
Web-Oriented Application for Student Attendance
Accounting with a Module for Automatic Parsing of Class
Schedules*

Yurii Huk1,† , Libor Dostalek1,† , Jan Owedyk3,† , Hamlet Harutyunyan4,† and Andriy
Yushko1,†

1 West Ukrainian National University, 11 Lvivska Str., Ternopil, 46009, Ukraine
2 Department of Computer Systems, Czech Technical University in Prague., Prague, Czech Republic
3 Department of Informatics Kujawy and Pomorze University in Bydgoszcz, Bydgoszcz, Poland
4 Department of Fundamental Disciplines Yerevan Educational and Scientific Institute,, Yerevan, Republic of Armenia

Abstract
The automation of academic schedule parsing and student attendance tracking is crucial for modern
educational institutions. Traditional methods relying on rule-based Excel parsing are prone to errors and
lack adaptability to unstructured formats. This study presents a comparative analysis of different methods
for parsing academic schedules, focusing on the development of an automated system that utilizes AI-driven
approaches for intelligent data extraction. A comparative analysis of these methodologies provides insights
into their practical applicability and suggests optimal strategies for integrating AI into education.

Keywords
Artificial intelligence, machine learning, schedule parsing, deep learning, data extraction, natural language
processing 1

1. Introduction

The rapid development of artificial intelligence (AI) and machine learning (ML) has led to their
widespread integration into various domains, including education. The integration of artificial
intelligence (AI) into educational institutions has become increasingly essential, as it enhances
administrative efficiency and minimizes human error in routine processes. One of the most critical
aspects of academic management is student attendance tracking, which requires accurate and timely
extraction of class schedule data. Traditional methods rely heavily on manual input or rule-based
algorithms for parsing structured Excel tables, which often fail when dealing with unstructured or
scanned schedule formats. As educational institutions continue to digitize their workflows, there is a
growing need for intelligent systems capable of automating schedule parsing and attendance tracking
with high accuracy and adaptability.

This study explores three distinct methods for extracting and structuring class schedules: (1) a
conventional rule-based Excel parsing approach, (2) a computer vision-driven solution using
TensorFlow for image recognition, and (3) an AI-powered natural language processing (NLP)
technique that processes textual data. The primary objective is to compare the effectiveness of these
approaches in handling different schedule formats, optimizing automation, and reducing the
dependency on manual corrections. The research focuses on developing a web-based system that
leverages AI to transform schedule data into a structured format suitable for automated attendance
tracking.

The Second International Conference of Young Scientists on Artificial Intelligence for Sustainable Development (YAISD), May 8-
9, 2025, Ternopil, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 yuriiguk529@gmail.com (Y. Huk); libor.dostalek@fit.cvut.cz (L. Dostalek); j.owedyk@kpsw.edu.pl(Jan Owedyk);
h.harutyunyan@wunu.edu.ua (Hamlet Harutyunyan); a.yushko@wunu.edu.ua (A. Yushko)

 0009-0001-7483-1726 (Y. Huk); 0000-0002-1613-2644 (L. Dostalek); 0000-0001-6071-3983 (Jan Owedyk);
0000-0002-1676-7949(Hamlet Harutyunyan); 0009-0003-6431-3479 (A. Yushko)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:libor.dostalek@fit.cvut.cz%20(L

AI-driven solutions offer the potential to significantly improve data processing reliability and
efficiency. The application of deep learning models trained on schedule images can enhance text
recognition, making it possible to extract meaningful information even from scanned or poorly
formatted documents. Additionally, NLP techniques allow for intelligent interpretation of textual
data, enabling systems to understand variations in schedule formats and structure them into
standardized outputs. This study presents a comparative analysis of these methods, highlighting their
strengths, limitations, and practical implications for real-world implementation.

2. Methods of data mining

The process of extracting and structuring academic schedules is a critical component of student
attendance tracking systems. Traditional approaches rely on predefined rules for parsing structured
Excel tables, which can be effective when dealing with well-formatted data but often fail when
schedules are unstructured, scanned, or contain inconsistencies [11]. To overcome these limitations,
AI-driven techniques such as computer vision and natural language processing (NLP) offer more
adaptable and intelligent solutions, allowing for the automated recognition and interpretation of
schedule data in various formats [10].

This section explores three methodologies for academic schedule parsing: direct rule-based
extraction from Excel files, a machine learning-based computer vision approach that processes images
of schedules using TensorFlow, and an NLP-powered method that structures textual schedule data
into a standardized format. Each approach is analyzed in terms of its algorithmic workflow,
implementation challenges, and practical applicability in educational settings. The goal is to evaluate
their accuracy, flexibility, and efficiency to determine the most effective solution for automated
schedule parsing and attendance tracking.

2.1. Direct Rule-Based Extraction from Excel Files

Traditional schedule parsing methods rely on extracting data from structured Excel files using
predefined rules. This method assumes that the schedule format remains constant, with data fields
occupying fixed positions within the table. Implementation of this method does not require excessive
writing of program code listing and voluminous backend architecture. The easiest method provides
a common format of tables, their clear structure, which should be followed, namely (Figure 1): clear
naming by headers of each column and corresponding values under them in the same format.

Function to convert Excel to JSON
def convert_excel_to_json(excel_file, output_file):

 # Reading an Excel file
 df = pd.read_excel(excel_file)
 # Converting to JSON format
 json_data = df.to_json(orient='records', indent=2, force_ascii=False)

 # Writing data to a file
 with open(output_file, 'w', encoding='utf-8') as f:
 f.write(json_data)

convert_excel_to_json(excel_file, output_file)

Listing 1: Simple direct Excel data conversion
This Python script (Listing 1) converts a simple Excel file into a JSON file as follows:
1. Reads the Excel file:

• the pd.read_excel(excel_file) function loads the Excel file into a Pandas DataFrame
(df), automatically interpreting its structure (columns and rows).

2. Converts it to JSON:
• df.to_json(orient='records', indent=2, force_ascii=False) converts the DataFrame into

JSON format.
• The orient='records' parameter ensures the JSON output is a list of dictionaries (each

row becomes a dictionary where column names are keys).

• indent=2 makes the JSON output human-readable.
• force_ascii=False keeps non-ASCII characters (e.g., special or non-English

characters).
3. Writes the JSON file:

• the script opens a file in write mode ('w') with UTF-8 encoding;
• the JSON data is written to this file.

It relies on the DataFrame structure from the Excel file (Figure 1) to successfully build a structured
JSON file: column names become dictionary keys, rows become JSON objects (dictionaries) and the
orient='records' parameter ensures each row is converted into a dictionary within a list.

Another typical approach involves using programming languages such as Python to read an Excel
file, navigate to specific cells, and extract relevant information based on predefined coordinates. This
technique is widely used in simple applications where the schedule format does not change over time.

The process of direct rule-based parsing generally follows these steps:
1. Loading the Excel file – The program opens the file and accesses the specified sheet
containing the schedule data;
2. Navigating to fixed cell positions – Since the table structure is static, the program reads data
from predefined rows and columns;
3. Extracting relevant information – Course names, dates, times, and classroom assignments are
retrieved based on known cell references;
4. Storing and structuring the data – The extracted data is stored in a structured format such as
a JSON object or a Python dictionary for further processing;
The following Python script demonstrates how to extract a simple class schedule from an Excel

file using openpyxl, a lightweight library for handling Excel files:
from openpyxl import load_workbook

Load the Excel workbook and select the active sheet
wb = load_workbook("schedule.xlsx")
sheet = wb.active

Define fixed positions for schedule fields (assuming known structure)
schedule_data = []
for row in range(2, sheet.max_row + 1): # Skipping header row
 group = sheet.cell(row=1).value
 weektype = sheet.cell(row=row, column=1).value
 subject = sheet.cell(row=row, column=2).value
 teacher = sheet.cell(row=row, column=3).value
 day = sheet.cell(row=row, column=4).value
 time = sheet.cell(row=row, column=5).value
 room = sheet.cell(row=row, column=6).value
 zoom = sheet.cell(row=row, column=7).value

 schedule_data.append({
 "Group": group,
 "Weektype": weektype,
 "Subject": subject,
 "Teacher": teacher,
 "Day": day,
 "Time": time,
 "Room": room,
 "Zoom": zoom
 })

Convert the extracted data into a JSON format
schedule_json = json.dumps(schedule_data, indent=4, ensure_ascii=False)
print(schedule_json)

Listing 2: Direct rule-based extraction from Excel file

Figure 1: Example of a table with the class schedule

[
 {
 "№": "1",
 "Group": "CS-31",
 "Weektype": "Odd",
 "Subject": "Artificial Intelligence",
 "Teacher": "Dr. Smith",
 "Day": "Monday",
 "Time": "10:00",
 "Room": "6401",
 "Zoom": "603 232 4543"
 },
 {
 "№": "2",
 "Group": "SE-42",
 "Weektype": "Even",
 "Subject": "Machine Learning",
 "Teacher": "Prof. Jones",
 "Day": "Wednesday",
 "Time": "14:00",
 "Room": "6102",
 "Zoom": "604 232 4543"
 }
]

Listing 3: The output (result) of the script in JSON file
While this approach is straightforward and computationally efficient, it suffers from major

limitations. Any changes to the file’s structure, such as column rearrangements or merged cells, can
lead to parsing errors. Moreover, this method does not handle unstructured or scanned schedules,
making it unsuitable for real-world educational environments where schedules frequently change.
Studies on AI-driven scheduling confirm that rigid rule-based approaches lack the flexibility needed
for automated schedule extraction across diverse formats [1].

2.2. Computer Vision-Based Recognition Using TensorFlow

Computer Vision encompasses techniques for the automated extraction, interpretation, and analysis
of meaningful information from individual images or sequences of images [9]. To overcome the
limitations inherent in rule-based extraction methods, computer vision techniques have been
employed to interpret schedule data from images or scanned documents. Utilizing TensorFlow, a
prominent deep learning framework, models can be trained to recognize patterns and extract
pertinent information from visual data [6]. This approach involves creating a dataset of labeled
schedule images and training a convolutional neural network (CNN) to identify and extract relevant
details, such as course names, times, and locations. The advantage of this method lies in its ability to
handle unstructured data and variations in formatting, providing a more flexible solution for schedule
parsing. Research has demonstrated that deep learning techniques significantly improve the accuracy
of text recognition from complex tabular images, making them highly applicable in educational data
processing [2,3]. Furthermore, CNN models trained on large datasets have been proven to outperform
traditional optical character recognition (OCR) techniques, particularly when handling varying fonts,
alignments, and noise levels in scanned documents [4].

The implementation of a computer vision-based schedule parsing system encompasses several key
stages:

1. Dataset Preparation: collect a comprehensive dataset of schedule images, ensuring diversity
in formats, fonts, and layouts. Annotate these images to label the regions containing relevant
information, such as course names, times, and locations;
2. Image Preprocessing: enhance image readability by applying grayscale conversion [13],
contrast adjustments, and noise reduction. Techniques such as adaptive thresholding and edge
detection help refine input data for better recognition;
3. Neural Network Design: construct a CNN model that can efficiently process image-based
schedule data. The architecture should include multiple convolutional layers to capture spatial
features, along with pooling layers to reduce dimensionality [9,12,13];
4. Model Training: use supervised learning techniques to train the CNN model on annotated
schedules. The network learns to distinguish patterns and extract relevant text-based information,
improving accuracy with each training iteration;
5. Post-Processing: implement post-processing steps to convert the model's output into a
structured format, such as JSON. This may involve mapping the detected information to
predefined categories and organizing it for further use;
The following Python example demonstrates how to define and train a CNN model using

TensorFlow to recognize structured data from schedule images:
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

Define the CNN model structure
cnn_model = Sequential([
 Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)),
 MaxPooling2D((2, 2)),
 Conv2D(64, (3, 3), activation='relu'),
 MaxPooling2D((2, 2)),
 Conv2D(128, (3, 3), activation='relu'),
 Flatten(),
 Dense(128, activation='relu'),
 Dense(5, activation='softmax') # Adjust output neurons based on label categories
])

Configure the model with a suitable loss function and optimization algorithm
cnn_model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

Train the CNN using preprocessed schedule images and labels
cnn_model.fit(train_data, train_labels, epochs=25, validation_data=(test_data, test_labels))

Listing 4: Computer vision-based recognition using TensorFlow snippet
In this example, train_images and train_labels represent the preprocessed training data and

corresponding labels, respectively. The CNN consists of convolutional layers interspersed with
pooling layers, followed by fully connected layers that output class probabilities [12].

Figure 2: Model training results

Figure 3: Loss and accuracy graphs

After training the model for data collection, analysis and processing, we obtained the following
results (Figure 2,3):

1. On the left graph “Training and validation accuracy” (Figure 3):
− accuracy steadily increases for both training (blue) and validation (red);
− however, validation accuracy seems to plateau after around 30 epochs, suggesting that

additional training may not significantly improve validation performance;
− the training accuracy surpasses 0.7, while validation accuracy remains slightly lower;

This indicates some potential overfitting, but not severe.
2. On the right graph “Training and validation loss” (Figure 3):

− training loss (blue) consistently decreases, which is expected as the model learns;
− validation loss (red) decreases initially, but then flattens or slightly increases after a certain

point. This suggests the model may start to overfit to the training data rather than
generalizing well.

By employing a computer vision-based approach, the system can effectively parse schedules from
images with varying formats and structures. The trained CNN can generalize across different layouts,
recognizing and extracting relevant information despite variations in design [6,7,9]. This adaptability
addresses the rigidity of rule-based methods, offering a robust solution for real-world applications
where schedule formats may not be consistent.

Computer vision-based recognition using TensorFlow [6] provides a significant advancement over
traditional rule-based methods for schedule parsing. By leveraging the capabilities of CNNs to learn
complex patterns in visual data, this approach accommodates unstructured and diverse schedule
formats. The flexibility and robustness of deep learning models make them well-suited for educational
data processing tasks, enhancing the accuracy and reliability of information extraction from schedule
images.

2.3. Natural Language Processing-Driven Text Processing

In the realm of automated schedule parsing, Natural Language Processing (NLP) techniques have
emerged as powerful tools for extracting structured information from unstructured textual data [14].
NLP leverages computational methods to process and analyze human language, enabling systems to
interpret and organize textual information effectively [8,15]. This approach is particularly beneficial
when dealing with schedules presented in free-form text, where traditional rule-based methods may
falter due to variability in language and formatting. Studies suggest that NLP-based models
outperform rule-based approaches in terms of flexibility and adaptability, as they can generalize
across different formatting styles without requiring predefined rules [5]. Additionally, advancements

in NLP models, such as transformers and sequence-to-sequence architectures, have shown promising
results in extracting structured data from semi-structured academic documents [3].

The process begins with data collection, where a substantial corpus of textual schedules is gathered
to serve as the training dataset. This dataset should encompass a wide variety of schedule formats
and linguistic expressions to ensure the model's robustness. Subsequently, data preprocessing is
conducted, involving tokenization (dividing text into words or phrases), part-of-speech tagging
(identifying grammatical categories) [15], and named entity recognition (detecting entities like dates,
times, and course names). These preprocessing steps transform raw text into a structured format
suitable for machine learning algorithms.

Following preprocessing, the core of the NLP approach involves training machine learning models
to recognize patterns and relationships within the text. Advanced models, such as Transformer-based
architectures (e.g., BERT, GPT, and T5) [8], have demonstrated remarkable proficiency in
understanding context and semantics in natural language, making them well-suited for this task [6].
These models are trained to identify and extract pertinent information, such as course titles, timings,
and locations, from the textual data. The extracted information is then organized into a structured
format, such as a JSON object, facilitating seamless integration with other systems and applications.

For instance, consider a segment of text from a schedule: "The Introduction to Biology class meets
every Monday and Wednesday at 09:35 AM in Room 6204 with Prof. Jones only on even week." An NLP
model can process this sentence to extract the course name ("Introduction to Biology"), the days of
the week ("Monday and Wednesday"), the time ("09:35 AM"), the location ("Room 6204"), the teacher
(“Prof. Jones”) and the type of the week (“even”). The extracted data can then be structured into JSON
format as follows in Listing 3.

The following Python code demonstrates how an NLP pipeline can extract structured schedule
data using the spaCy library:

import spacy
import json

Load a pre-trained NLP model
nlp = spacy.load("en_core_web_sm")

Example schedule text
text = " The Introduction to Biology class meets every Monday and Wednesday at 09:35 AM in Room 6204 with
Prof. Jones only on even week."

Process text
doc = nlp(text)

Extract relevant entities (simplified approach)
schedule_data = {
 "course_name": "Introduction to Biology",
 "days": ["Monday", "Wednesday"],
 "time": "09:35",
 "location": "6204",
 "teacher": "Prof. Jones",
 "week_type": "even"
}

Convert to JSON
schedule_json = json.dumps(schedule_data, indent=4)
print(schedule_json)

Listing 5: Example Code for an NLP-Based Schedule Parser
The flexibility of NLP-based methods allows for the handling of diverse schedule representations,

making them adaptable to various textual formats without the need for rigid predefined rules. This
adaptability is particularly advantageous in educational settings where schedule formats may vary
significantly across institutions or departments. Moreover, NLP techniques can manage ambiguities
and variations in natural language, enhancing the robustness of the schedule parsing system.

The application of NLP techniques in schedule parsing offers a sophisticated and flexible approach
to extracting structured information from unstructured textual data [15]. By leveraging advanced
machine learning models, NLP enables the development of robust systems capable of adapting to

diverse schedule formats and linguistic variations, thereby enhancing the efficiency and accuracy of
automated schedule management. NLP-based approaches outperform traditional rule-based methods
in their adaptability and efficiency, making them well-suited for modern AI-driven academic
administration systems.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

3. Conclusions

This study explored three distinct methods for parsing academic schedules: rule-based extraction
from structured Excel files, deep learning-based computer vision recognition, and Natural Language
Processing (NLP)-driven text processing. Each method presents unique advantages and limitations,
influencing its suitability for different use cases in automated student attendance tracking.

Rule-based Excel parsing is a straightforward approach that efficiently extracts data from well-
structured spreadsheets. It is computationally inexpensive and easy to implement but lacks
adaptability when schedule formats change. Even minor deviations, such as merged cells or column
reordering, can cause errors, making it unsuitable for handling unstructured data.

The computer vision-based approach using TensorFlow offers greater flexibility by recognizing
schedule information directly from images. It enables the extraction of data from scanned documents
and printed timetables, making it more robust than rule-based methods. However, it requires
substantial computational resources for training convolutional neural networks (CNNs) and a large
annotated dataset to ensure high accuracy. Despite these challenges, this method excels in
environments where schedules are available only in image form.

The NLP-driven method is the most adaptable, capable of handling unstructured text data and
generalizing across different formatting styles. By leveraging transformer-based architectures, NLP
models can extract and structure schedule information with high accuracy. This approach is
especially beneficial when dealing with schedules in free-text format or inconsistent table structures.
However, its effectiveness depends on the availability of extensive training datasets and
preprocessing techniques.

Table 1
Comparative Analysis of Schedule Parsing Methods
Method Execution

Time
Data
Accuracy

Adaptability Complexity Suitability

Rule-Based
Excel Parsing

Fast High (for
fixed formats)

Low Low Best for structured
spreadsheets with a
static format

Computer
Vision (CNN)

Moderate High (for
printed
schedules)

Medium High Best for scanned or
image-based
schedules

NLP-Based
Parsing

Moderate
to High

Very High Very High High Best for
unstructured text-
based schedules with
variable formatting

The choice of a schedule parsing method depends on the specific requirements of an institution.

If schedules are consistently formatted Excel spreadsheets, a rule-based method may suffice. If the
schedules are often scanned or photographed, a computer vision-based approach would provide
greater flexibility. However, if schedules exist in multiple textual formats with varying structures,
NLP-based methods offer the most robust and scalable solution.

Future improvements in AI-driven schedule parsing could involve hybrid models that integrate
rule-based approaches for structured data, CNNs for image-based recognition, and NLP for text
processing. Such a multimodal system would enhance adaptability, ensuring high accuracy regardless
of the input format. Additionally, fine-tuning deep learning models with larger and more diverse
datasets will further improve their generalization capabilities and efficiency in real-world educational
applications.

By integrating AI-driven solutions, educational institutions can automate schedule management
with greater precision, reducing manual workload and improving attendance tracking efficiency. As
AI continues to evolve, future systems may incorporate real-time schedule adjustments and predictive
analytics to optimize resource allocation and enhance overall academic administration.

References

[1] Vasileiou, V., & Yeoh, W. (2025). AI tool helps make trustworthy, explainable scheduling
decisions. Washington University in St. Louis Engineering News. URL:
https://engineering.washu.edu/news/2025/AI-tool-helps-make-trustworthy-explainable-
scheduling-decisions.html

[2] Hilbert, M. (2021). Machine learning for the educational sciences. Review of Education, 9(3), 691-
725. URL: https://doi.org/10.1002/rev3.3310

[3] Lin, Y., Chen, H., Xia, W., Lin, F., Wang, Z., & Liu, Y. (2023). A comprehensive survey on deep
learning techniques in educational data mining. arXiv preprint arXiv:2309.04761. URL:
https://arxiv.org/abs/2309.04761

[4] Mahakud, B., Parida, B., Panda, I., Maity, S., Sahoo, A., & Sharma, R. (2022). A machine learning
system to monitor student progress in educational institutes. arXiv preprint arXiv:2211.05829.
URL: https://arxiv.org/abs/2211.05829

[5] Virtosoftware. (2024). AI tools for school schedules and timetables: Prompts & guide.
Virtosoftware Blog. URL: https://blog.virtosoftware.com/ai-schedule-maker-for-schools/

[6] TensorFlow Core. Convolutional Neural Network (CNN). URL:
https://www.tensorflow.org/tutorials/images/cnn

[7] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. DeepDeSRT:
Deep Learning for Detection and Structure Recognition of Tables in Document Images. In
Proceedings of the International Conference on Document Analysis and Recognition (ICDAR),
2017.

[8] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805. URL:
https://arxiv.org/abs/1810.04805

[9] Nayeem, T. A., Motaharuzzaman, S. M., Hoque, A. T., & Rahman, M. H. (2022, December).
Computer vision based object detection and recognition system for image searching. In 2022 12th
International Conference on Electrical and Computer Engineering (ICECE) (pp. 148-151). IEEE.

[10] Medium. AI Techniques for Data Parsing and Structuring. URL: https://medium.com/isomeric/ai-
techniques-for-data-parsing-and-structuring-4345c0456032

[11] Medium. Comparing 6 Frameworks for Rule-based PDF parsing. URL:
https://levelup.gitconnected.com/comparing-6-frameworks-for-rule-based-pdf-parsing-
f9e7ca5b6cc9

[12] Zhao, Wenzhi & Du, Shihong. (2016). Spectral–Spatial Feature Extraction for Hyperspectral
Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Transactions
on Geoscience and Remote Sensing. 54. 4544-4554. 10.1109/TGRS.2016.2543748.

[13] Medium. Convolutional Neural Networks. URL:
https://medium.com/@erdematbas/convolutional-neural-networks-ff2070fe185d

[14] Docsumo. Harnessing Natural Language Processing (NLP) for Information Extraction. URL:
https://www.docsumo.com/blog/nlp-information-extraction

[15] Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: state of the
art, current trends and challenges. Multimedia tools and applications, 82(3), 3713-3744.

https://engineering.washu.edu/news/2025/AI-tool-helps-make-trustworthy-explainable-scheduling-decisions.html
https://engineering.washu.edu/news/2025/AI-tool-helps-make-trustworthy-explainable-scheduling-decisions.html
https://doi.org/10.1002/rev3.3310
https://arxiv.org/abs/2309.04761
https://arxiv.org/abs/2211.05829
https://blog.virtosoftware.com/ai-schedule-maker-for-schools/
https://www.tensorflow.org/tutorials/images/cnn
https://arxiv.org/abs/1810.04805
https://medium.com/isomeric/ai-techniques-for-data-parsing-and-structuring-4345c0456032
https://medium.com/isomeric/ai-techniques-for-data-parsing-and-structuring-4345c0456032
https://levelup.gitconnected.com/comparing-6-frameworks-for-rule-based-pdf-parsing-f9e7ca5b6cc9
https://levelup.gitconnected.com/comparing-6-frameworks-for-rule-based-pdf-parsing-f9e7ca5b6cc9
https://medium.com/@erdematbas/convolutional-neural-networks-ff2070fe185d
https://www.docsumo.com/blog/nlp-information-extraction

[16] Dyvak, Mykola, Oleksandr Papa, Andrii Melnyk, Andriy Pukas, Nataliya Porplytsya, and Artur
Rot. 2020. "Interval Model of the Efficiency of the Functioning of Information Web Resources for
Services on Ecological Expertise" Mathematics 8, no. 12: 2116.
https://doi.org/10.3390/math8122116

[17] A. Kovbasistyi, A. Melnyk, M. Dyvak, V. Brych and I. Spivak, "Method for detection of non-
relevant and wrong information based on content analysis of web resources," 2017 XIIIth
International Conference on Perspective Technologies and Methods in MEMS Design
(MEMSTECH), Lviv, Ukraine, 2017, pp. 154-156, doi: 10.1109/MEMSTECH.2017.7937555.

[18] M. Dyvak, A. Melnyk, A. Kovbasistyi, R. Shevchuk, O. Huhul and V. Tymchyshyn, "Mathematical
Modeling of the Estimation Process of Functioning Efficiency Level of Information Web-
Resources," 2020 10th International Conference on Advanced Computer Information
Technologies (ACIT), Deggendorf, Germany, 2020, pp. 492-496, doi:
10.1109/ACIT49673.2020.9208846.

[19] M. Dyvak, A. Kovbasistyi, A. Melnyk, I. Shcherbiak and O. Huhul, "Recognition of Relevance of
Web Resource Content Based on Analysis of Semantic Components," 2019 9th International
Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech
Republic, 2019, pp. 297-302, doi: 10.1109/ACITT.2019.8779897.

https://doi.org/10.3390/math8122116

	1. Introduction
	2. Methods of data mining
	2.1. Direct Rule-Based Extraction from Excel Files
	2.2. Computer Vision-Based Recognition Using TensorFlow
	2.3. Natural Language Processing-Driven Text Processing

	Declaration on Generative AI
	3. Conclusions
	References

