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Abstract 
Recommender systems have become a crucial intelligent tool for providing personalized services to users. 
Existing recommendation algorithms often face the problems of sparse data and unbalanced distribution of 
user interactions because they rely on user behavior to generate data. In addition, since recommendation 
algorithms based on graph learning capture user inter-item interactions through equal aggregation of 
neighbor information, it leads to ignoring the heterogeneity between user and item nodes as well as the 
variability of the influence of different nodes on the target node. To address the above issues, we propose 
an adaptive influence diffusion graph neural network. Specifically, we derive the user similarity graph and 
the item related graph from the user-item bipartite graph, and model the diffusion of influence between 
similar users and related items through a diffusion model. In addition, to model the heterogeneity between 
nodes and the variability of influence between nodes, we design a dual-attention mechanism to assign 
different influence weights to relationships that do not use the same type of relationship, in order to 
achieve adaptive propagation of information between heterogeneous nodes and between different nodes. 
Experimental results on several real data sets demonstrate the superiority and effectiveness of the 
proposed model. 
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1. Introduction 

Collaborative filtering (CF) has become the most widely used technique in the recommendation 
domain by analyzing the users' historical interaction information to learn the users' and items' latent 
traits to predict the users' future preferences [1,2]. However, in real-world recommendation 
scenarios, CF-based recommendation algorithms often face the challenge of data sparsity [3]. This is 
because recommender systems rely on user behavior to generate data. However, most users generate 
a limited amount of behavioral data, which significantly impacts the efficiency of CF-based 
recommendation algorithms. 

In recent years, graph neural networks (GNNs) [4] have shown great advantages in 
recommendation tasks by aggregating users' domain information. For example, GC-MC [5] and 
NGCF [6] construct user-item interaction bipartite graphs from user-item interaction data and utilize 
the structure of user-item graphs to propagate the embedding information of the user and the item 
on it. However, some existing methods treat all nodes in the domain equally, thus ignoring the 
differences between different neighboring nodes, resulting in suboptimal recommendation results. 

Fortunately, as shopping platforms are updated, more and more people prefer to express their 
opinions about the items they have purchased on these platforms. These reviews often have a 
significant impact on the shopping behavior of similar users. This is due to the fact that an item may 
be more appealing to a user if the past consumers of the item have similar spending habits as the 
target user [7]. In addition, when users purchasing items, related items are also  more attractive to 
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them. Thus, modeling user similarity and item synergies can help us represent target user 
preferences and assist us in constructing and learning user preferences to alleviate the data sparsity 
problem and improve recommendation performance. 

In summary, we develop a new recommendation model that constructs user similarity 
collaborative graph and item related collaborative graph for users and items respectively from user-
item history interactions in order to construct similarity relationships between users and correlations 
between items under interaction information. A higher-order influence diffusion model is also used 
to model the diffusion influence between similar users and the synergistic attraction between related 
items. In addition, considering the heterogeneous influences of neighbors and the differences in the 
influences of different nodes, we propose a dual-attention model to aggregate information for 
neighbors in order to refine their different influences on the target user, and to achieve adaptive 
information dissemination among different types of neighbor nodes. Finally, the diffused information 
and the representation obtained based on the attention mechanism are connected for 
recommendation prediction. We conducted extensive experiments on various real-world datasets and 
verified the effectiveness of the proposed method in representation learning. 
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Figure 1:The AIDGR model framework 

2. Formalization of problems 

Based on the user interaction data we construct a two-part graph ( ), , UVB U V E=  consisting of 

two different types of node sets (user set 1 2{ , , , }nU u u u=   and item set 1 2{ , , , }mV v v v=  ) and 

edge set UVE , where n U= , 
m V=

 are the number of users and items. We denote the interaction 

matrix as 
n mR ×∈ , where { }, 0,1u vr ∈

, , 1u vr =
 denote that there is an interaction between user u  

and item v .  

Formally, the recommendation algorithm aims to construct an interaction matrix 
n mR ×∈  

between users and items based on user-item interaction data. In this paper, we predict user-item 
interactions based on the original bipartite graph using the product of potential representations of 
users and items. 

3. AIDGR model 

Figure 1 shows an overview of AIDGR, which consists of three main modules. The first module 
is based on higher-order graph diffusion for feature representation In the module, we construct two 
auxiliary graphs based on the interaction information of users and items: user similarity graph and 
item relevance graph. Next, we employ a higher-order diffusion model to learn the initial user and 
item representations from the two auxiliary graphs. In the second module is dual-attention based 



embedding aggregation, in this section we develop a dual-attention mechanism to assign different 
weights to neighbors, and finally we aggregate the neighbor information based on the weights to 
update the feature representations of users and items. The last module is the prediction module 
where we pass the diffusion based initial feature representation and aggregated neighbor feature 
representation into a fully connected network to generate the final feature representation. Finally 
the interaction between users and items is predicted based on the inner product of users and items. 

3.1. Feature Representation Module Based on Higher-Order Graph Diffusion 

In this section, we learn the initial representation of users and items from two collaborative 
graphs based on a higher-order diffusion model. 

3.1.1. collaborative graph construction 

Collaborative Graph Construction We construct two collaborative graphs, including user 

similarity graph ( ),s s
U UG U E=  and project related graph ( ),r r

V VG V E=  , where 
s

UE  and 
r
VE  are the edge 

sets of the two graphs. We build the edges in 
s

UE  and 
r
VE  based on the Bipartite graph B  

construction. Specifically. We compute the similarity between users as follows: 
( )
( )

( )
( , )

( )
i j

i j

i j

N u N u
Sim u u

N u N u
=

×

  (1) 

where ( )iN u  is the set of items that the user iu  interacts with, and if ( , )i jSim u u η> , we then 

insert an edge between iu  and ju
, where η  is an adjustable threshold. Similarly, we compute the 

correlation between two items as follows: 

( ) ( )
( , )

( ) ( )
i j

i j
i j

N v N v
Rel v v

N v N v
=




 

(2) 

Where ( )iN v  denotes the set of users interacting with item iv , if ( , )i jRel v v ς>  , we add an edge 

between iv  and jv
, and similarly ς  is an adjustable threshold. 

3.1.2. Higher-order diffusion models 

In this module, we design T Layer Graph Diffusion to model the diffusion of potential feature 

representations over the collaborative graph. Given user u U∈ , 
,s t

ux represents the potential 

feature representation of user u  on 
s

UG  at the t  layer. We update the representation of u  on 
s

UG  at 
layer 1t +  based on diffusion as follows: 

( )

, 1 , , , , ,
1 2( ( ))

s
U

s t s t s t s t s t s t
u u u u

uu

x W x W x xσ+
′ ′

′∈

 
= +  

 
∑ 
N

 
(3) 

Where is 
,

1
s tW  and 

,
2
s tW  are the learnable parameters of the t  layer, σ is the LeakyReLU 

activation function, ( )s
U uN  denotes the neighbor of u  on 

s
UG , and u′  is the neighbor node of u  on 

s
UG .Similarly, we also use a higher-order diffusion model to model the synergistic impacts between 

related projects on the 
r
VG , and for a given project v V∈ , we use the following diffusion to update 

the feature representation of the v : 
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, 1 , , , , ,
1 2( ( ))

r
V

r t r t r t r t r t r t
v v v v

vv
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′ ′
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= +  
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(4) 

Where 
,

1
r tW  and 

,
2
r tW  are the learnable parameters of the t  layer, 

,r t
vx denotes the potential 

feature representation of v  on 
r
VG  at the t  layer, σ  is the LeakyReLU activation function, ( )r

V vN  

denotes the neighbor of v  on 
r
VG , and v′  is the neighboring node of v  on 

r
VG .By diffusing the 

feature representations of the T  graph diffusion layers we obtain a user representation 
,s T

ux  and an 

initial feature representation 
,r T

vx  of the item. These representations are then passed into a dual-
attention based embedding aggregation for adaptive dissemination of user item information. 

3.2. Embedding Aggregation Based on Dual Attention 

After modeling the diffuse influence between similar users and related projects, to model the 
interaction information between users and projects, we introduce the user-project interaction graph 
B  .Specifically, taking user u  as an example, there are two different types of neighbor nodes for 

user u , i.e., user neighbor ( )s
U uN

 in 
s

UG  and project neighbor ( )B
V uN

 in B . Similarly, project v  

has project neighbor ( )r
V vN

 in 
r
VG  and user neighbor ( )B

U vN
 in B .In order to achieve the 

information transfer between different types of nodes, we introduce the learnable parameters UW  

and VW  to map the initially obtained feature representations of the user and the project to the same 
embedding space, which are computed as follows: 

0 ,

0 ,

,
,

s T
u U u

r T
v V v

e W x u U
e W x v V

 = ∈


= ∈
 

(5) 

In order to refine the influence of different neighbors of users and projects, we propose a dual-
attention model. 

The impact of different neighbors on the same user. given that users u  , ( )s
U uN

 are u 's 

friend neighbors in 
s

UG . I aggregate the potential embeddings of these friend neighbors as follows: 

( ) ( )
1

,s s
U Uu u

l l l
u u uu

e eα −
′ ′′∈

= ∑N N
 (6) 

where 
1l

ue −
′  denotes the potential embedding of friend neighbor u′  in the 1l −  layer, and ,

l
u uα ′  

is the weight corresponding to u′ , calculated as follows: 

( )( )( )
( )( )( )( )

1 1

, 1 1

exp

exps
U

l l l
u ul

u u l l l
u u u u

W e e

W e e

σ
α

σ

− −
′

′ − −
′′′′∈

⊕
=
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(7) 

where 
l

uW  is the learnable parameter of the l  layer , and σ  is the LeakyReLU activation 

function. Similarly given user u , ( )B
V uN

 is the project neighbor of  u  on B . The potential 
embedding aggregation of these consistent project neighbors is as follows: 

( ) ( )
1

,B B
V Vu u

l l l
u v vv

e eα −
′ ′′∈

= ∑N N  
(8) 
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(9) 

where 
1l

ve −
′  denotes the potential embedding of the project neighbor v′  in the 1l −  layer, ,

l
u vα ′  is 

the weight parameter corresponding to v′ , 
lW  is the learnable parameter of the l  layer, and σ  is 

the LeakyReLU activation function. 
Influence of different types of neighbor nodes. In response to the fact that different types of 

neighbors of the same user have different impacts, for this reason we propose a second-level 
attention mechanism for aggregating information obtained from two different perspectives: friend 
neighbors and project neighbors. Specifically, the user obtains the aggregated embedding as follows: 

( ) ( ) ( ) ( )s s B B
U U V Vu u

l l l l l
u uuAGG e eβ β= +

N N N N
 (10) 

where ( )s
U u

le
N , ( )B

V u
le
N  are the aggregated embeddings of the friend neighbors and project 

neighbors of user CCC, respectively,  ( )s
U u

lβ
N , ( )B

V u
lβ
N  are the attention weights of the friend 

neighbors and project neighbors, respectively, computed as follows: 

( )

( )( )( )( )
( )( )( )( ) ( )
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U
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U
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Where 
lW  is the l  layer learnable parameter and σ  is the LeakyReLU activation function. The 

embedding of the final user u  in the l  layer is updated as follows: 

( )( )1l l l l
u u ue W e AGGσ −= ⊕  (13) 

where 
lW  is the l  layer learnable parameter and σ is the LeakyReLU activation function. 

Similarly given the item v , we can get the updated embedding of v  as described above: 

( )( )1l l l l
v v ve W e AGGσ −= ⊕  (14) 

Where 
lW  is the learnable parameter of the l  layer, σ  is the LeakyReLU activation function, and 

l
vAGG  is computed in a way similar to 

l
uAGG . 

3.3. Prediction and Model Optimization 

After completing the contextually consistent neighbor information aggregation, we can obtain 

the layered embeddings of users and items, 
l
ue  and 

l
ve  where [ ]0,1,2, ,l L= 

. In order to better 
model the potential features of users and items, we consider both the first and the last layers of user 
embeddings, because the first layer retains the original diffuse features of users and items, while the 
last layer provides a finer representation of the interaction features through the dual-attention 
mechanism for the item and user representations, and thus the final representations of users and 
items are: 

( )( )0 L
u u u ue W e eσ= ⊕  (15) 

( )( )0 L
v v v ve W e eσ= ⊕  (16) 



where uW  and vW  are the learnable weight matrices and σ  is the activation function. Finally, 
we obtain the recommendation results by the inner product of user and item feature 
representations: 

,û v u vr e e= ⋅  (17) 

In order to learn the AIDGR model parameters, we need to specify an objective function for 
optimization. For implicit feedback, the most widely used loss function is cross entropy, defined as: 

( ), , , ,
,

ˆ ˆlog 1 log(1 )
UV

u v u v u v u v
u v E

r r r r
∈

= + − −∑L  (18) 

where UVE  is the set of all observed ratings in the training set and ,u vr
 is the value 

corresponding to the ( ),u v
 pair in the interaction matrix R . In order to optimize the objective 

function, we use small batch adaptive moment estimation (Adam) [8] as the optimizer in our 
implementation, and a dropout strategy [9] to mitigate the overfitting problem. 

3.4. Discussion 

Space complexity. The model parameters consist of three parts, the user and item embedding 

1 [P,Q]Θ = , and the parameter set 

{ } { } { }, ,
1,2,2 ,1

, , , ,  ( ) , ,
t Ts t r t l

U V l L u vt
W W W W Dual Attention W W W

=

==
 Θ =   

.Since most embedding-based 

models [1] need to store embeddings for each user and item, the space complexity of 1Θ  is the same 
as that of traditional embedding-based models and grows linearly with the growth of users and 

items. For the parameters in 2Θ , which are shared among all users and projects, the dimension of 
each parameter is much smaller than the number of users and projects, so this additional storage 

cost is a negligible constant. Therefore, the space complexity of AIDGR from 1Θ  and 2Θ  is the 
same as the traditional embedding model。 

Time complexity. The time complexity of the AIDGR model is designed into two main 
components: a feature representation module based on higher-order graph diffusion and an 
aggregated embedding module based on dual attention. Given M users and N items and T diffusion 

layers, it is assumed that the average number of interacted items per user is bn  and the average 

number of interacted users per item is bm . Before entering into a feature representation model 
based on higher-order graph diffusion, we need to evaluate the similarity between users and the 

synergy between items, the modelling time cost of which can be expressed as 
2 2( )O M N+ . 

Assume that the average number of similar users for users is sm  and the average number of 

collaborative items for items is rn . Afterwards, the time spent on embedding updates of users and 

items based on the diffusion of higher-order graphs is ( )s rO M m D N n D⋅ ⋅ + ⋅ ⋅ . For the 
aggregated embedding module with dual attention at each layer, the main time cost is the transfer 
of information from neighboring nodes on different graphs to users and projects. Firstly, we need to 
compute the information of the neighboring nodes from different graphs, and its time spent is in 
computing the attention scores between each neighboring node, which has a time complexity of 

( ( ) ( ) )s b r bO M m n D N n m D⋅ + ⋅ + ⋅ + ⋅ . Then, we aggregate information from different types of 
neighbouring nodes based on the attention mechanism, and the time complexity is approximated to 

( )O M N+  since there are only two types of neighbouring nodes in practice. In practice 



{ }, , , min ,s b r bm m n n M N , the time overhead grows linearly with the number of users and 
items, and linearly with the diffusion depth and the number of dual attention layers. Therefore, the 
total time complexity of AIDGR is acceptable. 

 

4. experiment 

In this section, the author mainly introduces the research content involved in the experiment, 
and then describes the datasets, evaluation metrics, experimental settings and experimental results 
used in this work. 

4.1. Experimental dataset 

Datasets. We apply our model to two publicly accessible datasets, namely Yelp and Amazon. 
Table 1 summarizes the statistics of the datasets. For each dataset, we use 80% of the data as a 
training set and the remaining 10%, 10% as a validation set and a test for final performance 
evaluation, respectively. 

 

Table 1 
Statistical dataset 
Dataset User #  Item # Interaction # Density 
Yelp 32,654 34,193 1,347,861 0.00121 
Amazon 52, 643 91, 599 2, 984, 108 0.00062 

4.2. Evaluation indicators 

To measure the performance of all methods, NDCG@K and Recall@K with K=10 are adopted. 
NDCG@K evaluates the ranking of the real items in the recommended list. Recall@K is the 
proportion of relevant items retrieved in the Top-K related items. 

k
k

k

DCGNDCG
IDCG

=
,

k
k

k

DCGNDCG
IDCG

=
 

(19) 

The above matrix sums the number of predicted items and divides it by the number of items in 
the test set corresponding to the user. 

4.3. Baseline algorithm 

The proposed model AIDGR is compared with the following baselines. 
FM[10]: The model is a unified model based on latent factors, utilizing user and item attributes. 

In practice, we use user and item functions as described above. 
NCF[11]: This is a deep learning based recommendation model that utilizes multi-layer 

perceptrons to learn user-item interaction functions. 
GCN[12]: This model uses spectral graph convolution operators to learn local graph network 

structure and node features, and implements semi-supervised learning directly on graph-structured 
data. NGCF[6]: This is a graph-based recommendation model that models higher-order 
connectivity in the graph of user items and injects collaboration signals into the embedding process 
in an explicit manner. LightGCN[13]: This model is simplified from the standard GCN for the 
recommendation task and proposes a lightweight graph convolutional network DiffNet++[14]: 
This model achieves better performance in social recommendation tasks by modeling the user's 
interest and influence diffusion process. DGCF[15]: This model decomposes the embeddings of 
users and items into multiple semantic factors and unifies different semantics through an attention 
mechanism to model the diverse intentions behind user behaviors. 



 

Table 2 
Comparison of performance of all methods in Recall@10 and NDCG @ 10  

Analysis of  
results 

Yelp Amazon 
Recall@10 NDCG@10 Recall@10 NDCG@10 

FM 0.2101 0.1751 0.1306 0.0951 
NCF 0.2139 0.1677 0.1341 0.0962 
GCN 0.2214 0.1734 0.1406 0.1025 

NGCF 0.2435 0.1975 0.1466 0.1123 
lightGCN 0.2579 0.1984 0.1521 0.1194 
DiffNet++ 0.2659 0.2058 0.1638 0.1203 

DGCF 0.2708 0.2103 0.1657 0.1187 
AIDGR 0.2851 0.2215 0.1742 0.1403 

4.4. Analysis of results 

4.4.1. Contrast to the baseline algorithm 

Table 2 shows the comparison of the different methods on the two datasets. The following 
observations can be drawn from the results: 

First FM, NCF performs poorly on these two datasets, probably because traditional collaborative 
filtering-based learning algorithms have difficulty in comprehensively dealing with the connectivity 
relationships between nodes compared to the strong modeling capabilities of graph structures on 
interacting data. The outperformance of DiffNet++ over traditional graph learning methods 
suggests that graph diffusion is able to cross the limitation of one-hop neighboring nodes in 
comparison to traditional graph learning methods, thus capturing richer graph properties. The 
superior performance of DGCF indicates that compared with traditional GNN models that model 
user behaviors based on a single intent, DGCF can better describe user preferences by modeling 
user behaviors with multiple intents. 

Second, the proposed AIDGR model performance due to the baseline. The reasons are as follows, 
1. AIDGR's higher-order diffusion operation based on the collaborative graph can effectively 
capture the influence between similar users and related items to enrich the feature representation of 
users and items, thus effectively alleviating the problem of data sparsity.2. The dual-attention 
mechanism can effectively differentiate the heterogeneity among nodes and the diversity of 
influences of neighboring nodes on the target node, and achieve adaptive information Propagation. 

 
 
 

4.4.2. Ablation analysis 

Influence of different components: the AIDGR consists of two key components, including 1) a 
higher-order influence diffusion model, and 2) a dual attention mechanism module. To study the 
impact of each component, we designed three AIDGR variants as follows: 

AIDGR-Diff: removes the higher-order influence diffusion model from AIDGR.  
AIDGR-Datt: replaces the dual-attention model with the normal GNN model. 



 
Figure 2: Contribution of each component on two datasets. 

Figure 2 shows that AIDGR-Diff performs worse than AIDGR, which confirms the important 
role of higher-order influence diffusion in learning about potential users and item presentation. The 
diffusion model improves recommendation performance from two perspectives. First, the user 
similarity and item relevance maps contain useful information reflecting user influence and item 
collaboration appeal. Second, the diffusion process allows users and projects to aggregate 
information from implicit neighbors with similar interests and project attributes. 

AIDGR also achieves higher performance than AIDGR-DAtt, which suggests that all neighbors 
cannot be considered equally in the information aggregation process. An explanation for this 
phenomenon is that not all neighbors have the same impact on users and it is crucial to distinguish 
between heterogeneous impacts. 

4.4.3. Parametric sensitivity analysis 

In this subsection, we investigate how the performance of our proposed model varies with a 
number of hyperparameters, including the embedding dimension d , the threshold η  for the user 
similarity graph, and the threshold ς  for the item correlation graph. experiments show that when 
d  is very small, the performance usually increases with an increase. However, when d  is larger 
than a specific value, the performance decreases. In addition, the optimal dimension d  varies across 
datasets. AIDGR performs best on Yelp when 32d =  and on Amazon when 64d = . An explanation 
for this result is that larger values of d tend to lead to overfitting problems. 

 

Figure 3: Effect of the embedding dimensionality d . 

Figure 4 clearly shows the impact of different user similarity graph thresholds η  validated in 
this paper based on two datasets. Specifically, when 0.5η = , AIDGR performs best on Yelp. When 

0.3η = , AIDGR performs best on Amazon. As the threshold gradually increases from 0.1 to 0.9, the 
performance first increases and then gradually decreases. When 0.1η = , the model introduces a lot 
of noise, which reduces its performance. When 0.9η = , very little valid information is captured, 
which leads to performance degradation. Therefore, an appropriate η  is needed to ensure the 
model performance. 



 
Figure 4: Effects of the thresholdη . 

Figure 5 shows the effect of thresholding ς  on the item correlation graph, which is similar to 
the behavior of η . :When 0.3ς = , the model performs best on Yelp and Amazon.  

 

Figure 5: Effects of the thresholdς . 

5. Conclusion 

In this paper, we propose a new recommendation model, which constructs two synergistic 
similarity graphs for users and items from user-item history interactions to construct similarity 
relationships between users and correlation between items under the interaction information, and 
at the same time, uses a higher-order diffusion-of-influence model to model diffusion of influences 
between similar users and synergistic attraction between related items to alleviate the problems of 
data sparsity and user interactions that recommending is faced with. data distribution imbalance 
problem. In addition, considering the heterogeneity of neighbors and the differences in the 
influence of different neighbors, we propose a dual-attention model to perform information 
aggregation for neighbors to refine their different influences on the target nodes, and to achieve 
adaptive information dissemination among different neighbor nodes. Our extensive experiments 
show that the proposed model outperforms the state-of-the-art methods and verify the effectiveness 
of the proposed scheme. 
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