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Abstract 
Network traffic prediction plays a critical role in network management and optimization. While traditional 
deep learning models, such as recurrent neural networks and convolutional neural networks, perform well 
in time series prediction, they still face some challenges in network traffic prediction. Firstly, these models 
are prone to information loss when dealing with long time dependencies. Second, these models tend to 
have high complexity and are difficult to operate effectively in real-world deployments. To address these 
issues, we propose an improved lightweight transformer model. The model effectively captures long-term 
dependencies by introducing a self-attention mechanism, and achieves the goal of lightweight by 
modifying the shape of the embedding module and the computation of the self-attention score, making it 
more suitable for practical deployment. Preliminary experimental results show that our improved 
transformer model outperforms existing methods in terms of both prediction accuracy and efficiency.  
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1. Introduction 

With the popularity of the Internet and advances in network technology, network size continues 
to expand and network services and applications become more diverse. Network traffic can reflect 
user activities and assess network load and operational status [1,2]. By predicting network traffic, 
network operation can be managed based on complex characteristics and changing rules, 
identifying bottlenecks, potential threats and failures, optimizing configuration, intrusion detection 
and fault management. As a result, network traffic prediction has become a hot research topic [3]. 

With the rapid proliferation of Internet of Things (IoT) devices and the complexity of network 
environments, predicting network traffic is becoming increasingly important to ensure network 
performance, optimize resource allocation and enforce security. However, with these technological 
advances comes the proliferation of edge devices, which typically have limited computing power 
and storage resources [4,5]. However, to meet the demand for highly accurate network traffic 
prediction, existing research relies on complex deep learning models and large-scale data processing 
algorithms that perform well when running on cloud servers, but face serious challenges when 
applied to edge devices [6]. 

Many existing predictive models require significant computing resources, including not only 
powerful central processing units (CPUs) and graphics processing units (GPUs), but also large 
amounts of memory and storage. These requirements exceed the processing power of most edge 
devices, making it expensive and difficult to run such models on these devices. In addition, the 
power constraints of edge devices also mean that highly loaded computational tasks cannot be 
sustained for long periods of time, further limiting the practical application of these models 

[7].  Therefore, the key issue in current research is how to design and optimize network traffic             
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prediction models to reduce the consumption of computational resources and adapt to the 
processing power of edge devices, while maintaining high prediction accuracy. Meanwhile, effective 
extraction and representation of information is crucial in network traffic prediction and deep 
learning models. However, traditional models often suffer from information loss or ignore 
important features when dealing with long sequence data, especially when dealing with complex 
multi-dimensional data [8]. 

In comparison with traditional deep learning-based models and other machine learning 
algorithms, the Transformer model demonstrates robust global feature extraction and long-range 
feature modelling capabilities. Consequently, it represents a research priority for forecasting future 
time series. The attention mechanism allows the model to capture pertinent information in a more 
flexible manner by dynamically adjusting the extent of the model's attention to different 
components of the input data, thereby preventing the loss of crucial features during the transfer of 
information [9,10]. In particular, the attention mechanism is capable of adaptively assigning 
disparate weights to each time step or feature in accordance with the contextual information 
inherent to the input sequence. This process ensures that the model not only focuses on local 
information but also effectively focuses on the global context when dealing with long sequences or 
multi-dimensional data, thereby substantially improving the completeness of information retention 
and the accuracy of prediction [11]. 

The application of traditional self-attention mechanisms to long sequence data presents a 
significant computational resource consumption challenge, despite the excellent performance 
observed in the capture of global contextual information and the improvement of model 
performance. The computational complexity of the self-attention mechanism is typically 
proportional to the square of the sequence length. Consequently, the demand for computational 
resources increases exponentially when dealing with large-scale or high-dimensional data[12,13]. In 
particular, the self-attention mechanism necessitates the computation of a similarity matrix for each 
element in the sequence with all other elements. This process not only requires a significant 
amount of memory but also results in a considerable increase in the computational burden. This is 
particularly problematic when high real-time performance is required or when running on 
resource-constrained edge devices. The high computational and memory consumption inherent to 
self-attention mechanisms presents a significant obstacle to their wide deployment in practical 
applications, particularly in the context of ultra-long sequences or large-scale datasets. In such cases, 
limitations in computational resources may lead to suboptimal performance or even the inability to 
run the model at all[14]. 

In order to address the aforementioned challenges, this study employs convolutional neural 
networks (CNNs) in conjunction with self-attention mechanisms to introduce an inductive bias, 
with the objective of reducing the reliance on the traditional embedding module in response to the 
amount of input data. The NetTimeFormer model employs multi-scale convolutional coding in the 
embedding module, thereby replacing the input coding module and position coding module of the 
standard Transformer. This configuration enables the model to consider the global feature 
extraction capacity while acquiring an inductive bias, which mitigates the impact of long time series 
information loss. Furthermore, the conventional self-attention mechanism is modified by adopting a 
linear attention operating paradigm, which serves to further reduce the model's computational 
resource consumption [15]. 

The main contributions of this paper are as follows: 
1. To address the issue of data loss during transmission, this study employs multi-scale 
convolutional coding, replacing the input coding module and position coding module of the 
standard Transformer. This improvement guarantees the resilience of the information in the 
presence of varying lengths of long-time series samples within a flow. 
2. By enhancing the attention mechanism of the conventional Transformer, the computational 
complexity is reduced to a linear scale. The enhanced attention mechanism markedly diminishes 
the number of parameters and the computational burden, thereby considerably reducing the 
deployment cost in authentic engineering contexts. 
3. The enhanced Transformer model, designated NetTimeFormer, was developed in the 
present study. Evaluation of NetTimeFormer on two publicly accessible datasets indicates that it 
demonstrates remarkable performance and minimal computational resource consumption. 



2. Methods 

2.1. CNN-based embedding module 

In this study, in order to more effectively capture and retain the key information in the flow of 
long time series and to address the potential loss of information during transmission, we propose a 
multi-scale convolutional coding strategy as an alternative to the input coding and position coding 
modules in the standard Transformer. This enhanced design ensures the robustness and consistency 
of information when dealing with traffic long time series samples of varying lengths, and 
significantly enhances the feature extraction capability of the model. The improved embedded 
module is shown in Figure 1 

 
Figure 1: Example figure caption 
 

Specifically, assume that the input data are vectors of length 𝐿𝐿 with shape(𝐵𝐵,𝐶𝐶, 𝐿𝐿), where 𝐵𝐵 is 
the batch size, 𝐶𝐶 is the number of channels, and LLL is the sequence length. In order to convert this 
dimensional data into a format suitable for 2D convolution operation, we first reorganize (reshape) 
the input data to obtain a four-dimensional tensor of shape �𝐵𝐵,𝐶𝐶,√𝐿𝐿,√𝐿𝐿�. This operation can be 
expressed as: 

𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑅𝑅(𝑋𝑋) (1) 
where 𝑋𝑋 is the original input and 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑟𝑟 is the reorganized input. 
Subsequently, three independent convolutional neural networks (CNNs) were devised for the 

generation of query, key and value vector representations (denoted as 𝑄𝑄, 𝐾𝐾 and 𝐾𝐾 respectively). The 
process of forward propagation is as follows: 

𝑄𝑄𝑚𝑚𝑎𝑎𝑎𝑎 = σ�𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑞𝑞,2 �𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑎𝑎𝑁𝑁 �𝑉𝑉𝐶𝐶𝐶𝐶𝑣𝑣𝑞𝑞,1�𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑟𝑟���� 

𝐾𝐾𝑚𝑚𝑎𝑎𝑎𝑎 = σ�𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑘𝑘,2 �𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑎𝑎𝑁𝑁 �𝑉𝑉𝐶𝐶𝐶𝐶𝑣𝑣𝑘𝑘,1�𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑟𝑟���� 

𝑉𝑉𝑚𝑚𝑎𝑎𝑎𝑎 = σ�𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣,2 �𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑎𝑎𝑁𝑁 �𝑉𝑉𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣,1�𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑟𝑟���� 

 
 
 
(2) 

Where 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑖𝑖,1(⋅) represents the first convolution kernel of the i-vector. 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑎𝑎𝑁𝑁(⋅)represents 
the batch normalisation operation. 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑖𝑖,1(⋅) represents the second convolution kernel of the i-
vector, which is a dot convolution. 𝜎𝜎(⋅) represents the activation function. 

Finally, these 2D feature mappings are again transformed into a 1D sequence representation 
suitable for processing by the self-attention mechanism as: 

𝑄𝑄,𝐾𝐾,𝑉𝑉 = 𝐹𝐹𝑁𝑁𝑎𝑎𝐹𝐹𝐹𝐹𝑅𝑅𝐶𝐶(𝑄𝑄𝑚𝑚𝑎𝑎𝑎𝑎,𝐾𝐾𝑚𝑚𝑎𝑎𝑎𝑎,𝑉𝑉𝑚𝑚𝑎𝑎𝑎𝑎) (3) 



The introduction of a multi-scale convolutional embedding module enables the effective 
extraction of global features from input sequences, while also enhancing the model's capacity to 
perceive features at varying time scales through the fusion of multi-scale information. This design 
ensures the robustness and accuracy of the model in the task of long-term flow prediction while 
capturing essential features. 

2.2. Attention Mechanisms for Linear Complexity 

In order to overcome the computational resource consumption problem of the traditional self-
attention mechanism in long time series processing, and at the same time improve the feature 
extraction capability of the embedding module in different time scales, we introduce a new model 
architecture based on the linear attention mechanism and the multiscale convolutional embedding 
module[16,17]. The linear attention mechanism reduces the traditional O(L2) to 𝑂𝑂(𝐿𝐿) by optimizing 
the complexity of the attention weight computation, which significantly reduces the consumption 
of computational resources and is suitable for longer time series data processing. The calculation 
process is shown in Figure 2: 

 
Figure 2: Improved Attention Computing Module 
 

In the design of our proposed method, the input signal is subjected to multiple convolution 
operations to generate three different feature vectors corresponding to the query (Q ∈ 𝑅𝑅𝐵𝐵 × 𝐶𝐶 × 𝐿𝐿), 
key (𝐾𝐾 ∈ 𝑅𝑅𝐵𝐵 × 𝐶𝐶 × 𝐿𝐿), and value (𝑉𝑉 ∈ 𝑅𝑅𝐵𝐵 × 𝐶𝐶 × 𝐿𝐿). 

In the case of the traditional self-attention mechanism, the dot product of the query and key is 
calculated in order to obtain the attention score matrix. 

To avoid the problem of vanishing or exploding gradients due to too large a dot product value, it 
is common to divide the dot product result by �𝑑𝑑𝑘𝑘 Perform scaling. The formula is expressed as 
follows: 

Attention Scores =
𝑄𝑄𝐾𝐾⊤

�𝑑𝑑𝑘𝑘
 

(4) 

Then, the Softmax function is applied to the scaled attention score matrix to obtain the relevance 
weights of each query with respect to all keys: 

AttentionWeights = 𝑆𝑆𝐶𝐶𝑆𝑆𝐹𝐹𝑁𝑁𝑎𝑎𝑆𝑆 �
𝑄𝑄𝐾𝐾⊤

�𝑑𝑑𝑘𝑘
� 

(5) 

Where the Softmax operation is applied row by row to ensure that each query has a weight sum 
of 1 with all keys. 

In traditional self-attention mechanisms, the computational complexity is usually 𝑂𝑂(𝐿𝐿2), where 
𝐿𝐿 is the length of the input sequence. This is because when computing the attention weights, the 𝑄𝑄 
and 𝐾𝐾 of the dot product, generating a sequence of size 𝐿𝐿 ×  𝐿𝐿 correlation matrix. However, for the 
processing of long time series signals, the consumption of computational resources will increase as 
 𝐿𝐿 increases significantly, so it is crucial to reduce the computational complexity. 

In the improved method proposed in this paper, we adopt a linear attention mechanism to 
significantly reduce the computational complexity. We pair keys 𝐾𝐾  and the value of 𝑉𝑉  The 
transpose is matrix multiplied to generate the correlation matrix 𝐴𝐴. 



𝐴𝐴 = 𝐾𝐾⊤ ⋅ 𝑉𝑉 (6) 
where A ∈ 𝑅𝑅𝐵𝐵 × 𝐶𝐶 × 𝐶𝐶. 
Next, by computing the query 𝐴𝐴 and the matrix 𝐴𝐴 are multiplied to obtain the final time-domain 

attention weights 𝑄𝑄: 
𝑄𝑄′ = 𝑄𝑄⊤ ⋅ 𝐴𝐴 (7) 

Since 𝑄𝑄 ∈ 𝑅𝑅𝐵𝐵 ×𝐿𝐿 × 𝐶𝐶, so that 𝑄𝑄′ ∈ 𝑅𝑅𝐵𝐵 ×𝐿𝐿 × 𝐶𝐶.Since in long time series signals, usually 𝐿𝐿 ≫ 𝐶𝐶, using 
this linear attention mechanism increases the computational complexity from the traditional 𝑂𝑂(𝐿𝐿2) 
is reduced to 𝑂𝑂(𝐿𝐿). This greatly reduces the consumption of computational resources and allows the 
method to process long time-span sensor signals more efficiently. 

2.3. Lightweight improvements to output modules 

The function of the resultant output layer is to integrate the channel feature vectors of feature 
mapping and provide the final prediction vector. However, previous research has often neglected 
the in-depth study and improvement of classifiers. A traditional predictor consists of a multilayer 
perceptron (MLP) consisting of two fully connected layers (fc). The number of neurons in the last 
FC is the length of the predicted sequence. It is calculated as follows: 

𝑦𝑦 = 𝑊𝑊𝑓𝑓𝑓𝑓2   ⋅ GELU  �BN�𝑊𝑊𝑓𝑓𝑓𝑓1   ⋅ X�� (8) 

where 𝑊𝑊𝑓𝑓𝑓𝑓1 and 𝑊𝑊𝑓𝑓𝑓𝑓2 denote the weights of the two FC layers, respectively, ignoring the bias 
terms. BN( ⋅ ) denotes batch normalization. GELU( ⋅ )  is the activation function. 

It has been demonstrated that increasing the width of the hidden layer improves the 
representation of the model, thereby enhancing its effectiveness in capturing complex patterns and 
structures in the input data. However, an increase in width also entails a higher computational cost 
and may result in model overfitting with respect to the training data. To address these issues, in this 
study we employ a grouped MLP to redesign the classifier. This approach can effectively balance 
the expressive power and computational efficiency of the model while maintaining its performance, 
reducing the risk of overfitting and enabling more flexible adaptation to the requirements of 
different tasks. 

Suppose the input to the backbone module is 𝑆𝑆 ∈ 𝑅𝑅𝐵𝐵 ×𝐶𝐶 × L , then this input data is divided into 𝑘𝑘 

non-overlapping subgroups, i.e. 𝑆𝑆𝑖𝑖 ∈ 𝑅𝑅
𝐵𝐵×C×𝐿𝐿

𝑘𝑘 , where 𝑖𝑖 = 1,2, … ,𝑘𝑘. Subsequently, for each of the 
subgroups we 𝑆𝑆𝑖𝑖  Independent linear transformations are performed. The width of the hidden layer 
of the classifier is fixed to twice the number of input neurons and the final output dimension is the 
fault type 𝑑𝑑 of the number of faults. For each subgroup 𝑖𝑖, its linear transformation can be expressed 
as follows: 

𝐿𝐿(𝑆𝑆𝑖𝑖) = 𝑊𝑊𝑖𝑖𝑆𝑆𝑖𝑖𝑇𝑇 + 𝑏𝑏𝑖𝑖𝑇𝑇 (9) 
where 𝑆𝑆𝑖𝑖𝑇𝑇 denotes the transpose of the input. 𝑏𝑏𝑖𝑖𝑇𝑇  denotes the bias term. 𝑊𝑊𝑖𝑖  denotes the 

weight matrix for the grouped linear transformation. Then the output is: 

𝑌𝑌𝐻𝐻 = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 �GELU �BN �Concat�𝐿𝐿(𝑆𝑆1), 𝐿𝐿(𝑆𝑆2), … , 𝐿𝐿(𝑆𝑆𝑘𝑘)���� 
(10) 

When the bias term is ignored, a classifier constructed using a traditional multilayer 
perceptron (MLP) produces a total number of parameters of 𝐿𝐿 × 2𝐿𝐿 + 2𝐿𝐿 × 𝐷𝐷 = 2𝑁𝑁(𝑁𝑁 + 𝐷𝐷). And 
when dividing the input data into 𝑘𝑘 groups, the classifier constructed using the grouped MLP 
strategy produces a total number of parameters of 𝑘𝑘×2𝐿𝐿

𝑘𝑘
× 𝑘𝑘 + 2𝐿𝐿 × 𝐷𝐷 = 2𝐿𝐿 �𝐿𝐿

𝑘𝑘
+ 𝐷𝐷�. Therefore, 

our design is able to reduce 𝐿𝐿 �𝑘𝑘−1
𝑘𝑘
� of the number of parameters. 

 

2.4. Overall structure 



 
Figure 3: Overall structure 
 

NetTimeFormer consists of three phases including a backbone module for attention 
computation and a grouped MLP that outputs prediction results. The overall structure is shown 
in Figure 3. Detailed structural information is shown in Table 1. where 𝑁𝑁 is the length of the 
prediction sequence and the default value is 96. 

 
Table 1 
NetTimeFormer network structure table  

Layer Input Output 
Input Sequences 1×96 4×96 
𝐵𝐵𝑎𝑎𝐵𝐵𝑘𝑘𝑏𝑏𝐶𝐶𝐶𝐶𝑅𝑅1 1×96 4×96 
𝐵𝐵𝑎𝑎𝐵𝐵𝑘𝑘𝑏𝑏𝐶𝐶𝐶𝐶𝑅𝑅2 4×96 8×96 
𝐵𝐵𝑎𝑎𝐵𝐵𝑘𝑘𝑏𝑏𝐶𝐶𝐶𝐶𝑅𝑅3 8×96 16×96 
Predictor Output 16×96 1×N 
Parameters 5664 
MFLOPs 0.16 

3. Experiments 

3.1. Datasets 

In order to validate the sequence prediction accuracy of the model in real scenarios, two 
distinct datasets have been employed. The initial dataset was gathered from the core network of a 
European city by a private Internet Service Provider (ISP), encompassing the core network 
regions of 11 major European cities. The dataset provides a detailed account of internet traffic on 
the transatlantic link between 06:57 on 7 June 2005 and 11:17 on 31 July 2005, with data collected 
at five-minute intervals. This dataset provides insight into internet transmissions between 
multiple European cities, offering a valuable perspective on cross-border network traffic. The 
second dataset is derived from the UK academic backbone and provides a comprehensive 
overview of the overall traffic patterns within the UK academic network. The dataset records 
traffic from 09:30 on 19 November 2004 to 11:11 on 27 January 2005, with data collected at five-
minute intervals. This dataset offers a comprehensive insight into the overall traffic patterns and 
trends within the UK academic network. The combination of these two datasets provides a multi-
level perspective for analyzing internet traffic behavior, encompassing both inter-city traffic 
between major European cities and the overall traffic profile of the academic network. This 
makes them a valuable resource for research, as they offer a representative overview of internet 
traffic patterns.  

The dataset can be downloaded from the link https://github.com/xiaohuiduan/network-traffic-
dataset. 

 
 

3.2. Evaluation metrics 

https://github.com/xiaohuiduan/network-traffic-dataset
https://github.com/xiaohuiduan/network-traffic-dataset


In network traffic prediction tasks, we usually use a variety of evaluation metrics in order to 
assess the prediction performance of models. In this paper, three commonly used metrics, Mean 
Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), 
are chosen to quantify the prediction accuracy of the model. 

Mean Square Error (MSE) is a measure of the average of the squared error between the 
predicted value and the true value, and is an indicator that is sensitive to large errors. the smaller 
the MSE, the higher the predictive accuracy of the model. The formula is as follows: 

MSE =
1
𝐶𝐶
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 
(11) 

where 𝐶𝐶 is the number of samples. 𝑦𝑦𝑖𝑖 is the first 𝑖𝑖 actual value of 𝑦𝑦𝚤𝚤�  is the first 𝑖𝑖 predicted 
value. The MSE reflects the extent to which the predicted value deviates from the true value and 
is sensitive to outliers due to the presence of squares. 

The Mean Absolute Error (MAE) is the average of the absolute values of all prediction errors 
and provides a direct measure of prediction error. Unlike MSE, MAE is less sensitive to large 
errors. The formula is as follows: 

MAE =
1
𝐶𝐶
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1

 
(12) 

where |⋅| denotes an absolute value. The MAE reflects the average degree to which the model 
deviates from the true value across all predicted values and has better robustness because it is not 
overly sensitive to outliers. 

The Mean Absolute Percentage Error (MAPE) is the average of the prediction error as a 
percentage of the true value and is used as a measure of relative error. The units of the MAPE are in 
per cent, making it more interpretable. The formula is as follows: 

MAPE =
100%
𝐶𝐶

�
|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |

𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
(13) 

MAPE provides a relative measure of prediction error and is suitable for comparing data of 
different magnitudes. However, MAPE has a significant effect on the true value  𝑦𝑦𝑖𝑖 close to zero 
produces unstable results and therefore needs to be used with caution in some cases. 

3.3. Experimental results 

In order to ensure the fairness and credibility of the experiments, all experiments used the 
same setup, and the optimizer used Adam. the gradient was computed using the MSE loss 
function, and the cosine annealing was used to learn the rate scheduling algorithm, which is: 
Lr(𝐹𝐹) = Lrmin + 1

2
(Lrmax − Lrmin) �1 + cos � 𝑜𝑜

𝑇𝑇max
π�� , where max_lr and lrmin denote the 

maximum and minimum values of the learning rate, respectively. In the experiments, the chosen 
batch size = 64, Lrmax = 10e − 3, Lrmin = 10e − 4, epoch = 200. 

As shown in Table 2, we perform experiments related to network traffic prediction using 
NetTimeFormer. The experiments are compared with the traditional Transformer with the 
advanced sequence prediction model FEDformer. The results show that our model obtains the 
best experimental accuracy under each prediction sequence. And it can still maintain a low error 
in long sequence prediction. Under EC dataset, NetTimeFormer improves 10-20% compared to 
FEDformer. The ISP dataset has a smoother waveform than EC dataset, so the time series model 
can achieve higher accuracy. NetTimeFormer shows excellent prediction accuracy under ISP 
dataset. The MSE is only 0.049 at a prediction length of 128. 
 
 
 
 
Table 2 



Prediction accuracy of the model at different prediction lengths when the input sequence 
length is 96. 

 Models NetTimeFormer FEDformer Transformer 
Metric MSE MAE MAP

E 
MSE MAE MAP

E 
MSE MAE MAPE 

EC 48 0.034 0.143 10.1 0.034 0.143 10.1 0.064 0.143 10.1 
96 0.049 0.151 10.3 0.076 0.179 11.1 0.088 0.201 13.4 

128 0.060 0.163 10.7 0.089 0.202 12.7 0.101 0.294 14.1 
ISP 48 0.013 0.097 5.4 0.031 0.117 7.1 0.044 0.012 9.8 

96 0.027 0.112 7.8 0.055 0.157 10.1 0.076 0.189 11.4 
128 0.049 0.151 9.1 0.069 0.188 12.2 0.097 0.246 13.1 

 
A visual presentation of the sequence prediction results is shown in Figure 4. It can be clearly 

seen that NetTimeFormer's prediction results fit very well. The model captures the details of the 
fluctuations in the sequence. 

 
Figure 4: Demonstration of NetTimeFormer's actual traffic prediction 

 

4. Conclusion 



In this paper, we propose an improved lightweight Transformer model, NetTimeFormer, to 
address the problems of long time-dependent information loss and high computational complexity 
faced by traditional deep learning models in network traffic prediction. We effectively maintain the 
integrity of long time series information by introducing multi-scale convolutional coding to replace 
the input coding and location coding modules of the standard Transformer. In addition, the 
optimized self-attention mechanism reduces the computational complexity to a linear level, which 
significantly reduces the number of parameters and computational burden of the model, and lowers 
the actual deployment cost. Experimental results on two publicly available datasets show that 
NetTimeFormer excels in prediction accuracy and computational efficiency, significantly 
outperforming existing methods, especially on resource-constrained edge devices. In summary, this 
study is not only innovative in model design, but also experimentally verifies its practicality and 
excellent performance in network traffic prediction, which provides valuable references for further 
research and practical applications in related fields. 
 
Declaration on Generative AI 
The author(s) have not employed any Generative AI tools. 
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