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Abstract 
The automation of academic schedule parsing and student attendance tracking is crucial for modern 
educational institutions. Traditional methods relying on rule-based Excel parsing are prone to errors and 
lack adaptability to unstructured formats. This study presents a comparative analysis of different methods 
for parsing academic schedules, focusing on the development of an automated system that utilizes AI-driven 
approaches for intelligent data extraction. A comparative analysis of these methodologies provides insights 
into their practical applicability and suggests optimal strategies for integrating AI into education. 
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1. Introduction 

The rapid development of artificial intelligence (AI) and machine learning (ML) has led to their 
widespread integration into various domains, including education. The integration of artificial 
intelligence (AI) into educational institutions has become increasingly essential, as it enhances 
administrative efficiency and minimizes human error in routine processes. One of the most critical 
aspects of academic management is student attendance tracking, which requires accurate and timely 
extraction of class schedule data. Traditional methods rely heavily on manual input or rule-based 
algorithms for parsing structured Excel tables, which often fail when dealing with unstructured or 
scanned schedule formats. As educational institutions continue to digitize their workflows, there is a 
growing need for intelligent systems capable of automating schedule parsing and attendance tracking 
with high accuracy and adaptability. 

This study explores three distinct methods for extracting and structuring class schedules: (1) a 
conventional rule-based Excel parsing approach, (2) a computer vision-driven solution using 
TensorFlow for image recognition, and (3) an AI-powered natural language processing (NLP) 
technique that processes textual data. The primary objective is to compare the effectiveness of these 
approaches in handling different schedule formats, optimizing automation, and reducing the 
dependency on manual corrections. The research focuses on developing a web-based system that 
leverages AI to transform schedule data into a structured format suitable for automated attendance 
tracking. 
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AI-driven solutions offer the potential to significantly improve data processing reliability and 
efficiency. The application of deep learning models trained on schedule images can enhance text 
recognition, making it possible to extract meaningful information even from scanned or poorly 
formatted documents. Additionally, NLP techniques allow for intelligent interpretation of textual 
data, enabling systems to understand variations in schedule formats and structure them into 
standardized outputs. This study presents a comparative analysis of these methods, highlighting their 
strengths, limitations, and practical implications for real-world implementation. 

2. Methods of data mining 

The process of extracting and structuring academic schedules is a critical component of student 
attendance tracking systems. Traditional approaches rely on predefined rules for parsing structured 
Excel tables, which can be effective when dealing with well-formatted data but often fail when 
schedules are unstructured, scanned, or contain inconsistencies [11]. To overcome these limitations, 
AI-driven techniques such as computer vision and natural language processing (NLP) offer more 
adaptable and intelligent solutions, allowing for the automated recognition and interpretation of 
schedule data in various formats [10]. 

This section explores three methodologies for academic schedule parsing: direct rule-based 
extraction from Excel files, a machine learning-based computer vision approach that processes images 
of schedules using TensorFlow, and an NLP-powered method that structures textual schedule data 
into a standardized format. Each approach is analyzed in terms of its algorithmic workflow, 
implementation challenges, and practical applicability in educational settings. The goal is to evaluate 
their accuracy, flexibility, and efficiency to determine the most effective solution for automated 
schedule parsing and attendance tracking. 

2.1. Direct Rule-Based Extraction from Excel Files 

Traditional schedule parsing methods rely on extracting data from structured Excel files using 
predefined rules. This method assumes that the schedule format remains constant, with data fields 
occupying fixed positions within the table. Implementation of this method does not require excessive 
writing of program code listing and voluminous backend architecture. The easiest method provides 
a common format of tables, their clear structure, which should be followed, namely (Figure 1): clear 
naming by headers of each column and corresponding values under them in the same format. 

# Function to convert Excel to JSON 
def convert_excel_to_json(excel_file, output_file): 
 
    # Reading an Excel file 
    df = pd.read_excel(excel_file) 
    # Converting to JSON format 
    json_data = df.to_json(orient='records', indent=2, force_ascii=False) 
 
    # Writing data to a file 
    with open(output_file, 'w', encoding='utf-8') as f: 
        f.write(json_data) 
 
convert_excel_to_json(excel_file, output_file) 

Listing 1: Simple direct Excel data conversion 
This Python script (Listing 1) converts a simple Excel file into a JSON file as follows: 
1. Reads the Excel file: 

• the pd.read_excel(excel_file) function loads the Excel file into a Pandas DataFrame 
(df), automatically interpreting its structure (columns and rows). 

2. Converts it to JSON: 
• df.to_json(orient='records', indent=2, force_ascii=False) converts the DataFrame into 

JSON format. 
• The orient='records' parameter ensures the JSON output is a list of dictionaries (each 

row becomes a dictionary where column names are keys). 



• indent=2 makes the JSON output human-readable. 
• force_ascii=False keeps non-ASCII characters (e.g., special or non-English 

characters). 
3. Writes the JSON file: 

• the script opens a file in write mode ('w') with UTF-8 encoding; 
• the JSON data is written to this file. 

It relies on the DataFrame structure from the Excel file (Figure 1) to successfully build a structured 
JSON file: column names become dictionary keys, rows become JSON objects (dictionaries) and the 
orient='records' parameter ensures each row is converted into a dictionary within a list. 

Another typical approach involves using programming languages such as Python to read an Excel 
file, navigate to specific cells, and extract relevant information based on predefined coordinates. This 
technique is widely used in simple applications where the schedule format does not change over time. 

The process of direct rule-based parsing generally follows these steps: 
1. Loading the Excel file – The program opens the file and accesses the specified sheet 
containing the schedule data; 
2. Navigating to fixed cell positions – Since the table structure is static, the program reads data 
from predefined rows and columns; 
3. Extracting relevant information – Course names, dates, times, and classroom assignments are 
retrieved based on known cell references; 
4. Storing and structuring the data – The extracted data is stored in a structured format such as 
a JSON object or a Python dictionary for further processing; 
The following Python script demonstrates how to extract a simple class schedule from an Excel 

file using openpyxl, a lightweight library for handling Excel files: 
from openpyxl import load_workbook 
 
# Load the Excel workbook and select the active sheet 
wb = load_workbook("schedule.xlsx") 
sheet = wb.active 
 
# Define fixed positions for schedule fields (assuming known structure) 
schedule_data = [] 
for row in range(2, sheet.max_row + 1):  # Skipping header row 
    group = sheet.cell(row=1).value 
    weektype = sheet.cell(row=row, column=1).value 
    subject = sheet.cell(row=row, column=2).value 
    teacher = sheet.cell(row=row, column=3).value 
    day = sheet.cell(row=row, column=4).value 
    time = sheet.cell(row=row, column=5).value 
    room = sheet.cell(row=row, column=6).value 
    zoom = sheet.cell(row=row, column=7).value 
 
    schedule_data.append({ 
        "Group": group, 
        "Weektype": weektype, 
        "Subject": subject, 
        "Teacher": teacher, 
        "Day": day, 
        "Time": time, 
        "Room": room, 
        "Zoom": zoom 
    }) 
 
# Convert the extracted data into a JSON format 
schedule_json = json.dumps(schedule_data, indent=4, ensure_ascii=False) 
print(schedule_json) 

Listing 2: Direct rule-based extraction from Excel file 



 
Figure 1: Example of a table with the class schedule 

[ 
    { 
        "№": "1", 
        "Group": "CS-31", 
        "Weektype": "Odd", 
        "Subject": "Artificial Intelligence", 
        "Teacher": "Dr. Smith", 
        "Day": "Monday", 
        "Time": "10:00", 
        "Room": "6401", 
        "Zoom": "603 232 4543" 
    }, 
    { 
        "№": "2", 
        "Group": "SE-42", 
        "Weektype": "Even", 
        "Subject": "Machine Learning", 
        "Teacher": "Prof. Jones", 
        "Day": "Wednesday", 
        "Time": "14:00", 
        "Room": "6102", 
        "Zoom": "604 232 4543" 
    } 
] 

Listing 3: The output (result) of the script in JSON file 
While this approach is straightforward and computationally efficient, it suffers from major 

limitations. Any changes to the file’s structure, such as column rearrangements or merged cells, can 
lead to parsing errors. Moreover, this method does not handle unstructured or scanned schedules, 
making it unsuitable for real-world educational environments where schedules frequently change. 
Studies on AI-driven scheduling confirm that rigid rule-based approaches lack the flexibility needed 
for automated schedule extraction across diverse formats [1]. 

2.2. Computer Vision-Based Recognition Using TensorFlow 

Computer Vision encompasses techniques for the automated extraction, interpretation, and analysis 
of meaningful information from individual images or sequences of images [9]. To overcome the 
limitations inherent in rule-based extraction methods, computer vision techniques have been 
employed to interpret schedule data from images or scanned documents. Utilizing TensorFlow, a 
prominent deep learning framework, models can be trained to recognize patterns and extract 
pertinent information from visual data [6]. This approach involves creating a dataset of labeled 
schedule images and training a convolutional neural network (CNN) to identify and extract relevant 
details, such as course names, times, and locations. The advantage of this method lies in its ability to 
handle unstructured data and variations in formatting, providing a more flexible solution for schedule 
parsing. Research has demonstrated that deep learning techniques significantly improve the accuracy 
of text recognition from complex tabular images, making them highly applicable in educational data 
processing [2,3]. Furthermore, CNN models trained on large datasets have been proven to outperform 
traditional optical character recognition (OCR) techniques, particularly when handling varying fonts, 
alignments, and noise levels in scanned documents [4]. 

The implementation of a computer vision-based schedule parsing system encompasses several key 
stages: 



1. Dataset Preparation: collect a comprehensive dataset of schedule images, ensuring diversity 
in formats, fonts, and layouts. Annotate these images to label the regions containing relevant 
information, such as course names, times, and locations; 
2. Image Preprocessing: enhance image readability by applying grayscale conversion [13], 
contrast adjustments, and noise reduction. Techniques such as adaptive thresholding and edge 
detection help refine input data for better recognition; 
3. Neural Network Design: construct a CNN model that can efficiently process image-based 
schedule data. The architecture should include multiple convolutional layers to capture spatial 
features, along with pooling layers to reduce dimensionality [9,12,13]; 
4. Model Training: use supervised learning techniques to train the CNN model on annotated 
schedules. The network learns to distinguish patterns and extract relevant text-based information, 
improving accuracy with each training iteration; 
5. Post-Processing: implement post-processing steps to convert the model's output into a 
structured format, such as JSON. This may involve mapping the detected information to 
predefined categories and organizing it for further use; 
The following Python example demonstrates how to define and train a CNN model using 

TensorFlow to recognize structured data from schedule images: 
import tensorflow as tf 
from tensorflow.keras import Sequential 
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense 
 
# Define the CNN model structure 
cnn_model = Sequential([ 
    Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)), 
    MaxPooling2D((2, 2)), 
    Conv2D(64, (3, 3), activation='relu'), 
    MaxPooling2D((2, 2)), 
    Conv2D(128, (3, 3), activation='relu'), 
    Flatten(), 
    Dense(128, activation='relu'), 
    Dense(5, activation='softmax')  # Adjust output neurons based on label categories 
]) 
 
# Configure the model with a suitable loss function and optimization algorithm 
cnn_model.compile(optimizer='adam', 
                  loss='sparse_categorical_crossentropy', 
                  metrics=['accuracy']) 
 
# Train the CNN using preprocessed schedule images and labels 
cnn_model.fit(train_data, train_labels, epochs=25, validation_data=(test_data, test_labels)) 

Listing 4: Computer vision-based recognition using TensorFlow snippet 
In this example, train_images and train_labels represent the preprocessed training data and 

corresponding labels, respectively. The CNN consists of convolutional layers interspersed with 
pooling layers, followed by fully connected layers that output class probabilities [12]. 

 



Figure 2: Model training results 

 
Figure 3: Loss and accuracy graphs 

After training the model for data collection, analysis and processing, we obtained the following 
results (Figure 2,3): 

1. On the left graph “Training and validation accuracy” (Figure 3): 
− accuracy steadily increases for both training (blue) and validation (red); 
− however, validation accuracy seems to plateau after around 30 epochs, suggesting that 

additional training may not significantly improve validation performance; 
− the training accuracy surpasses 0.7, while validation accuracy remains slightly lower; 

This indicates some potential overfitting, but not severe. 
2. On the right graph “Training and validation loss” (Figure 3): 

− training loss (blue) consistently decreases, which is expected as the model learns; 
− validation loss (red) decreases initially, but then flattens or slightly increases after a certain 

point. This suggests the model may start to overfit to the training data rather than 
generalizing well. 

By employing a computer vision-based approach, the system can effectively parse schedules from 
images with varying formats and structures. The trained CNN can generalize across different layouts, 
recognizing and extracting relevant information despite variations in design [6,7,9]. This adaptability 
addresses the rigidity of rule-based methods, offering a robust solution for real-world applications 
where schedule formats may not be consistent. 

Computer vision-based recognition using TensorFlow [6] provides a significant advancement over 
traditional rule-based methods for schedule parsing. By leveraging the capabilities of CNNs to learn 
complex patterns in visual data, this approach accommodates unstructured and diverse schedule 
formats. The flexibility and robustness of deep learning models make them well-suited for educational 
data processing tasks, enhancing the accuracy and reliability of information extraction from schedule 
images. 

2.3. Natural Language Processing-Driven Text Processing 

In the realm of automated schedule parsing, Natural Language Processing (NLP) techniques have 
emerged as powerful tools for extracting structured information from unstructured textual data [14]. 
NLP leverages computational methods to process and analyze human language, enabling systems to 
interpret and organize textual information effectively [8,15]. This approach is particularly beneficial 
when dealing with schedules presented in free-form text, where traditional rule-based methods may 
falter due to variability in language and formatting. Studies suggest that NLP-based models 
outperform rule-based approaches in terms of flexibility and adaptability, as they can generalize 
across different formatting styles without requiring predefined rules [5]. Additionally, advancements 



in NLP models, such as transformers and sequence-to-sequence architectures, have shown promising 
results in extracting structured data from semi-structured academic documents [3]. 

The process begins with data collection, where a substantial corpus of textual schedules is gathered 
to serve as the training dataset. This dataset should encompass a wide variety of schedule formats 
and linguistic expressions to ensure the model's robustness. Subsequently, data preprocessing is 
conducted, involving tokenization (dividing text into words or phrases), part-of-speech tagging 
(identifying grammatical categories) [15], and named entity recognition (detecting entities like dates, 
times, and course names). These preprocessing steps transform raw text into a structured format 
suitable for machine learning algorithms. 

Following preprocessing, the core of the NLP approach involves training machine learning models 
to recognize patterns and relationships within the text. Advanced models, such as Transformer-based 
architectures (e.g., BERT, GPT, and T5) [8], have demonstrated remarkable proficiency in 
understanding context and semantics in natural language, making them well-suited for this task [6]. 
These models are trained to identify and extract pertinent information, such as course titles, timings, 
and locations, from the textual data. The extracted information is then organized into a structured 
format, such as a JSON object, facilitating seamless integration with other systems and applications. 

For instance, consider a segment of text from a schedule: "The Introduction to Biology class meets 
every Monday and Wednesday at 09:35 AM in Room 6204 with Prof.  Jones only on even week." An NLP 
model can process this sentence to extract the course name ("Introduction to Biology"), the days of 
the week ("Monday and Wednesday"), the time ("09:35 AM"), the location ("Room 6204"), the teacher 
(“Prof. Jones”) and the type of the week (“even”). The extracted data can then be structured into JSON 
format as follows in Listing 3. 

The following Python code demonstrates how an NLP pipeline can extract structured schedule 
data using the spaCy library: 

import spacy 
import json 
 
# Load a pre-trained NLP model 
nlp = spacy.load("en_core_web_sm") 
 
# Example schedule text 
text = " The Introduction to Biology class meets every Monday and Wednesday at 09:35 AM in Room 6204 with 
Prof.  Jones only on even week." 
 
# Process text 
doc = nlp(text) 
 
# Extract relevant entities (simplified approach) 
schedule_data = { 
    "course_name": "Introduction to Biology", 
    "days": ["Monday", "Wednesday"], 
    "time": "09:35", 
    "location": "6204", 
    "teacher": "Prof. Jones", 
    "week_type": "even" 
} 
 
# Convert to JSON 
schedule_json = json.dumps(schedule_data, indent=4) 
print(schedule_json) 

Listing 5: Example Code for an NLP-Based Schedule Parser 
The flexibility of NLP-based methods allows for the handling of diverse schedule representations, 

making them adaptable to various textual formats without the need for rigid predefined rules. This 
adaptability is particularly advantageous in educational settings where schedule formats may vary 
significantly across institutions or departments. Moreover, NLP techniques can manage ambiguities 
and variations in natural language, enhancing the robustness of the schedule parsing system. 

The application of NLP techniques in schedule parsing offers a sophisticated and flexible approach 
to extracting structured information from unstructured textual data [15]. By leveraging advanced 
machine learning models, NLP enables the development of robust systems capable of adapting to 



diverse schedule formats and linguistic variations, thereby enhancing the efficiency and accuracy of 
automated schedule management. NLP-based approaches outperform traditional rule-based methods 
in their adaptability and efficiency, making them well-suited for modern AI-driven academic 
administration systems. 

 
Declaration on Generative AI 

The authors have not employed any Generative AI tools. 

3. Conclusions 

This study explored three distinct methods for parsing academic schedules: rule-based extraction 
from structured Excel files, deep learning-based computer vision recognition, and Natural Language 
Processing (NLP)-driven text processing. Each method presents unique advantages and limitations, 
influencing its suitability for different use cases in automated student attendance tracking. 

Rule-based Excel parsing is a straightforward approach that efficiently extracts data from well-
structured spreadsheets. It is computationally inexpensive and easy to implement but lacks 
adaptability when schedule formats change. Even minor deviations, such as merged cells or column 
reordering, can cause errors, making it unsuitable for handling unstructured data. 

The computer vision-based approach using TensorFlow offers greater flexibility by recognizing 
schedule information directly from images. It enables the extraction of data from scanned documents 
and printed timetables, making it more robust than rule-based methods. However, it requires 
substantial computational resources for training convolutional neural networks (CNNs) and a large 
annotated dataset to ensure high accuracy. Despite these challenges, this method excels in 
environments where schedules are available only in image form. 

The NLP-driven method is the most adaptable, capable of handling unstructured text data and 
generalizing across different formatting styles. By leveraging transformer-based architectures, NLP 
models can extract and structure schedule information with high accuracy. This approach is 
especially beneficial when dealing with schedules in free-text format or inconsistent table structures. 
However, its effectiveness depends on the availability of extensive training datasets and 
preprocessing techniques. 

 
 
 

Table 1 
Comparative Analysis of Schedule Parsing Methods 
Method Execution 

Time 
Data 
Accuracy 

Adaptability Complexity Suitability 

Rule-Based 
Excel Parsing 

Fast High (for  
fixed formats) 

Low Low Best for structured 
spreadsheets with a 
static format 

Computer 
Vision (CNN) 

Moderate High (for 
printed 
schedules) 

Medium High Best for scanned or 
image-based 
schedules 

NLP-Based 
Parsing 

Moderate  
to High 

Very High Very High High Best for 
unstructured text-
based schedules with 
variable formatting 

 
The choice of a schedule parsing method depends on the specific requirements of an institution. 

If schedules are consistently formatted Excel spreadsheets, a rule-based method may suffice. If the 
schedules are often scanned or photographed, a computer vision-based approach would provide 
greater flexibility. However, if schedules exist in multiple textual formats with varying structures, 
NLP-based methods offer the most robust and scalable solution. 



Future improvements in AI-driven schedule parsing could involve hybrid models that integrate 
rule-based approaches for structured data, CNNs for image-based recognition, and NLP for text 
processing. Such a multimodal system would enhance adaptability, ensuring high accuracy regardless 
of the input format. Additionally, fine-tuning deep learning models with larger and more diverse 
datasets will further improve their generalization capabilities and efficiency in real-world educational 
applications. 

By integrating AI-driven solutions, educational institutions can automate schedule management 
with greater precision, reducing manual workload and improving attendance tracking efficiency. As 
AI continues to evolve, future systems may incorporate real-time schedule adjustments and predictive 
analytics to optimize resource allocation and enhance overall academic administration. 
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