it developed hand in hand with broader advancements 
in computing and data management. Initially GIS were designed as standalone desktop applications 
with most of the data being stored, accessed and processed locally [1, 2]. While these systems laid the 
groundwork for spatial analysis, they were limited in terms of data sharing, scalability, and 
computational efficiency [3, 4]. These limitations were lifted with the evolution of client-server 
architecture and introduction of cloud computing resulting in a variety of collaborative, networked 
solutions [16, 17]. 

Understanding how GIS software architecture has evolved is essential for both researchers and 
practitioners, since it provides insights into the challenges and technological shifts that have shaped 
modern geospatial systems. Examining the evolution of GIS architecture from its early designs to its 
current state can help us understand the broader landscape. Through the review we can identify 
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which components have fundamentally changed and which have simply evolved via technological 
advancements together with the general software development trends.  

Research aims are: systematic integration of knowledge regarding the evolution of GIS and their 
transformation towards AI-ready systems within the context of environmental monitoring; analysis 
of the current state and identification of gaps in research on GIS architectures oriented towards AI 
for environmental monitoring; synthesis of disparate knowledge from the fields of GIS and artificial 
intelligence within the context of environmental monitoring to form a holistic understanding of 
future development directions. 

Ultimately the goal of this review is to guide developers towards understanding future GIS design 
and possible areas of improvements to the architecture that will support ongoing trends in GIS 
domain. 

2.  Methods 

This research employs a literature review methodology to analyze the evolution of Geographic 
Information Systems (GIS) and changes in their architecture, particularly within the context of 
environmental monitoring and the transition to systems ready for Artificial Intelligence (AI) 
utilization. 

Scientific databases, digital libraries, and other authoritative sources were utilized to search for 
articles, conference proceedings, books, and technical reports pertaining to GIS, environmental 
monitoring, and artificial intelligence. The selection of literature was based on its relevance to the 
research themes, the quality of the source, and the currency of the information. 

The selected sources were analyzed to identify key trends, architectural changes, approaches to 
AI integration, and challenges in the field of GIS for environmental monitoring. Information from 
various sources was systematically organized and synthesized to identify common patterns, 
contradictions, and gaps in existing research. Based on the literature analysis, key stages in the 
development of GIS were identified, ranging from standalone monolithic systems to modern AI-ready 
architectures. 

The transformation of architectural approaches in GIS was investigated, including the transition 
to client-server systems, web GIS, cloud GIS, and service-oriented architectures (SOA), with a 
particular emphasis on their adaptation to the needs of environmental monitoring and integration 
with AI. 

3. Evolution of GIS and current state 

Like any other software GIS follows an “S” shaped adoption curve. Though due to specifics of 
application, cost and complexity GIS adoption has spread across decades [1]. Long adoption cycle 
resulted in a cascade of ongoing changes and improvements due to rapid enhancement of 
technologies that enabled GIS. These changes in technologies often brough new capabilities and 
extended GIS beyond professionals and researchers. At the same time each new cycle introduced new 
challenges for GIS developers to overcome. One of the domain areas that has significantly benefited 
from GIS development is environmental monitoring [2]. In this article we attempted to link GIS 
trends, technologies enhancements and its application for environmental monitoring. 

We started our review from 1990 because that period marks a critical turning point in the evolution 
of GIS technology. It was the time of advent of personal computers and the emergence of systems like 
ESRI's ARC/INFO, early versions of GRASS GIS and others [3]. Most of those products captured a 
decent portion of the market and still exist today. Overall development of GIS can be outlined in 
several major phases: 

Baseline mapping and early monitoring. During this period, desktop GIS systems were 
adopted to map environmental resources and hazards. Early remote sensing data integration enabled 
basic assessments of land cover, and contamination. GIS began its transformation from a niche, 
mainframe-based tool into desktop applications accessible to a broader range of users. Pioneering 
systems like ESRI ARC/INFO and GRASS GIS leveraged file-based formats (such as Shapefiles and 
GeoTIFFs) and basic spatial algorithms to integrate raster and vector data [4;5]. 



Expanded data integration and multidisciplinary assessments. GIS began to support 
environmental policy and land-use planning. As well as started playing a vital role in environmental 
impact assessments, deforestation mapping, and pollution monitoring. This became possible because 
of satellite imagery and improved spatial indexing and the initial support for spatial databases [6]. 

Web-based sharing and standardization. This period marks a significant shift as GIS 
transitioned to web-based data sharing and open architectures. The adoption of OGC standards like 
as WMS, WFS and GML combined with service-oriented approaches enabled more flexible 
component-based designs. These developments allowed GIS to integrate multiple data streams 
broadening its capabilities to monitor water quality, air quality, biodiversity, and climate trends 
concurrently [7;8]. 

Mobile near real-time monitoring. Phase characterized by GPS-enabled field data collection 
facilitated by multiple REST APIs for accessing data from various sources. At this point GIS gained 
lots of practical meaning for wildfire risk mapping and localized hazard monitoring, although issues 
like data latency and sensor integration still presented challenges [9;10]. 

Big data integration and cloud-based processing. Large-scale satellite imagery and citizen 
science data became central to monitoring environmental changes. Advanced data storage and ETL 
capabilities made it possible to integrate crowdsourced observations. GIS became capable of managing 
and processing massive and diverse datasets [11]. 

AI real-time analytics and immersive visualization. Marks use of IoT devices, advanced 3D 
visualization frameworks (WebGL and CesiumJS) and machine learning techniques. These 
improvements allow GIS to provide high-resolution change mapping and 3D visualizations that help 
better understand dynamic environmental processes. While use of AI allows making decisions on the 
fly and spot patterns in spacial data and its layers [12;13]. 

Clearly aforementioned phases were not consequent, some happened in combination and related 
technologies keep evolving till today. Below is a visualization of how search trends in geographic 
information systems have evolved over time by Jorge Vinueza-Martinez et al from their recent work 
“Bibliometric Analysis of the Current Status and Research Trends” (Fig. 1). Over 350 publications 
were analysed in scope of the review using metadata like author, keywords and thematic mapping to 
analyze research trends, gaps, and thematic clusters [14]. 

 
Figure 1: GIS trend themes over years [14] 
 



4. Results and discussion 

The research may, for the first time, clearly identify and analyze precisely which changes in GIS 
architecture (for example, the transition to cloud technologies, service-oriented architectures) are 
most crucial for the effective application of artificial intelligence methods in environmental 
monitoring tasks. The review may reveal underexplored aspects or problematic areas in existing 
architectures that hinder the effective implementation of AI in environmental monitoring practice, 
thereby defining directions for future research. 

4.1. Early Desktop GIS 

Before mass-adoption, GIS architecture was primarily monolithic and on-premises with limited 
scalability. Clients were mostly desktop-based with local storage with little to none network 
connectivity. GIS services were basic and worked with static data through tightly coupled map and 
feature services (see Fig. 2).  

 

 
Figure 2: Client-server architecture of marine environment surveillance GIS [15] 

 
Data processing involved simple batch processing and manual imports, while storage was a simple 

two-tier system using spatial databases and file systems. Data sources were limited to vector data, 
remote sensing, and tabular data, with communication relying on SOAP/XML for synchronous 
operations [15]. 

3.2 Client-Server GIS 

With advancements in communication technology and the growing need for multi-user access, 
GIS architectures evolved into Client-Server GIS, enabling remote accessibility. 

Such architecture mitigated limitations of standalone desktop GIS, introducing centralized spatial 
data management and at least partial server-side processing [16]. These architectures relied on GIS 
servers handling spatial processing and database management, while web-based or desktop clients 
acted as front-end interfaces for users. Technologies such as ArcGIS Server, OpenLayers, PostGIS, 
and MapServer enabled organizations to serve geospatial data over networks, improving 
collaboration and data consistency. 

However, these systems often faced performance bottlenecks, complex maintenance, and early 
challenges in distributed processing. A notable example from this period is the web-based GIS for 
marine environment surveillance and monitoring presented in Kulawiak et al (2009) [17]. The 
architecture of the system is depicted on Fig. 3. 

This system followed a client-server model where a central GIS server processed real-time marine 
sensor data and satellite imagery, with results visualized through a web-based interface. While it 
demonstrated the advantages of web-based GIS for environmental monitoring, it remained 
constrained by the traditional client-server paradigm, and limitations of server side computing 
features at that time. 



Another example is GIS architecture presented by Frank Kühnlenz and Ingmar Eveslage (2008) for 
their research project for SAFER project, which at that time was co-funded by the European 
Commission [18]. The project itself was focused on developing methodologies of detection and 
analysis of seismic events through GIS. The architecture diagram is displayed on Fig 4. 

While this system already presented somewhat decentralized architecture by using component 
based software design it can't be considered fully modular and decentralized by modern standards 
[19]. 

 
Figure 3: Client-server architecture of marine environment surveillance GIS [17] 

 
Despite having some distributed characteristics it lacks the flexibility of a modern microservices 

or API-driven architecture. Specifically it has no clear API-driven approach and has tight component 
coupling - they are embedded within each node rather than being independent services that nodes 
can call when needed. And of course cloud and edge computing was not widely available at the time 
of publication. At the same time this work clearly shows the direction of GIS architecture 
advancements. 

 

 
Figure 4: GIS architecture by Frank Kühnlenz and Ingmar Eveslage [18] 

3.3 Cloud and Web GIS 

The shift toward cloud computing in the 2010s further evolved GIS architectures, addressing 
scalability and interoperability limitations inherent in client-server models [20]. GIS architecture has 
evolved from traditional client-server models to cloud-native, web-based platforms. This shift has 
been driven by the need to process and visualize large, complex spatial datasets in real time and be 



scalable to accommodate increased user demands. Such design leveraged scalable distributed 
processing, RESTful APIs, and open standards and some GIS-specific tooling like OGC protocols, 
GDAL and others. Cloud computing opened the way towards using big data tools like Hadoop and 
Spark for storing and processing large volumes of geospatial data [21]. 

Major platforms like ESRI ArcGIS also moved into cloud, this provides both cost optimization and 
more flexibility to the customers who are now able to deploy and maintain their application by 
themselves [22]. Below is an example of the architecture of a cloud-native GIS architecture by Reza 
Nourjou and Joel Thomas – Fig. 5 [23].  

This design leverages real-time data streaming and integration with distributed IoT devices to 
enhance geospatial analysis. Proposed architecture makes use of modern web services and APIs to 
integrate external data sources for near real time data collection. The cloud-based processing layer 
facilitates computational analysis and can be scaled due to the nature of cloud components. 

As for data storage and processing Big Data became another possible option for the applications 
with large-scale data processing requirements [24]. It plays a vital role in the organization of 
comprehensive GIS solutions due to the need to process a high variety of data formats - imagery, 
audio, sensory and geospatial data [25]. 

When transitioning from traditional file-based spatial databases to a Big Data storage architecture, 
the approach shifts from centralized systems to distributed, scalable solutions designed to handle 
large and complex geospatial datasets. Hadoop Distributed File System (HDFS) replaces conventional 
file storage formats like Shapefiles and GeoTIFF, providing fault-tolerant, parallelized storage that 
improves data accessibility and reliability [26]. At the same time, NoSQL databases such as HBase 
and Accumulo offer a more efficient alternative to relational spatial databases like PostGIS and Oracle 
Spatial by enabling faster indexing and distributed querying [27;28]. 

 

 
Figure 5: System architecture of cloud-based web GIS with 3rd party APIs 

 
Instead of relying on a single database server, modern GIS systems use distributed query engines 

like Hive and Impala, which allow parallel spatial processing across multiple computing nodes [29]. 
Raster data, previously stored in relational databases or standalone files, is now managed through 
HDFS or cloud-based object storage, ensuring more efficient storage and faster processing. 
Additionally, spatial indexing methods have evolved from traditional QuadTree and R-Tree structures 
to distributed indexing frameworks such as GeoMesa and GeoSpark, allowing faster spatial queries 
on large-scale datasets [30]. 

Fig. 6 depicts an architecture of GIS application developed by Zhibo Sun and Liqiang Wang using 
Hadoop and HBase [36]. Despite advancements in Big Data that make GIS more scalable, resilient, 
and capable of handling high-volume real-time geospatial analysis in cloud environments, its 



adoption should be justified by actual needs to prevent data redundancy and unnecessary financial 
costs. 

3.2 Advanced AI and Real-Time GIS 

High-volume geospatial and sensorics data created demand for effective ways of data analysis and 
patterns recognition. This led towards use of Machine Learning and Artificial Intelligence for real-
time decision making and forecasting capabilities. 

 
Figure 6: A Geographic Information System on Hadoop [36] 

 
The field of spatial data interpretation and process modeling is the most promising for applying 

ML and AI in GIS. Machine learning is used in various GIS applications such as the classification of 
satellite imagery and patterns identification [31]. AI-based forecasting models also allow for the 
prediction of natural disasters, optimization of resource allocation, and analysis of climate change, 
which turns GIS into a proactive tool for strategic decision-making [32]. An example of GIS 
architecture with an integrated Machine Learning module is shown in Fig 7.  

 

 
Figure 7: GIS architecture with an integrated Machine Learning module [32] 

 
This system enhances flood forecasting by leveraging crowdsourced data, remote sensing, and 

weather station inputs. ML models, trained on historical flood data, continuously refine predictions 
by integrating real-time observations. Data processing is performed using Big Data frameworks such 
as Hadoop and Spark, enabling scalable spatial analysis. The architecture includes a GIS-based 
simulation layer for generating flood risk maps and a web-based GIS dashboard for visualization and 



decision support. This AI-driven approach improves flood prediction accuracy, supporting real-time 
risk assessment in cloud-based environments [33]. While this is an excellent example of how ML and 
AI can enhance decision making, there still remain difficulties in integrating AI with complex spatial 
datasets, ensuring model transparency and correctness, and managing high computational demands 
[34]. But it’s obvious that the growth in AI power will further strengthen its role in GIS through 
process automation. This will improve the accuracy of analysis, especially when working with large 
volumes of geospatial data. 

As expected, the architecture of GIS has significantly evolved reflecting advancements in 
technology and user needs. Modern GIS are distributed and cloud-native, allowing for horizontal 
scalability. Another big advancement is support of multiple clients, including web, mobile, and 
desktop applications. Beck-ends are modular following commonly adopted software architectural 
patterns like microservices, with each service specialized for various GIS functions. A conceptual 
difference between legacy and modern GIS designs is shown on the Fig. 8. 

Data processing has advanced to include real-time stream processing, batch processing for large 
datasets, and AI/ML integration. In addition to cloud hosting,  storage evolved into a multi-tiered 
system that consists of spatial databases, object storage, distributed caches, and a time series storage. 
This enables efficient storage, transformation and extraction of data used in geoinformation systems. 
Data sources have expanded to include real-time sensors, third-party APIs, and streaming data. 
Communication uses REST/GraphQL APIs for both synchronous and asynchronous operations, and 
real-time processing capabilities have significantly improved. 

 

 
 

Figure 8: GIS architecture changes overview 
 
Before we only reviewed technology agnostic designs that presented main components and their 

organization. Fig. 9 displays is how ArcGIS suggests deploying their application on Amazon Web 
Services [35]. Given schema is technology specific but similar architecture can be implemented using 
any major cloud provider, it shows modern design with a specific hosting solution. Process modeling 
is given in [37-39]. 

This system takes advantage of cloud-native services like AWS EC2, S3, RDS, and DynamoDB to 
support scalable, distributed spatial analysis and geospatial data management. By combining dynamic 
image services, raster analytics, and real-time data processing it demonstrates how modern GIS 
platforms leverage cloud infrastructure to improve performance, reliability, and computational 
power. This architecture is a real-world example of how present-day GIS solutions apply modern 



principles and technology. It utilizes elastic computing, distributed storage, and automated service 
orchestration to streamline geospatial workflows and handle large-scale data processing efficiently. 

 
Figure 9: Recommended architecture for deploying ArcGIS software 
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Conclusions 

The evolution of GIS architecture reflects both intentional advancements in spatial data 
management and broader shifts in software design. Early monolithic desktop GIS relied on local 
storage and standalone processing limiting scalability and collaboration. The transition to client-
server GIS introduced centralized databases and networked processing addressing multi-user access 
but still facing performance bottlenecks. With the development of cloud computing, GIS architectures 
became distributed, API-driven and highly scalable. This enabled real-time spatial processing, 
automation and integration with big data frameworks.  

Our review shows that some architectural components have changed significantly, while others 
have evolved mainly due to technological trends. Core spatial algorithms and data models remained 
relatively stable while storage, computation, and deployment architectures had major 
transformations. The shift from single-server relational databases to cloud-native storage (HDFS, 
NoSQL, object storage) and from standalone processing to distributed computing (Hadoop, Spark, 
Kubernetes based GIS workloads and etc) was primarily driven by general software advancements 
rather than GIS-specific needs. However, the rise of geospatial web services, AI-enhanced GIS 
architectures, and geoAPIs was deliberate GIS-driven evolution and enabled interoperability, 
automation and predictive analytics. 

Despite these advancements GIS architecture still faces challenges. Specifically, there are few 
common bottlenecks: Many distributed GIS solutions struggle with high throughput for geospatial 
data streams, AI integrations introduce computational, spatial data standardization and model 
explainability complexities Moreover ensuring seamless interoperability between traditional GIS 
architectures and modern cloud-native environments remains a priority for future development. 

The next phase of GIS architectural evolution will likely focus on enhancing real-time geospatial 
computing, optimizing AI-powered GIS architectures, and improving modularity through 
microservices and serverless GIS frameworks. As AI continues to advance, its integration into GIS 
will become increasingly pivotal, enabling more sophisticated spatial analysis and predictive 



modeling. These advancements will define how future GIS platforms scale, integrate, and support 
intelligent spatial decision-making. By leveraging AI, GIS can automate complex data processing 
tasks, identify patterns and trends more efficiently, and provide actionable insights in real-time. This 
evolution will open new applications of GIS in environmental monitoring where timely and accurate 
spatial data is crucial. 
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