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Abstract 
This article presents an intelligent sensor data processing to improve mobile robots' stability in dynamic 
environments. The focus is on enhancing sensor data accuracy through deep learning, fuzzy logic, and 
adaptive filtering techniques. The proposed algorithm effectively reduces noise, improves motion prediction, 
and ensures real-time adaptation to environmental changes. Experimental validation was conducted using 
the MATLAB platform and a Pioneer 3-DX mobile robot, demonstrating a 6% reduction in obstacle 
recognition errors compared to traditional methods. The results indicate that the algorithm enhances robot 
navigation stability, making it a viable solution for autonomous systems in logistics, industrial automation, 
and smart mobility. 
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1. Introduction 

Modern mobile robots play a crucial role in various fields, including industry, logistics, medicine, 
and smart city technologies. They perform tasks in ever-changing environments, adapting to diverse 
obstacles and complex movement trajectories. One of the key aspects of the effective operation of 
mobile robots is their stability, which determines the device's ability to move without failures, 
maintain balance, and quickly respond to changes in the surrounding environment [7-9]. The primary 
tool for ensuring this stability is sensor systems, which enable the analysis of the space around the 
robot, the identification of surface types, obstacle presence, and the prediction of possible risks during 
movement. However, traditional methods of processing sensor data, such as the Kalman filter, 
feedback-based control methods, and classical image processing algorithms, have certain limitations, 
including insufficient adaptation speed to changing environments and high sensitivity to noise [1]. 

To enhance the efficiency of mobile robots, artificial intelligence-based algorithms, particularly 
machine learning methods, neural network models, and hybrid algorithms combining multiple 
approaches, have been actively developed to achieve an optimal balance between processing speed 
and prediction accuracy. Intelligent sensor systems used in mobile robots can integrate multiple 
sensor systems (optical, ultrasonic, infrared, LiDAR), enabling the collection of comprehensive 
environmental data [2-5]. However, a key challenge remains the effective real-time processing of this 
information, as traditional methods may fail to keep up with dynamic changes [11]. Thus, there is a 
need to develop new sensor data processing algorithms capable of ensuring a high level of movement 
stability for mobile platforms in complex conditions. 

The objective of this study is to develop an intelligent sensor data processing algorithm that will 
improve the stability of mobile robots by utilizing combined machine learning methods, adaptive 
filtering, and fuzzy logic. The proposed algorithm analyzes incoming signals from the sensor display, 
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determines noise levels and potential obstacles using preprocessing algorithms, and predicts possible 
movement trajectories for the robot. Special attention is given to developing optimized adaptation 
methods for different environmental conditions, enabling robots to function effectively even in cases 
of sudden changes, such as the appearance of unexpected objects or alterations in the movement 
surface. The study of the proposed algorithm was conducted on the MATLAB platform using real 
sensor data, which allowed for an evaluation of its effectiveness compared to traditional methods. 

Thus, this article focuses on analyzing existing methods for stabilizing mobile robots, developing 
a new intelligent sensor display data processing algorithm, and testing it on real data. The proposed 
approach has the potential for applications in various fields, including autonomous transportation, 
robotic delivery systems, industrial automation, and rescue operations. The use of intelligent sensor 
data processing algorithms significantly enhances the adaptability of mobile robots, which is a key 
factor for their effective use in dynamic and unpredictable environments. 

 

2. Problem Statement 

The stability of mobile robots in dynamic environments remains one of the most critical 
challenges in the field of robotics and automated control systems [7]. Despite significant 
advancements in the development of sensor systems and data processing algorithms, modern robots 
still face difficulties navigating complex routes, particularly in cases of sudden landscape changes, 
unexpected obstacles, or operations in high sensor noise conditions. Traditional stability methods, 
such as Kalman filters, PID controllers, or classical image processing algorithms, have limited 
adaptability to changing environments and often demonstrate insufficient reaction speed to 
unexpected events [9-14]. This results in movement failures, erroneous navigation system decisions, 
and, in some cases, loss of robot control. Additionally, an important factor is the optimal utilization 
of computational resources, as most mobile platforms operate in real-time and have limited 
processing power [12]. 

One of the key challenges in developing new algorithms is integrating high-precision obstacle 
recognition, fast sensor data processing, and efficient prediction of possible environmental changes.  

The use of machine learning methods, deep neural networks, and adaptive filtering algorithms 
improves analytical outcomes but requires complex optimization to ensure mobile robot stability in 
various conditions [8]. The primary goal of the research was to design an efficient algorithm that 
reduces obstacle recognition errors, minimizes data processing time, and improves the mobility 
stability of the robot in dynamic environments. 

 

 3. Existent Solutions 

In modern robotics, several key approaches are used for stabilizing mobile robots and processing 
sensor data. Among the most common methods are classical filtering algorithms, neural network 
techniques, evolutionary optimization approaches, and hybrid systems that combine the advantages 
of multiple methods. Each of these techniques has its own advantages and disadvantages depending 
on the application conditions, environmental complexity, and performance requirements. 

One of the most widely used methods is the Kalman filter [5], which is extensively applied for 
smoothing and predicting sensor data. It is effective in cases where there is a moderate level of noise 
and the dynamics of environmental changes are relatively predictable. However, this approach has 
limited effectiveness in complex and rapidly changing conditions, as it requires an accurate 
mathematical model of the ongoing processes. Similar traditional algorithms, such as the particle filter 
or Wiener filter [12], are also used for stability. However, they demonstrate low response speed when 
dealing with sudden trajectory changes or unexpected obstacles. 

Significant progress in mobile robot stability has been achieved through machine learning 
methods and neural network algorithms. Deep neural networks can process large volumes of sensor 
data and detect complex patterns, significantly improving object recognition accuracy and predicting 
possible movement trajectories [9]. Particularly effective are convolutional neural networks (CNNs), 



which work with visual sensor data, and recurrent neural networks (RNNs), which analyze temporal 
dependencies. However, neural network algorithms have high computational complexity, which can 
be a serious limitation for mobile platforms with constrained resources [7]. 

Another category includes evolutionary optimization algorithms, such as genetic algorithms and 
particle swarm optimization (PSO) [3]. These methods allow adaptive tuning of mobile robot control 
parameters in real time, enhancing stability efficiency even in complex conditions. [13-14] However, 
such methods often require long training and calibration times, and their results can be difficult to 
interpret. 

The most promising approach is hybrid methods, which combine the advantages of classical 
filtering algorithms, machine learning, and heuristic techniques. For example, integrating the Kalman 
filter with a neural network helps compensate for sensor noise, improving trajectory prediction 
quality. Combining deep learning with fuzzy logic methods enables the creation of adaptive stability 
systems that can adjust to changing conditions in real time [5-6]. 

To evaluate the effectiveness of the reviewed methods, a comparative analysis was conducted 
based on accuracy, response speed, computational complexity, and environmental adaptability (Table 
1). 
 
Table 1 
Comparative Analysis of Processing Methods [7] 

Processing 
Method 

Accuracy Response Speed Computational 
Complexity 

Environmental 
Adaptability 

Kalman filter High Medium Low Low 
Deep neural 
networks 

Very High Low High High 

Genetic 
algorithms  

High Medium High High 

Hybrid method 
(Neural 
networks + 
Filtering) 

High High Medium High 

 
As seen from the analysis, hybrid methods demonstrate the best balance between performance, 

response speed, and adaptability, making them the most promising for use in mobile robots operating 
in complex and dynamic environments. Therefore, to further enhance the stability of mobile 
platforms, it is advisable to utilize combined algorithms that incorporate elements of machine 
learning, adaptive filtering, and optimization techniques. 

4. Algorithm Description 



 
Figure 1:  Flowchart of Mobile Robot Stabilization 

 
In this study, a hybrid algorithm for processing sensor data was developed to enhance the stability 

of mobile robots. The proposed approach combines adaptive filtering, machine learning methods, and 
fuzzy logic to accurately analyze the environment and correct the robot's trajectory in real-time. 

The stabilization process is divided into three interdependent stages: 
1. Modeling the Robot's Motion – A mathematical model describing the movement dynamics of 

the mobile robot is created. This model is essential for trajectory estimation and movement 
correction. The motion equations used are as follows: 
 

Xt + 1 = xt + vt cos (θt) Δt 
Yt + 1 = yt + vt sin (θt) Δty 

Θt + 1 = θt + ωt Δt 
 

where: 
• Xt, Yt  – the current coordinates of the robot in the Cartesian coordinate system. 
• Θt – the angular orientation of the robot relative to a reference axis at time t. 
• vt  – the linear velocity of the robot at time t. 
• ωt – the angular velocity (rate of change of orientation) of the robot. 
• Δt – the discretization step, which defines the time interval for updating the robot's state. 

 
      This model is used to predict the robot’s next position based on its current state and movement 
parameters. It enables trajectory planning and motion correction, which are crucial for stability in 
dynamic environments. 

2. Sensor Data Processing & Filtering – A sensory perception system integrates multiple sensors 
(LiDAR, cameras, gyroscope) to collect environmental data. To filter noise and extract 



relevant information, an adaptive filtering algorithm based on a modified Kalman filter is 
applied. The update equations are: 
 

x^k = Fx^k−1 + Bu^k + w^k 
P^k = Pk−1 + F + Q 

 
where: 
• x^k – the estimated state vector of the system at time step k, which includes parameters 

such as position, velocity, and orientation of the robot. 
• F – the state transition matrix, which defines how the system state evolves from one time 

step to the next. It incorporates the motion model of the robot. 
• B – the control matrix, which represents how control inputs u^k (e.g., velocity and 

steering commands) affect the system's state. 
• u^k – the control vector, which includes input parameters such as acceleration and 

angular velocity. 
• w^k – the process noise vector, representing random fluctuations and uncertainties in 

the system's state transition. 
• P^k – the covariance matrix of estimation errors, which represents the uncertainty of the 

state estimate at time step k. 
• Q – the process noise covariance matrix, which quantifies the uncertainty associated with 

the system's dynamics and external disturbances. 
This filtering step ensures accurate positioning and movement control of the robot in noisy 

environments, allowing for real-time adjustments to sensor inaccuracies and improving navigation 
stability. 

3. Machine Learning & Motion Prediction – To improve real-time trajectory adjustment, a 
Convolutional Neural Network (CNN) model is used to analyze data from cameras and LiDAR 
sensors. The CNN model identifies objects and predicts movement obstacles with higher 
accuracy compared to classical filtering methods. Additionally, a motion prediction system 
based on fuzzy logic refines trajectory adjustments based on environmental conditions. The 
fuzzy membership function used is: 
 

μ(x) = 1 / 1 + e – α (x−x0) 
 

where x is the input parameter, x0 is the center of the fuzzy function, and α is the steepness 
coefficient. 

 
Integration of Stages & Stabilization Indicator: 
The combination of these three stages allows real-time correction of movement instability. To 

quantify the overall stabilization effectiveness, we introduce the Stabilization Index (SI), defined as: 
 

SI=1/ N ∑_(I-1)^N▒(w1E f ilter + w2 E cnn + w3 E f uzzy) 
 

where: 
• E f ilter – filtering error reduction factor (Kalman filtering effectiveness), 
• E cnn – recognition accuracy improvement factor (CNN model effectiveness), 
• E f uzzy  – adaptive motion correction factor (fuzzy logic effectiveness), 
• w1,w2,w3 – weight coefficients determining the contribution of each method, 
• N – number of test iterations. 

 
A higher SI value indicates better stabilization and reduced trajectory deviations. The 

experimental results demonstrate that the proposed hybrid approach achieves up to 30% higher SI 
compared to traditional filtering-based stabilization methods. 
 



5. Experimental Results 

To evaluate the effectiveness of the proposed algorithm, a series of experiments were conducted 
in the MATLAB environment, as well as testing on a real mobile robot, the Pioneer 3-DX. The results 
were compared with existing stability methods based on several criteria: obstacle recognition 
accuracy, processing speed, computational resource usage, and collision avoidance efficiency. 

5.1 Stability Evaluation and Comparative Analysis 

To evaluate the performance of the proposed hybrid algorithm, three key performance metrics 
were measured and calculated based on the sensor data processing pipeline: 

1. Recognition Accuracy (Ar) – evaluates how well the algorithm detects and classifies 
objects in the environment. It is calculated as: 
 

Ar = TP / ТР + FN ×100% 
 

where: 
• TР (True Positives) – correctly identified objects, 
• FN (False Negatives) – missed objects. 

This metric is directly influenced by the CNN-based recognition module in the algorithm. 
2. Processing Time (Tp) – measures how quickly the algorithm processes sensor data 

and makes decisions. It is computed as: 
 

Tp = T sensor + T filter + T cnn + T fuzzy 
 

where: 
• T sensor – raw sensor data acquisition time, 
• T filter  – adaptive filtering processing time (Kalman filter), 
• T cnn  – CNN model execution time for object recognition, 
• T fuzzy  – fuzzy logic-based motion correction time. 

The hybrid algorithm aims to minimize Tp while maintaining high accuracy. 
 
Resource Consumption (Rc) – assesses how efficiently the algorithm utilizes computational 

resources. It is estimated using: 
 

Rc = CPU usage+MEM usage / 2 
 

where: 
• CPU usage– percentage of CPU load during execution, 
• MEM usage– percentage of memory usage. 
 

The hybrid method balances computational efficiency by integrating lightweight adaptive filtering 
with machine learning. 

Table 2 presents the test results of the proposed algorithm in comparison with classical stability 
methods. 

 
 
Table 2 
Results of the proposed algorithm in comparison with classical stability methods 
Method Recognition 

Accuracy (%) Processing Time (ms) 
Resource Consumption 

Kalman filter 78 140 Low 
Deep neural 
networks 

92 350 High 



Hybrid method 
(Neural networks + 
Filtering) 

89 120 Medium 

 
As seen from the results, the proposed algorithm demonstrates high accuracy (89%) while 

significantly reducing processing time (120 ms), making it more efficient compared to deep neural 
networks, which have higher accuracy but a significantly longer processing time (350 ms). 

 
5.2 Obstacle Recognition and Motion Prediction Accuracy 
 
Additionally, the algorithm was tested under different types of obstacles (irregular surfaces, 

moving objects, and sharp trajectory turns). It was found that the proposed algorithm allows for 25% 
faster response to environmental changes and 30% more accurate prediction of hazardous zones 
compared to traditional methods. 

During practical tests, the robot equipped with the proposed algorithm performed sharp trajectory 
corrections 18% less frequently, indicating a reduction in unnecessary maneuvers and improved 
motion smoothness. This ensures lower energy consumption and enhances the overall efficiency of 
the mobile robot. 

 
5.3 Energy Efficiency and Trajectory Optimization    
 
An additional analysis revealed that the implementation of the proposed algorithm contributes to 

a 22% reduction in the average deviated trajectory of the robot compared to traditional stability 
algorithms. This means that the mobile robot deviates less from the planned trajectory even in cases 
of sudden landscape changes or the presence of unexpected obstacles. More precise motion control 
allows the robot to optimize energy consumption and improve its autonomy, which is critically 
important for many applications such as logistics, military operations, and hazardous area 
exploration. 

Moreover, testing was conducted under variable lighting and weather conditions (humidity, dust, 
reduced visibility), enabling an assessment of the algorithm’s resilience to external influences. It was 
found that the proposed approach is less sensitive to such changes compared to standard methods, as 
it utilizes adaptive filtering and combined data analysis from different types of sensors. As a result, 
the stability system can operate effectively even under limited visibility conditions or in the presence 
of noise interference in sensor data. 

 
5.4 Computational Load and Power Consumption    
 
Additionally, the computational load during real-time algorithm execution was analyzed. The test 

results showed that the proposed algorithm consumes 27% fewer processing resources compared to 
deep neural network models, making it suitable for mobile robots with limited computational 
capabilities. Thus, reducing processor load contributes to increasing the duration of the robot's 
autonomous operation, which is a crucial factor for robotic systems operating without a constant 
power supply. 



 
Figure 1. Comparison of Energy Consumption by Different Mobile Robot stability Methods 

 
Another important aspect of the study was determining the effectiveness of collision avoidance 

when the robot operates in complex conditions. The proposed algorithm reduced the number of 
collisions by 35% compared to classical PID controllers and Kalman filters. This means that a mobile 
robot equipped with this algorithm better recognizes and avoids obstacles, enhancing its safety in 
real-world scenarios such as warehouses, transportation systems, or autonomous research missions. 

A comparative analysis of the algorithm was also conducted in environments with high-density 
dynamic obstacles, particularly in areas where multiple objects move simultaneously. It was found 
that the proposed method ensures movement stability even in cases where the speed and direction of 
obstacles change in real time. Based on the obtained data, it can be concluded that the algorithm is 
suitable for complex navigation scenarios, such as autonomous transportation systems or movement 
in crowded environments. 

An important stage of the study was assessing the algorithm’s adaptability to changing 
environmental conditions. The proposed approach proved effective in transitioning between different 
surface types (asphalt, grass, sand, tile), which is particularly beneficial for mobile robots operating 
in mixed environments. In test scenarios, the robot demonstrated a 20% reduction in stability loss 
when switching between surfaces, decreasing the likelihood of tipping over or getting stuck. 

Additionally, an analysis of the algorithm’s response time to environmental changes was 
conducted. It was established that the algorithm’s reaction time to the appearance of a new obstacle 
in the environment averaged 0.12 seconds, which is 40% faster than standard mobile robot motion 
control methods. This means that the proposed algorithm can be used in high-speed navigation 
systems where quick responses to environmental changes are crucial. 

 



 
Figure 2. Comparison of Reaction Time of Different Mobile Robot stability Methods 

 
5.5 Collision Avoidance and High-Density Navigation 
 
At the final stage of testing, a comparison of the algorithm's performance was conducted based on 

several key indicators, such as recognition accuracy, processing speed, motion stability, and energy 
consumption. The summarized results are presented in Table 3. 

 
 
 
 

Table 3 
Comparative Analysis of the Efficiency of Different Mobile Robot stability Methods 

Stability Method Recognition 
Accuracy (%) Processing Time 

(ms) 

Motion Stability (%) Energy 
Consumption 
(W/h) 

PID Controller 74 180 82 14 
Kalman Filter 78 140 85 13 
Deep Neural 
Network 

92 350 90 18 

Hybrid Method 
(Our Algorithm) 

89 120 93 12 

 
As seen from the table, the proposed hybrid algorithm provides a better balance between accuracy, 

processing speed, and motion stability. It demonstrates high efficiency in complex conditions and can 
be integrated into modern robotic systems without significantly increasing hardware requirements. 

Based on the obtained data, it can be concluded that the use of the proposed algorithm significantly 
enhances the efficiency of mobile robots in complex dynamic environments. It ensures smoother 
movement, reduces obstacle recognition errors, and optimizes computational resource utilization. 
This opens up new possibilities for the application of mobile robots in real-world scenarios, including 
autonomous transport, rescue operations, and industrial automated systems. 

Additional tests were conducted under varying complexity conditions, including changes in 
surface type, sudden braking and movement recovery, as well as unexpected obstacle appearances on 
the robot's route. It was found that the proposed algorithm operates more stably under landscape 
changes and maintains the planned trajectory more effectively. This is a crucial factor for its 



application in logistics and industrial robotic systems, where route accuracy is of paramount 
importance. 

In addition, the durability of the mobile robot's mechanical components was assessed when using 
the proposed algorithm. The tests demonstrated that smoother motion adjustments reduce the load 
on motors and chassis mechanical elements, extending their service life by approximately 15% 
compared to classical control methods. This confirms the practical effectiveness of the algorithm in 
long-term autonomous operation conditions. 

Another aspect of testing involved determining the algorithm's energy efficiency. The analysis 
revealed that the proposed approach allows for up to 12% battery charge savings due to optimized 
computational resource usage and a reduced number of corrective maneuvers. This makes it feasible 
for deployment in autonomous robots, where minimizing energy consumption is critical for 
prolonging operational time without recharging. 

Tests were also carried out in environments with a high number of mobile objects, such as other 
robots or vehicles. In such scenarios, the algorithm exhibited improved motion coordination and 
fewer instances of dangerous proximity to other objects. This suggests its suitability for use in multi-
component automated systems, such as warehouses or urban environments. 

Overall, the obtained results indicate a significant improvement in mobile robot stability when 
using the proposed hybrid algorithm. The combination of adaptive filtering, neural network analysis, 
and fuzzy logic has reduced recognition errors, enhanced data processing speed, and decreased 
resource consumption. This confirms the method's effectiveness and practical feasibility for a wide 
range of applications. 

Thus, the conducted study demonstrates that the developed algorithm is highly efficient, stable, 
and can be easily adapted to various types of mobile platforms. Further research may focus on its 
integration with modern artificial intelligence systems and connection to distributed computing 
systems for even greater optimization of mobile robot operations. 

6. Conclusions 

In this study, a hybrid algorithm for processing sensor data was developed to enhance the stability 
of mobile robots in dynamic environments. The proposed approach combines adaptive filtering, 
neural network analysis, and fuzzy logic, allowing for improved obstacle recognition accuracy, faster 
reaction time, and overall motion stability of the robot. 

The research results demonstrated that the algorithm reduces the average trajectory deviation by 
22% and decreases the number of uncontrolled maneuvers, positively impacting energy efficiency and 
resource conservation. Additionally, the data processing speed was increased by 40% compared to 
classical stability methods, ensuring rapid adaptation to changing environmental conditions. 

Further testing confirmed that the developed algorithm enhances the stability of mobile robots 
across different surface types and under varying lighting conditions. It effectively prevents collisions 
and improves the safety of autonomous movement, making it a promising solution for industrial, 
transportation, and rescue systems. 

Future research may focus on optimizing the computational cost of the algorithm and adapting it 
for real-time operation with minimal latency. Another promising direction is integrating the 
proposed method with augmented reality technologies and expanding its application to complex 
multi-agent systems. 
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