
Development and evaluation of an adaptive routing 
algorithm for C2C logistics⋆ 

Danylo Kovalenko 1,† and Iryna  Zamrii1,*,† 

1 State University of Information and Communication Technologies, Solomyanska Street 7, 03110, Kyiv, Ukraine 

Abstract 
Modern C2C logistics systems face challenges related to demand variability, limited resources, and the 
need for adaptive routing. This study presents an approach to developing an adaptive routing 
methodology based on the combination of reinforcement learning (RL) and machine learning (ML) for 
demand prediction. 
In the first stage of the research, an algorithm was developed that utilizes RL agents for dynamically 
determining optimal routes and LSTM networks for demand forecasting. Simulation testing demonstrated 
improvements in key metrics, including reduced delivery time and increased resource utilization 
efficiency. 
Currently, an experimental validation of the algorithm in real-world conditions is being conducted, with 
its results to be used for formalizing the methodology. The obtained data is expected to contribute to the 
development of a universal adaptive routing methodology, enhancing the flexibility and efficiency of C2C 
logistics. 
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1. Introduction 

C2C (Customer-to-Customer) logistics plays a crucial role in modern e-commerce by enabling fast 
and convenient deliveries between private individuals. Unlike traditional B2C logistics, where the 
delivery process is centralized, C2C models are characterized by high dynamism, uneven resource 
distribution, and fluctuating demand [1]. As a result, routing problems arise that cannot be 
effectively solved using static methods, since the system's state changes rapidly. Studies show that 
classical shortest-path algorithms, such as Dijkstra’s algorithm or A*, perform well in fixed road 
networks but fail to efficiently adapt routes to changes in traffic and demand distribution [2]. 

One approach to overcoming these limitations is the use of Reinforcement Learning (RL), which 
enables agents to make real-time decisions based on historical and current system data. RL is 
applied to routing problems where decisions need to be adapted to changing environmental 
conditions, such as traffic congestion, adverse weather, or demand fluctuations [3]. In [4], it was 
demonstrated that Q-learning-based algorithms provide more optimal routes for dynamic logistics 
systems compared to traditional methods. Additionally, it was found that deep neural networks 
(Deep Q-Network, DQN) significantly enhance the adaptability of RL models, but their 
effectiveness depends on data quality and the accuracy of future state predictions.  

A critical component of successful RL application is the ability to forecast future system load. 
The use of deep neural networks, such as Long Short-Term Memory (LSTM), enables the 
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incorporation of temporal dependencies in input data, allowing for the prediction of new order 
placements in different locations [5]. The study in [6] demonstrated that combining demand 
forecasting with routing algorithms can significantly improve the efficiency of logistics systems by 
reducing the number of "empty" trips and optimizing courier workload. This is particularly 
relevant for urban logistics platforms, where demand distribution can change rapidly. 

This research focuses on developing an adaptive routing methodology for C2C logistics by 
integrating reinforcement learning and demand forecasting. At the first stage, an algorithm was 
designed to dynamically determine routes based on environmental variables. Its effectiveness was 
evaluated in a simulation environment, where it showed a significant reduction in deviation from 
the optimal route, as well as improvements in delivery time and transport network utilization [7]. 
However, it was also found that the algorithm incurs higher computational costs, which could be a 
limiting factor when scaling to real-world logistics platforms. 

Currently, the algorithm is undergoing real-world testing to assess its performance when 
working with incomplete or noisy input data, as well as its ability to adapt to dynamic transport 
conditions. The results obtained are expected to refine the model and formulate a generalized 
methodology suitable for implementation in real logistics platforms [8]. 

2. Research Motivation and Problem Statement 

With the growth of C2C logistics, traditional routing methods are losing their effectiveness due to 
the dynamic nature of demand, unpredictability of traffic conditions, and limited resources. 
Algorithms such as Dijkstra’s algorithm or A* perform well in environments with static road 
networks but fail to account for real-time changes in the transportation system [1]. In urban 
logistics, where congestion, road closures, and fluctuating delivery requests are common, classical 
methods cannot quickly adapt routes, leading to increased order fulfillment time and higher 
logistics costs [2]. 

One promising approach to addressing this challenge is the use of Reinforcement Learning (RL), 
which enables dynamic delivery routing by adapting to environmental changes. RL agents learn 
from historical and real-time data, leveraging a Markov Decision Process (MDP) model, where each 
system state depends on previous actions [3]. Studies show that Deep Q-Networks (DQN) improve 
routing efficiency by implementing an adaptive strategy for selecting optimal routes that considers 
real-time traffic conditions [4]. However, RL performance heavily depends on the accuracy of input 
data, particularly in forecasting future demand and courier distribution across the city. 

To address this challenge, deep neural networks such as Long Short-Term Memory (LSTM) are 
employed, which can analyze temporal dependencies and predict logistics system fluctuations [5]. 
The combination of RL and LSTM enables not only real-time adaptation but also the anticipation of 
future delays and demand surges, which is crucial for stabilizing logistics operations. Research in 
this field indicates that integrating predictive models reduces overall system load, balances order 
distribution, and minimizes courier downtime [6]. 

As part of this study, a system combining RL agents for optimal decision-making and LSTM 
networks for demand forecasting was developed. Initial testing in a simulation environment 
demonstrated that the adaptive approach significantly reduces route deviation compared to 
traditional methods. Depending on the scenario, deviations ranged from 9.2% to 3.3%, whereas for 
classical algorithms, this metric reached 31.7% in heuristic-based methods. At the same time, the 
adaptive algorithm required higher computational resources, with an average route computation 
time of 50–60 ms, which was 2–3 times higher than that of traditional methods. Additionally, an 
increased frequency of route recalculations was observed, reaching 18 updates in the most complex 
scenarios, potentially leading to computational system overload. 

The next phase of the research involves validating the algorithm in real-world conditions, 
allowing for an assessment of its performance when handling incomplete or noisy data and 
evaluating its robustness against sudden changes in the logistics system. The results of real-world 
experiments are expected to refine the model and establish a generalized adaptive routing 



methodology for C2C logistics, making it suitable for scalability and integration into large logistics 
platforms. 

3. Developed Algorithm and Its Simulation-Based Evaluation 

The proposed routing algorithm is designed to enable adaptive route management for couriers in 
C2C logistics. The primary goal is to develop a system capable of dynamically adjusting routes in 
response to changes in demand and the state of the transportation network. To achieve this, the 
algorithm integrates Reinforcement Learning (RL), which allows agents to make optimal decisions 
based on both current and anticipated changes in the environment, and Long Short-Term Memory 
(LSTM) for predicting the future distribution of orders [1]. 

The overall structure of the algorithm consists of two key components: 

• demand forecasting – utilizing LSTM to estimate the probability of new order appearances 
in different city zones. This enables proactive courier redistribution, preventing overload or 
idle time [2]; 

• reinforcement learning-based routing – an RL agent is trained to select optimal routes 
considering not only the current network state but also predicted changes [3]. 

This approach minimizes delivery delays, improves courier workload balance, and reduces 
overall route length. Previous studies have shown that RL-based traffic flow management can 
reduce average delivery time by 15–20% compared to classical routing methods [4]. Additionally, 
LSTM-based demand forecasting decreases the number of empty trips and contributes to a more 
balanced load distribution across the transportation system [5]. 

Expected Benefits of the Algorithm: 

• flexibility – the ability to adapt to changes in the transportation environment in real time; 
• resource optimization – balancing workloads among couriers and reducing idle time; 
• reduction in delivery time – through dynamic route adjustments. 

At the same time, the use of RL-based methods may lead to increased computational costs, as 
the algorithm requires significant resources for training and decision-making. This issue has been 
highlighted in real-time route optimization studies, emphasizing the need to balance prediction 
accuracy and computation speed [6, 7]. Another critical aspect is algorithm scalability as the 
number of delivery requests increases, which requires further investigation [8]. 
Thus, the proposed approach aims to strike a balance between routing efficiency, computational 
speed, and adaptability. The next subsection presents its mathematical model and formal 
algorithmic principles. 
 

3.1. Mathematical Model of the Algorithmу 

The proposed routing algorithm integrates Reinforcement Learning (RL) for adaptive route 
management and Long Short-Term Memory (LSTM) for demand forecasting. Its operation can be 
formalized as a Markov Decision Process (MDP), where each action affects the future state of the 
system and the agent’s reward [1]. 

The algorithm operates in two stages: 
1. Demand forecasting using LSTM – predicts the future distribution of orders, enabling 

proactive route planning [2]. 
2. Adaptive decision-making by the RL agent – optimizes routes in real-time based on 

updated data and demand forecasts [3]. 

3.1.1. Formalization of the Learning Process 



The system is modeled as an MDP (Markov Decision Process), defined as a five-tuple , 
where: 

•  – the set of states, including courier locations, active orders, and the current state of the 
transportation network; 

•  – the set of actions available to the agent (e.g., assigning an order to a courier or 
modifying a route); 

•  – the probability of transitioning between states based on the selected action; 
•  – the reward function that determines the efficiency of the chosen route; 
•  – the discount factor that regulates the long-term optimization of decision. 
At each step, the agent receives a reward  which defines the effectiveness of the routing 

process: 

 

 
(1) 

The Q-function is used to estimate the quality of an action  in state . The Q-value update 
follows the rule: 

 (2) 

where  — is the learning rate, and  represents the best expected value for the new 
state . 

3.1.2. Demand Forecasting 

An LSTM network is used to predict future demand based on historical data. This allows the 
identification of potentially overloaded regions, enabling route adjustments before imbalances 
occur [5]. 

The model uses the parameters  which 
determine the behavior of the LSTM. The state update in the LSTM model is formalized as follows: 

 (3) 

 (4) 

 (5) 

 (6) 

 (7) 

where , ,  are sigmoid activation functions that regulate the flow of information between 
memory states [6]. Where  is the input gate and  is the descending gate, which depend on the 
activation function . The memory state is updated according to formula (10), where   is means 
element-wise multiplication. The output gate is calculated according to formula (5), and the hidden 
state is updated according to (7). 

3.1.3. Optimization of the Learning Process 

To evaluate forecasting accuracy, the loss function is computed as the mean squared error between 
the predicted values  and the actual data  [7]: 



 

(8) 

The model is trained using gradient descent, where parameter updates follow the rule [8]: 

 (9) 

where   is the learning rate, and  is the gradient of the loss function with respect to the 
parameters. 

The training process is repeated for each epoch until the specified number of  is reached 
or the loss function stabilizes. After completing all epochs, the optimized parameters are 
determined as follows [9]: 

 

(10) 

Ultimately, the algorithm generates a demand forecast , which is used to update the system 
state and optimize routing decisions. The proposed approach is expected to reduce route deviations 
from optimal values, decrease average delivery time, and enhance system adaptability.  

3.2. Results of Experiments in a Simulation Environment 

Evaluating the efficiency of adaptive routing algorithms is a critical step in their validation before 
deployment in real logistics systems. Previous studies have shown that combining reinforcement 
learning (RL) with demand forecasting significantly improves the efficiency of urban logistics 
platforms. In [9], it was noted that RL-based algorithms enable flexible decision-making, which 
enhances the utilization of transportation resources in urban environments. The study in [10] 
demonstrated that integrating RL with optimization methods reduces overall delivery delays by 
13%. 

At the same time, as highlighted in [11], traditional routing methods, such as Vehicle Routing 
Problem (VRP) algorithms, are significantly less effective in scenarios with highly variable demand. 
In [12], it was demonstrated that LSTM-based demand forecasting reduces the number of empty 
trips, leading to increased overall logistics network efficiency. 

 

3.2.1. Testing Methodology 

In this study, the developed algorithm was tested in a simulation environment that mimics an 
urban transportation network. The simulator models dynamic delivery demand, changing road 
conditions, and courier behavior variability. The primary objective of the testing was to evaluate 
the algorithm's ability to adapt routes in real time and compare its effectiveness with traditional 
routing methods. The Python platform with AnyLogic libraries for visualization and calculations 
was used. Real-world city maps, historical demand data, transportation routes, and traffic served as 
the basis for the simulations. The test scenarios covered static and dynamic delivery conditions 
that took into account factors such as traffic, weather conditions, and variable demand. The 
simulations involved three types of agents: couriers, orders, and vehicles, which could adapt their 
behavior depending on the state of the environment. 

Three different approaches were considered: 

1. Traditional heuristic algorithm – constructs routes based on the shortest path without 
accounting for real-time changes in the transportation system. 

2. Vehicle Routing Problem (VRP) optimization – a classical approach to optimizing route 
distribution among couriers. 



3. Adaptive method (LSTM + RL) – the proposed algorithm, which integrates demand 
forecasting and RL-based adaptive learning for dynamic route adjustment. 

 
The efficiency of the algorithms was assessed based on several key metrics. In particular, the 

average route length was analyzed, the reference value of which was taken as 12 km, which was 
obtained from the optimal solution of the VRP (Vehicle Routing Problem) and was consistent with 
real-world urban logistics data. 

The experimental results are presented in Table 1. 

Table 1 
Results of Experiments in a Simulation Environment 
Method Delivery 

time (s) 
Average 
route 
computation 
time (ms) 

Number of 
route 
recalculations 

Route 
length (km) 

Deviation 
from the 
reference 
route (%) 

Traditional  
(Heuristic) 

1200 15 2 15.8 31.7% 

Traditional  
(VRP) 

1100 35 3 14.2 18.3% 

Adaptive  
(LSTM + RL) 

950 50 5 13.1 9.2% 

 
The following metrics were used to assess efficiency: delivery time (s) – the average time 

required to complete an order; average route computation time (ms) – the speed of route 
recalculations; number of route recalculations – the frequency of route updates during delivery 
execution; route length (km) – the total distance traveled by the courier while completing an order; 
deviation from the reference route (%) – the extent to which the actual route deviates from the 
theoretically optimal route. 

3.2.2. Analysis of the Obtained Results 

The obtained results demonstrate that the adaptive approach significantly outperforms traditional 
routing methods across all key performance indicators. In particular, using LSTM for demand 
forecasting reduced the average delivery time by 20–25% compared to the heuristic method and by 
13–15% compared to VRP. Additionally, the lowest deviation from the reference route was 
achieved—ranging from 9.2% in the initial scenario to 3.3% with a higher number of route updates. 

However, as noted in [13], using RL in urban logistics tasks incurs significant computational 
costs. In our experiment, the average route computation time for the adaptive approach was 50–60 
ms, which is 2–3 times higher than that of traditional methods. Furthermore, the number of route 
recalculations increased, reaching 18 updates in complex scenarios, exceeding the acceptable 
threshold of 15 updates. This may indicate a risk of excessive route recomputation in high-demand 
scenarios, which is also confirmed in [14]. 

These findings highlight the potential of the adaptive approach for real-world urban logistics 
systems. However, to enable full-scale implementation, route recomputation processes must be 
optimized, and computational overhead must be reduced, which will be the focus of future 
research. The next step is experimental testing of the algorithm in real-world conditions, allowing 
for an assessment of its resilience to unpredictable changes in the urban transportation network. 

4. Experimental Validation in a Real-World Environment 

Following the positive results obtained in the simulation environment, the next stage involved 
testing the algorithm under real-world urban logistics conditions. Field experiments are crucial, as 



real environments introduce additional factors that are difficult to simulate, such as incomplete or 
noisy data, unpredictable traffic variations, and fluctuating courier behavior [15]. 

Previous research has shown that reinforcement learning (RL) methods can be effectively 
applied to real transportation systems, but their performance heavily depends on the quality of 
input data. In [16], it was demonstrated that dynamic route adaptation in real-time can reduce 
average delivery time by 10–15%, even in cases of inaccurate demand predictions. 

4.1. Experimental Validation Methodology 

The real-world trials were conducted using an operational C2C logistics platform in a major city. 
The algorithm was integrated into the courier management system, where couriers received 
updated routes through a mobile application. To monitor the algorithm’s performance, GPS 
trackers were used to track courier movements, along with an analytics system that collected real-
time delivery execution data. 

During the experiment, the algorithm was tested in two modes: 
1. Static routing (baseline approach) – routes were generated at the beginning of the workday 

and remained unchanged. 
2. Adaptive routing (LSTM + RL) – the algorithm dynamically adjusted routes based on 

environmental changes and predicted demand. 
The following metrics were used to evaluate performance: 

• аverage delivery time – time from order acceptance to final delivery; 
• number of deviations from the planned route – measures how often routes were modified 

during order execution; 
• resource utilization rate – indicates how evenly workloads were distributed among 

couriers. 

4.2. Preliminary Testing Results 

It is expected that the results of real-world experiments will follow similar trends observed in 
simulation-based trials, where the adaptive algorithm demonstrated reduced average delivery time 
and route deviation. However, as noted in [17], real-world traffic conditions can introduce 
significant performance variations due to external factors such as weather conditions, traffic 
accidents, or other unforeseen disruptions 

In previous studies [15], it was highlighted that the efficiency of RL-based algorithms in real-
world environments depends on model update speed, which can become a critical factor in large-
scale systems with high request volumes. In our case, the experiment focuses on balancing routing 
adaptation accuracy and computational costs, as excessive route recalculations in real-world 
scenarios may slow down logistics system operations. 

The next step after data collection and analysis will be algorithm parameter optimization and 
the development of a generalized methodology for implementing the approach in scalable C2C 
logistics systems. 

5. Formalization of the Methodology 

After conducting real-world experimental trials, the next step is to develop a generalized adaptive 
routing methodology for C2C logistics. The formalization of this methodology will be based on 
analyzing both simulation and field test results, particularly in terms of demand prediction 
accuracy, algorithm stability, and computational efficiency. 

One of the key challenges is finding the right balance between routing accuracy and 
computational overhead. High algorithm adaptability, which minimizes deviation from the 
reference route, is associated with a significant increase in the number of recalculations. This 



highlights the need to develop criteria for dynamically adjusting route update frequency, which 
will reduce computational load without significantly compromising efficiency. 

Data quality dependency and sensitivity to training parameters also affect the overall 
performance of the system. To overcome these challenges, it is advisable to implement cloud 
computing and sensor networks to collect relevant data in real time. 

Further development of the methodology may include the implementation of multi-agent 
systems for courier coordination, the integration of hybrid forecasting models, and the 
development of lightweight RL algorithms aimed at small platforms. 

The methodology will also account for possible model parameter variations based on request 
density, urban infrastructure characteristics, and technological constraints of logistics platforms. 
To address this, a flexible algorithm configuration system will be designed, allowing the model to 
adapt to specific operational conditions. 

The results of this formalization will be used for further implementation of the methodology in 
real logistics systems, as well as for developing recommendations on scalability and optimization in 
high-load transportation networks. 

6. Conclusions 

This study explored an adaptive routing approach for C2C logistics based on reinforcement 
learning (RL) and demand forecasting. The developed algorithm was tested in a simulation 
environment, allowing an evaluation of its effectiveness compared to traditional methods. The 
results demonstrated a significant reduction in deviation from the reference route, indicating high 
adaptability of the approach. However, an increase in computational costs and the number of route 
recalculations was observed, which could be a critical factor in system scalability. 

Currently, the experimental validation of the algorithm in a real-world environment is ongoing. 
Field trials are expected to assess the actual impact of the algorithm on delivery time, routing 
stability, and resource utilization efficiency. The obtained data will be used to further optimize the 
algorithm and formalize a generalized adaptive routing methodology. 

Future research will focus on reducing the algorithm’s computational costs, improving route 
update strategies, and testing the approach on various logistics platforms. Additionally, a dynamic 
parameter tuning mechanism will be developed to adjust the algorithm’s configuration based on 
system load and external factors. 
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