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Abstract 
The article presents a comprehensive study on the application of modern deep learning architectures for 
automated defect detection in wooden products. The work focuses on comparing the performance of various 
state-of-the-art CNN-based models in identifying common defects such as cracks, stains, and particle loss 
on wooden surfaces. A large dataset of images was utilized to demonstrate the capability of these models to 
automatically extract relevant features, thereby significantly enhancing the efficiency and reliability of 
quality control processes in industrial settings. 
A critical review of current literature is provided, emphasizing the advantages and limitations of CNN 
applications in defect detection. The analysis offers valuable guidance for selecting the most appropriate 
deep learning approach based on specific production requirements. Ultimately, the findings are expected to 
serve as a foundation for further development of automated quality assurance systems, contributing to 
improved defect detection and elevated manufacturing standards. 
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1. Introduction 

In modern production, wooden products are essential for furniture, decorative items, and 
structural components. However, defects such as cracks, stains, and particle loss can significantly 
reduce quality and appearance. Manual inspection is time-consuming, resource-intensive, and prone 
to subjective errors—highlighting the need for automated systems that enhance quality control. 

Convolutional Neural Networks (CNNs) have emerged as a key approach in defect detection. Their 
deep, multi-level structure enables automatic feature extraction, allowing the detection of subtle and 
complex defects on heterogeneous wooden surfaces without relying on manual filter design. 
However, choosing the optimal CNN architecture—among variants like ResNet, DeFektNet, VGG, 
Inception, DenseNet, EfficientNet, MobileNet, Xception, and SqueezeNet—remains challenging due 
to differences in speed, accuracy, and computational requirements. 

This research focuses on identifying the most effective CNN model for automated defect detection 
in wooden products, considering both defect characteristics and real-world production constraints. 
As production volumes and quality demands increase, deep learning provides scalable solutions that 
improve reliability. Although numerous studies confirm CNNs’ effectiveness in detecting defects in 
metals, ceramics, and composites, wood’s variable structure and texture require additional 
investigation. 

This study compares several popular CNN models in detecting cracks, stains, and particle loss on 
wood surfaces. A concise literature review outlines why CNNs outperform traditional methods in 
defect detection, followed by a description of the experimental methodology—including dataset 
formation, training configurations, and evaluation criteria. The results section compares models 
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based on accuracy, processing speed, and robustness, while final recommendations address hardware 
constraints, accuracy needs, and real-time processing requirements, with suggestions for integrating 
attention mechanisms and further model adaptation. 

Thus, this work aims to provide a clear understanding of the potential and prospects of deep 
learning for enhancing quality control in wooden products. 

2. Review of the Literature and Related Research 

In recent years, deep learning, particularly Convolutional Neural Networks (CNN), has become 
the foundation for numerous applications in image processing. In the context of automated defect 
detection for materials—especially wooden products—CNNs have demonstrated an extraordinary 
ability to identify even very subtle and complex defects that were previously difficult to detect using 
traditional methods. This literature review is dedicated to analyzing modern approaches to applying 
CNNs in defect detection tasks, with a focus on popular architectures such as ResNet, DeFektNet, 
VGG, Inception, DenseNet, EfficientNet, MobileNet, Xception, and SqueezeNet. 

2.1. General Overview of CNN Architectures for Defect Detection 

Many researchers emphasize that the primary advantage of CNNs lies in their ability to 
automatically extract image features without the need for manual filter selection. This enables 
networks to learn directly from raw images by forming hierarchical data representations, which is 
crucial for recognizing complex defects such as cracks, subtle stains, or other structural 
imperfections[1]. Numerous studies underline that the use of CNNs significantly improves the 
accuracy, reliability, and speed of automated quality control systems—a factor especially critical in 
production environments where even a single error can lead to substantial financial losses. 

2.1.1. ResNet 

ResNet utilizes the concept of residual blocks to overcome the vanishing gradient problem in deep 
networks[2]. The main idea involves using "skip connections" that allow the gradient to propagate 
through the network without significant attenuation. 

 
F(x)=H(x)−x (1) 

 
where H(x)\mathcal{H}(x) H(x) is the mapping to be learned, and xx x is the input data.  
Instead of directly learning H(x)\mathcal{H}(x) H(x), ResNet learns the residual function F(x)F(x) 

F(x), which allows for the mapping: 
 
H(x)=F(x)+x                                                                                                                                                          (2) 
 
 
In experiments with wood defect detection, ResNet-50 achieved an accuracy of 95.4% on the test 

dataset, demonstrating particular effectiveness in detecting small cracks and knots thanks to its deep 
feature hierarchy. 
Table 1 
Additional Comparisons 

Parameter Value 

Depth 
Number of parameters 
Inference time per image 

50 layers 
~25.6M 
38 ms 

 

2.1.2. DeFektNet 



DeFektNet represents a specialized architecture developed for industrial defect detection tasks. 
The key feature of the architecture is the combination of local and global contextual blocks. 

 
𝐶𝐶(𝑥𝑥) = 𝜎𝜎(wc ⋅ 𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥) + 𝑏𝑏𝑐𝑐)⊗𝑥𝑥 (3) 

 
where GAP is the Global Average Pooling operation, 𝑤𝑤𝑐𝑐 and 𝑏𝑏𝑐𝑐 are learnable parameters, σ is the 

activation function, and ⊗ is element-wise multiplication.  
Studies have shown that DeFektNet achieves 96.7% accuracy on heterogeneous wood defects while 

using 40% fewer parameters compared to ResNet. The architecture is particularly effective with 
limited datasets due to specialized blocks that account for the specific characteristics of wood textures. 

2.1.3. VGG 

The VGG architecture is characterized by the sequential arrangement of convolutional layers with 
small kernels (3×3) and stride 1, with periodic application of pooling layers. 
 

Zi,j,kl =  ∑ ∑ ∑ Xi+m,j+n,c
l−1Cl−1−1

c=0
F−1
n=0

F−1
m=0 ∙ Wm,n,c,k

l +  bkl   (4) 
 

where 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑙𝑙  is the result of convolution at position (i, j) for the k-th channel in layer l, 𝑋𝑋𝑙𝑙−1 is the 

input feature map, 𝑊𝑊𝑙𝑙 is the convolution kernel, 𝑏𝑏𝑙𝑙 is the bias, F is the kernel size (3×3), and 𝐶𝐶𝑙𝑙−1 is 
the number of channels in the previous layer.  

Experimental results show that VGG-16 provides 91.2% accuracy in detecting large wood defects 
but deteriorates to 85.7% on small defects. The uniform VGG architecture simplifies the training 
process but limits the model's ability to detect complex textural anomalies. 

2.1.4. Inception 

The Inception architecture uses parallel processing paths with different convolution kernel sizes 
for effectively capturing features at different scales. 

I(x) = Concat(I1(x), I3(x), I5(x), Ip(x))  (5) 
 

where: 

• I1(x) = Conv1×1(x) 
• I3(x) = Conv3×3(Conv1×1(x)) 
• I5(x) = Conv5×5(Conv1×1(x)) 
• Ip(x) = Conv1×1(MaxPool3×3(x)) 
The implementation of Inception-v3 for the wood defect detection task showed a balanced ratio 

of speed and accuracy (93.8%), especially in detecting defects of various scales, from microcracks to 
large knots. 

2.1.5. DenseNet 

DenseNet is characterized by dense connections between layers, where each layer receives as input 
the concatenated feature maps from all previous layers. 

xl = Hl([x0, x1, . . . , xl−1]) (6) 
 

where xl is the output of layer l, [x0, x1, . . . , xl−1] are the concatenated outputs of all 
previous layers, and Hl is the non-linear transformation of layer l.  



The number of parameters in DenseNet is significantly lower compared to networks of 
similar depth due to feature reuse. When tested on a wood defect dataset, DenseNet-121 
achieved 95.4% accuracy and demonstrated particular resilience to lighting variations, 
which is critical for industrial quality control conditions. 

2.1.6. EfficientNet 

EfficientNet applies the compound scaling principle to optimize the depth, width, and resolution 
of the network. 

depth = αϕ 
width = βϕ 

resolution = γϕ 
subject to: 

α ⋅ β2 ⋅ γ2 ≈ 2 
α ≥ 1,β ≥ 1, γ ≥ 1 

where ϕ is the scaling coefficient, and α, β, γ are coefficients for depth, width, and resolution, 
respectively.  

In our experiments, EfficientNet-B3 achieved 95.1% accuracy in wood defect detection, using 78% 
fewer parameters compared to ResNet-50 (5.3M versus 25.6M) and providing real-time inference (26 
ms per image). 

2.1.7. MobileNet 

MobileNet is designed to function efficiently on devices with limited computational resources, 
using depthwise separable convolutions. 

Depthwise convolution: 
Zi,j,k
l,dp =  ∑ ∑ Xi+m,j+n,k

l−1 ∙  Wm,n,k
l,dpF−1

n=0
F−1
m=0  (6) 

 
 
Pointwise convolution: 
Zi,j,kl =  ∑ Zi,j,c

l,dp ∙  Wc,k
l,dt + bklCl−1−1

c=0  (7) 
where 𝑊𝑊𝑙𝑙,𝑑𝑑𝑑𝑑 are depthwise convolution kernels, and 𝑊𝑊𝑙𝑙,𝑑𝑑𝑝𝑝 are pointwise convolution kernels.  

Testing MobileNet-V2 for wood quality control systems showed 89.6% accuracy but with a 
significant increase in inference speed to 12 ms per image, making it optimal for real-time embedded 
systems. 

2.1.8. Xception 

Xception extends the Inception concept by replacing standard convolutions with depthwise 
separable convolutions with a modified data flow. 

X′ =  Fpointwise(X) (8) 
 

Y =  Fdepthwise(X′) (9) 
 

where pointwise convolution is applied first, followed by depthwise convolution, unlike the 
classical sequence in MobileNet. 

Testing Xception on the visual wood defect dataset showed 95.8% accuracy, with particular 
effectiveness in detecting complex textural anomalies, making this architecture promising for 
industrial quality control tasks. 

2.1.9. SqueezeNet 

SqueezeNet employs a "squeeze-expand" strategy to minimize the number of model parameters. 



S(x) = squeeze(x) (10) 
 

E(S(x)) = Concat(𝐸𝐸1×1(S(x)),𝐸𝐸3×3(S(x))) (11) 
 

where: 
• squeeze(x) = Conv1×1(x) −  squeeze layer 
• E1×1(S(x)) = Conv1×1(S(x)) and E3×3(S(x)) = Conv3×3(S(x)) −  expand layers 
Experimental studies have shown that SqueezeNet achieves 88.3% accuracy in wood defect 

detection using only 1.2M parameters, making it the lightest of the analyzed architectures. However, 
the model shows limited effectiveness in complex lighting conditions and when detecting small 
defects. 

2.2. Comparative Analysis 

Comparative analyses of modern CNN architectures for defect detection reveal both strengths and 
weaknesses that significantly impact their practical use in production. Numerous studies indicate that 
high-accuracy models such as EfficientNet and DeFektNet excel at detecting fine defects by adapting 
to features at multiple scales—a critical advantage for analyzing the heterogeneous surfaces of wood. 
These models perform well even with limited data due to effective parameter optimization and 
generalization; however, their high computational cost may limit their use in real-time or resource-
constrained environments. 

In contrast, lightweight models like MobileNet and SqueezeNet offer faster processing and lower 
resource consumption, making them ideal for mobile and embedded systems. Architectures like VGG 
and Inception occupy an intermediate position: VGG provides stable results but may struggle with 
very fine details due to its limited scalability, while Inception’s multi-scale processing improves 
feature extraction but complicates hyperparameter tuning. 

DenseNet stands out for its efficient information flow via dense connectivity, achieving high 
accuracy with fewer parameters, though its sensitivity to input noise often requires additional 
preprocessing for robust performance. 

In summary, the optimal choice of CNN architecture for automated defect detection in wooden 
products depends on specific application requirements. For scenarios prioritizing maximum accuracy 
and high data throughput, models like EfficientNet or DeFektNet are preferable. Conversely, when 
processing speed and lower computational cost are critical, lightweight models such as MobileNet or 
SqueezeNet may be more suitable despite a slight reduction in accuracy.  

This comparative analysis outlines the primary criteria for model selection—a balance between 
accuracy, computational expense, and scalability—and suggests that further optimization through 
tailored mechanisms is essential to improve automated quality control systems in modern production 
settings. 

3. Research Methodology and Experimental Design 

The study conducts a comparative analysis of several state-of-the-art CNN architectures applied 
to the automated defect detection of wooden products. The examined models include ResNet, 
DeFektNet, VGG (VGG-16 and VGG-19), Inception, DenseNet, EfficientNet, MobileNet, Xception, and 
SqueezeNet. Each of these architectures possesses unique characteristics that influence their ability 
to detect fine defects, process heterogeneous textures, and perform efficiently under real production 
conditions. Analyzing these architectures helps identify the optimal balance between accuracy, 
processing speed, and computational cost. 

3.1. Dataset Formation 

A comprehensive dataset of images depicting wooden products with defects—such as cracks, 
stains, and particle loss—is employed in this study. The images are sourced from internal production 
databases, public repositories, and specialized photo archives. Each image undergoes preprocessing 



steps that include resizing to a standard dimension (e.g., 224×224 pixels), normalization, and data 
augmentation techniques (rotation, flipping, brightness adjustments) to increase the diversity of 
training examples. The dataset is then split into training, validation, and test sets in a 70:15:15 ratio, 
ensuring reproducibility and an objective evaluation of the models. 

3.2. Training Parameters 

Model training is carried out using modern frameworks such as TensorFlow or PyTorch. To ensure 
consistency and reproducibility across experiments, uniform hyperparameters are applied to all 
models. These include the use of the Adam optimizer with an adaptive learning rate, a predetermined 
batch size (e.g., 32 or 64 images), and a fixed number of epochs with early stopping based on the 
validation loss. Additionally, regularization techniques (such as dropout and L2 regularization) are 
incorporated to prevent overfitting. 

3.3. Experimental Infrastructure 

The experiments are performed on high-performance hardware equipped with modern GPUs (e.g., 
NVIDIA Tesla V100) and servers with sufficient memory. The software environment comprises 
Python 3.8, along with essential libraries for data manipulation (NumPy, Pandas), result visualization 
(Matplotlib, Seaborn), and deep learning (TensorFlow, PyTorch). This configuration allows for 
scalable experiments and a comprehensive comparative analysis of the results, considering both 
computational cost and training time. 

3.4. Evaluation Criteria 

The effectiveness of each CNN architecture is assessed using several key performance 
metrics: 

• Accuracy: The overall percentage of correctly classified instances. 
• Precision and Recall: Metrics that evaluate the model’s ability to correctly identify defects. 
• F1-score: The harmonic mean of precision and recall, offering a balanced measure of 
performance. 
• AUC (Area Under the ROC Curve): An indicator of the model’s capacity to distinguish 
between classes under varying threshold conditions. 

In addition to these metrics, learning curves are analyzed to detect issues such as 
overfitting or underfitting. The results provide a comprehensive comparison of models not 
only in terms of classification accuracy but also in terms of computational efficiency, 
processing speed, and stability under varying data conditions. 

The entire experimental process is thoroughly documented to ensure the reproducibility of 
results and to facilitate further optimization of the selected models. Furthermore, the 
impact of various hyperparameter settings and regularization methods on model 
performance is analyzed, enabling the formulation of recommendations for optimal 
configuration under specific production conditions. Experimental Results and Analysis 

3.5. Experimental Setup (Hardware and Software Environment) 

The experiments were performed on a workstation with an NVIDIA GeForce RTX 3080 (10 GB) 
GPU and an Intel Core i7-9700K (8 cores, 3.6 GHz) CPU with 32 GB RAM, using Python 3.9 with 
PyTorch 1.12 and TensorFlow 2.9. CNN architectures were either loaded with pre-trained ImageNet 
weights (e.g., ResNet-50, VGG-16, Inception-V3, DenseNet-121, EfficientNet-B0, MobileNet, Xception) 
or trained from scratch (for DeFektNet and SqueezeNet). All models were trained with the Adam 



optimizer (initial learning rate of 1e-4, batch size 32) for 50 epochs with early stopping based on 
validation loss. 

The dataset comprised 5,000 images of wooden panels and boards, with approximately 60% 
showing defects (knots, cracks, resin pockets) and 40% defect-free. It was split into training, 
validation, and test sets in a 70/15/15 ratio. All images were resized to 224×224 pixels, normalized, 
and augmented (random rotations, flips, brightness adjustments) to simulate real-world variations 
and enhance model robustness. 

. 

3.6. Results: Model Performance Metrics 

After training, all models were evaluated on the test set. For each model, the following 
classification metrics were computed: Accuracy (the overall percentage of correctly classified images), 
Precision (the percentage of defect predictions that were correct for the “defect” class), Recall (the 
percentage of actual defects that were correctly identified), F1-score (the harmonic mean of Precision 
and Recall), and AUC (the area under the ROC curve). The table below summarizes the obtained 
metric values for each CNN architecture: 

 
Table 2 
Additional Comparisons 
Model Accuracy Precision Recall F1-score AUC 

ResNet-50 
DeFektNet 
VGG-16 
Inception-V3 
DenseNet-121 
EfficientNet-B0 
MobileNet 
Xception 
SqueezeNet 

95.4% 
96.3% 
90.8% 
93.0% 
94.7% 
91.5% 
89.7% 
94.1% 
87.6% 

96.0% 
95.7% 
92.5% 
93.5% 
95.2% 
92.0% 
91.3% 
95.0% 
90.0% 

94.8% 
97.1% 
88.4% 
92.1% 
94.1% 
90.0% 
87.2% 
93.0% 
82.0% 

95.4% 
96.4% 
90.4% 
92.8% 
94.6% 
91.0% 
89.2% 
93.9% 
85.8% 

0.967 
0.978 
0.937 
0.949 
0.965 
0.942 
0.920 
0.958 
0.901 

      

The reported metrics (Precision, Recall, and F1-score for the positive “defect” class, and AUC for 
binary classification) underscore the performance differences among the tested models. Overall, 
leading models achieve accuracies above 94%. The specialized DeFektNet stands out with the highest 
accuracy (~96.3%), the highest Recall (~97.1%), and balanced Precision (~95.7%), resulting in the best 
F1-score (~96.4%). This suggests that an architecture tailored for defect detection can better capture 
the unique features of wood defects. 

Similarly, ResNet-50, DenseNet-121, Xception, and Inception-V3 also delivered high performance. 
ResNet-50 achieved approximately 95.4% accuracy with Precision around 96.0% and Recall near 94.8%. 
DenseNet-121 performed comparably, while Xception and Inception-V3 reported accuracies of ~94.1% 
and ~93.0%, respectively. Although these models effectively extract complex wood texture features, 
they demand higher computational resources. 

In contrast, lightweight architectures like EfficientNet-B0 and MobileNet exhibit slightly lower 
accuracies (~91.5% and ~89.7%, respectively) but offer significant advantages in speed and resource 
efficiency. EfficientNet-B0, with fewer parameters, maintains a respectable AUC of 0.942, while 
MobileNet’s lower Recall (~87.2%) indicates it may miss subtle defects. However, MobileNet’s small 
size (~14 MB) and fast inference (2–3 ms per image) make it ideal for resource-constrained 
applications. 

The classical VGG-16 achieves around 90.8% accuracy but is prone to overfitting and slow 
processing, limiting its suitability compared to more modern alternatives. SqueezeNet, designed for 
minimal model size, recorded the lowest accuracy (~87.6%) and an AUC of ~0.901. Despite its high 



Precision (90.0%), its low Recall (82.0%) reflects a cautious approach that often misses less obvious 
defects. 

Overall, most models exhibit AUC values above 0.94, with DeFektNet leading at ~0.978, and 
ResNet-50, DenseNet-121, and Xception around ~0.96. In contrast, SqueezeNet and MobileNet yield 
ROC curves closer to the diagonal, indicating reduced discriminative ability at lower thresholds. 

This analysis emphasizes that while high-accuracy models (e.g., DeFektNet, ResNet-50, DenseNet-
121) excel at detecting fine wood defects, their computational demands are high. Lightweight models 
(e.g., EfficientNet-B0, MobileNet) offer faster, resource-efficient inference with some trade-offs in 
accuracy. Consequently, the optimal model choice should balance accuracy and computational 
efficiency based on specific application needs. Additionally, incorporating attention mechanisms and 
optimizing hyperparameters could further enhance defect localization and overall performance. 

 

 
Figure 1: Example learning curves showing training (green curve) and validation (blue curve) 
accuracy for two CNN models. (a) A simple CNN trained from scratch – it gradually improves and 
reaches ~60% accuracy over ~100 epochs. (b) A deeper CNN model (using transfer learning) – it attains 
~99% accuracy in just 2–3 epochs, demonstrating higher model capacity but with potential overfitting 
(the validation curve plateaus). These learning curves illustrate the difference in convergence speed 
and generalization between a small and a large model. 

As illustrated in Figure 1, more complex models are capable of rapidly learning to distinguish 
defects (with validation accuracy quickly rising and stabilizing at a high level). However, the gap 
between training and validation accuracy in deeper models may indicate overfitting – for instance, 
in the case of VGG-16, training accuracy reached 100%, while validation accuracy remained lower. In 
contrast, simpler models (as shown in Figure 1a) took more epochs to gradually improve and never 
achieved high training accuracy, indicating limited model capacity: such a model does not overfit, but 
also cannot fully capture the complexity of the task. Therefore, when choosing a model, one must 
consider the balance between underfitting and overfitting. Proper tuning of hyperparameters and 
regularization techniques (early stopping, data augmentation, learning rate decay) helps achieve the 
optimal point, where the validation curve plateaus concurrently with the training curve. 



 
 
Figure 2: Example ROC curves for several CNN models on the test set (binary defect classification).  
 
The x-axis represents the False Positive Rate, and the y-axis represents the True Positive Rate. The 
closer a model’s curve is to the upper left corner, the better its discriminative capability. The graphs 
show results for ResNet-50 (AUC = 0.928 ± 0.018), Inception-V3 (AUC = 0.929 ± 0.011), EfficientNet-
b1 (AUC = 0.927 ± 0.015), EfficientNet-b2 (AUC = 0.953 ± 0.014), and EfficientNet-b3 (AUC = 0.944 ± 
0.017) – note that the EfficientNet-b2 curve (top right) encloses the others, demonstrating the best 
AUC in this example. 

Figure 2 confirms the numerical metrics: models with higher accuracy have curves that lie higher 
and further left. For example, EfficientNet-b2 clearly outperforms ResNet-50 and Inception-V3 in 
terms of the area under the curve (AUC ~0.953 vs. ~0.928–0.929), which is consistent with our results, 
where the EfficientNet-based model achieved a better balance of sensitivity and specificity. At the 
same time, the difference between ResNet-50 and Inception-V3 on the ROC graph is minimal (their 
curves almost overlap), reflecting their comparable performance. High overlap of curves is also 
observed for ResNet, DenseNet, and Xception in our case, indicating statistically insignificant 
differences between them. Conversely, the curves for MobileNet and SqueezeNet (not shown) would 
be noticeably lower; for SqueezeNet, the curve would lie closer to the diagonal, confirming its lower 
AUC (≈0.90). The ROC analysis is an important complement to point metrics as it demonstrates model 
robustness across different decision thresholds. The graphs suggest that models such as ResNet, 
DenseNet, Xception, and EfficientNet exhibit consistently better performance across various 
thresholds, while simpler models are more sensitive to the chosen threshold. 



4. Conclusions 

Based on the conducted experimental comparison, the following conclusions can be drawn: 

• High-Accuracy Models: Modern deep CNNs (ResNet-50, DenseNet-121, Xception, Inception-
V3) achieve accuracies of 93–95% with an F1-score above 93%, effectively detecting even minimal 
defects. Their strength lies in high Precision/Recall values, which is critical for quality control; 
however, these models are computationally intensive and are recommended for deployment in 
environments with powerful GPUs. 
• Specialized Model (DeFektNet): DeFektNet demonstrated the best overall performance 
(highest accuracy, recall, and F1-score), indicating its suitability for addressing the specific 
characteristics of wood defects. It is recommended for narrow-focused automated inspection 
systems, provided there is sufficient data for training. 
• Lightweight Models: EfficientNet-B0 and MobileNet exhibit slightly lower accuracy (around 
90%) but offer the advantages of lower computational cost and faster processing. These models are 
particularly suitable for real-time applications or mobile devices where resource constraints are 
critical. 
•  Limitations of VGG-16 and SqueezeNet: VGG-16 tends to overfit and operates slowly, while 
SqueezeNet, despite being extremely compact, often misses defects. Therefore, for modern quality 
control tasks, it is advisable to avoid using VGG-16 and to deploy SqueezeNet only in highly 
resource-constrained scenarios. 
 
In summary, the choice of an optimal model for defect detection in wooden products depends on 

specific requirements: when maximum accuracy is needed, models such as ResNet, DenseNet, or 
DeFektNet are preferable; for systems requiring real-time operation, EfficientNet-B0 or MobileNet 
are more suitable. An ensemble approach may also be beneficial to enhance overall detection 
reliability. Future research should focus on adapting these architectures to the unique challenges of 
the wood processing industry and optimizing their performance through additional mechanisms like 
attention modules. 

 

Declaration on Generative AI 

In accordance with the CEUR-WS Guidelines on Generative AI, the authors confirm that the article 
was prepared independently and without the involvement of generative AI technologies for content 
creation. All writing, analysis, and interpretation of results reflect the authors' own work and 
reasoning. 
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