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Abstract
This work uses a big data set platform, AgriSenze™, to predict daily soil temperatures in Norway. The big dataset
is primarily collected from the Norwegian University of Life Sciences (NMBU) to build an ensemble stacking
regressor machine learning algorithm to predict daily soil temperatures at six different depths (2 cm, 5 cm, 10 cm,
20 cm, 50 cm, and 100 cm). This study has successfully developed a model-based soil temperature prediction
with performance results comparable to most existing research and even better performance at some soil depths
(R²=0.0.9996, RMSE = 0.0 for.01286 for depth 5cm) .
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1. Introduction

Modern agriculture faces two primary challenges: meeting rising food demand while simultaneously
addressing growing environmental concerns. Smart Farming (SF) emerges as a potential solution to
tackle these dual challenges in modern agricultural practices [1]. SF is a technological innovation that
utilizes information and communication technology to integrate computing with the physical farming
processes [2]. For the SF to make precise decisions and provide accurate information to farmers, the
SF needs to understand the complex environmental ecosystems [1] which requires collecting various
environmental data such as soil, weather, crop, fertilizer, farming practices, supply-chain and market
analysis data. Precision agriculture (PA), a component of the SF process, employs specialized sensors
and algorithms to ensure crops receive precisely what they need to maximize yield and promote
sustainability [3]. PA involves gathering data on weather patterns, soil conditions, and crop data
through Internet of Things sensors installed in the fields or remotely interconnected with the help of
Wireless Sensor Networks. With PA, a farmer may determine which parameters are required for a
healthy crop, when, and how much are required at any given time. The agricultural parameters that
impact the production yield and sustainability should be collected from different sources and analysed
by the PA system to produce agronomic recommendations [3].

PA is more accurate when the levels of primary nutrients (N, P, K), secondary nutrients (Ca, Mg, S,
Na), and micronutrients (Co, Fe, Cu, Mn, Mo, and Zn) in plants and soils are precisely predicted, with
nitrogen being the most essential nutrient [4] in agricultural production. Soil nutrient concentration
management, especially for N, P, and K, has become critical in modern agriculture to maximize yields,
minimize fertilizer expenditures, and minimize environmental impacts [4]. The Zimmer and Peacock
AS’s AgriSenze™ solution employs electrochemical sensors to measure soil nitrate-nitrogen (N-N)
concentration [5] and transmits the data to DjuliTM, an IoT cloud solutions. DjuliTM enables real-time
nutrient monitoring, advanced data analytics and collaboration environment to end users [6].
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1.1. Aim

This work aims to use the agricultural data from AgriSenze™ platform and apply artificial intelligence
to predict daily soil temperatures at six different depths (2 cm, 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm).

2. Background

The desire for using artificial fertilizers to increase plant yield has grown since they were first introduced.
However, this heightened consumption has led to concerns about overfertilization, and its environmental
impacts attributed to nitrogen and phosphorus, prompting the implementation of fertilization policies
since the 1970s to regulate the amount and application rates [7].

Overfertilization can result in runoff, causing environmental issues such as greenhouse gas emissions,
eutrophication, and groundwater contamination. Conversely, under-fertilization can lead to decreased
plant yields and nutrient deficiencies.In addition to the meteorological factors, various soil parameters
such as soil temperature, soil moisture, soil pH, soil organic matter, cation exchange capacity, etc can
impact the soil nitrate-nitrogen concentration. Depending on the soil depth, soil temperature impacts
the dissolved organic matter, humification and nitrate concentration [8]. Similarly, the soil moisture
influences the plant nutrient uptake depending on the wetness and dryness of the soil.

There was a limited number of research studies that employed data-driven approaches to predict soil
temperature. Elsayed S. et al. [9] employed hourly data on humidity, solar radiation, rainfall, dew point,
and air pressure from five locations in North Dakota as input factors to forecast soil temperature at a
depth of 10 cm. The models investigated were Random Forest, Support Vector Machines (SVM), Deep
Neural Networks (DNN), Linear Regression, and Long Short-Term Memory (LSTM). Mampitiya et al.
[10] recently performed a comparative analysis of various models, such as XGBoost, CatBoost, LSTM,
Artificial Neural Network (ANN), Bi-LSTM, Ridge, Lasso, and ElasticNet. They utilized monthly data on
air temperature, relative humidity, and wind speed spanning from 1989 to 2018 for Nukus, Uzbekistan.
These models were assessed for their ability to predict soil temperature at a surface and 10 cm depth.

Kisi O. et al. [11] compared models including multi-layer perceptron (MLP), radial basis neural
networks (RBNN), generalized regression neural networks (GRNN), and multiple linear regression
(MLR) to predict monthly soil temperatures at depths of 5 cm, 10 cm, 50 cm, and 100 cm at Mersin
Station, Turkey. Other works have used ANN such as Taheri M. et al. [12]. Zare Abyaneh H. et al [13]
developed an ANN and Co-active neuro-fuzzy inference system (CANFIS). Farhangmehr V. et al. [14],
have manipulated CNN model to predict daily maximum soil temperature under normal, hot and cold
weather conditions at Ottawa area of Canada (45.250 N latitude, 75.500 W longitude). Bilgili M. et al.
[15] evaluated ANFIS network with fuzzy c-means (ANFIS-FCM), subtractive clustering (ANFIS-SC),
feed-forward neural network (FNN), grid partition (ANFIS-GP), Elman neural network (ENN), and
LSTM models for predicting one-day ahead soil temperature at three depths (5, 50 and 100 cm) from the
previously measured time-series daily soil temperature data from 2010-2020 in the Central Anatolia
Region of Turkey. Ebtehaj Isa, et al.[16] have demonstrated emotional neural network using both
meteorological variable and time-series based modelling to predict daily soil temperature at different
depths (10 and 20 cm) for Springfield and Champaign stations, in Illinois, USA.

Xing L. et al. [17] have proposed an SVM and combined SVM models to predict annual average
and daily average soil temperatures at 5, 10, 20, 50 and 100cm using air temperature, rainfall, wind
speed, solar radiation and relative humidity input data collected for 130 years from 16 different sites
located in the USA with dry, warm and snowy climates. Wang X. et al. [18] investigated an integrated
network prediction model utilizing gated recurrent unit (GRU) to predict soil temperature at varying
depths (5, 10, and 15 cm) and different time intervals (6, 12, and 24 hours). They utilized time-series
soil temperature data gathered from two meteorological stations (Laegern and Fluehli) in Switzerland
spanning from 2006 to 2014.

The range of machine learning models proposed by various researchers suggest that the best per-
forming model is highly contingent upon the specific dataset and climatic region under consideration.
Therefore, there is no single soil temperature prediction model that has been universally adopted, not



even at the country level. Besides, it becomes even more difficult when developing models for cold
climates at national level. Imanian H. et al.[19] recommended that machine learning models should
consider the cold climate’s unique features, such as snow depth or other during exceptionally cold
conditions, for better prediction accuracy.

Therefore, this study contributes to the research in soil temperature prediction for agriculture in cold
climates, specifically using data available from Norway.

3. Methods

3.1. Data collection

The data used in this study is gathered and pre-processed with help of a web API platform integrated to
the Zimmer and Peacock (ZP) AgriSenze™ solution. The data was collected manually from NMBU and
MET Norway using the data-gathering web API. The web API platform is integrated to the AgriSenze
solution. The Meteorological data for ÅS - BIOKLIM collected by NMBU from January 01, 2000, to April
01, 2024, was used as the basis for building the agricultural dataset in this research.

ÅS - BIOKLIM research site is located on Søråsjordet in Ås i Viken weather station with geographic
coordinates 59 39’ 37’’ N, 10 46’ 54’’ E, 93.3 m above sea level. The NMBU’s data collection process is
discussed in detail in the official website and scientific report [20, 21]. This dataset was used to build
a machine learning model to predict the daily soil temperatures at 2cm, 5cm, 10cm, 20cm, 50cm and
100cm soil depths. The data contains different meteorological parameters recorded on a daily basis,
including date, minimum temperature (°C), maximum temperature (°C), mean temperature (°C), relative
humidity (%), precipitation (mm), evaporation (mm), daily air pressure (mbar), wind speed (m/s), wind
direction (degrees), snow depth (cm), global radiation (W/m²), reflected radiation (W/m²), radiation
balance (W/m²), diffuse radiation (W/m²), photosynthetic active radiation – PAR (mE/m²) and soil
temperature at various depths (2cm, 5cm, 10cm, 20cm, 50cm, 100cm in °C).

The data parameters pertaining to the nitrate-nitrogen sensors of AgriSenze™ are obtained through
the DjuliTM IoT cloud service API developed by Zimmer and Peacock AS. Although this API provides
nitrate concentration data, it has not yet been deployed on the ÅS - BIOKLIM field station; hence, the
data gathered is not specific to this location.

3.2. Data cleaning and preprocessing

The Jupyter Notebook and Google Colab were used for data processing and analytics. The AgriSenze™
dataset was loaded from CSV file and analysed for duplicates, missing values, anomalies, and non-
numeric values. The dataset records are organized on daily values for the different parameters and
duplicate date records were removed. Features from the original dataset that contained numerous
missing values and were deemed to have minimal impact on daily soil temperature were removed from
the dataset. Also, in the original snow depth data, there were instances where both manually recorded
and automatically measured values were available for the same dates. In these cases, the manually
recorded values were selected for their better reliability.

There were a large number of missing values for the snow and evaporation in the winter season
(November to March). To input the missing values, time series data analysis was used to determine
whether to impute the missing values or exclude the parameter from the dataset. Since 8 years of data
was missing, the mean the average value for the same day across multiple years within the same month
was calculated and inputted, providing a more representative estimate based on historical observations
for that specific day and month.

Following this process, outlier were identified and removed using Z-score normalization. Then,
Isolation Forest algorithm was used to identify anomalous data points. Finally, correlation analysis was
used to identify highly correlated features aiming to avoid multicollinearity effect on the models.



Table 1
The different pre-processed time-independent shuffled and time-dependent unshuffled dataset cases
used for the soil temperature prediction modelling input

Dataset Type dataset Features (E.g. For Target ST100)

Case 1:Z-score outlier
filtered dataset

mean air temperature, min air temperature, max air temperature, relative humidity,
air pressure, precipitation mm, evaporation mm, earth heat flux, radiation balance,
photosynthetic active radiation, albedo, snow depth, ST2, ST5, ST10, ST20, ST50,
month, day

Case 6: time-series
prediction

date, mean air temperature, min air temperature, max air temperature, relative
humidity, air pressure, precipitation, evaporation, earth heat flux, radiation balance,
photosynthetic active radiation, albedo, snow depth, ST2, ST5, ST10, ST20, ST50

3.3. Model selection, training and evaluation

The initial step in developing the machine learning model involves shuffling and splitting the pre-
processed dataset into training, validation, and test subsets. The dataset with 8252 sample size after
Z-score outlier filtering was divided into 70% training, 15% validation, and 15% test sets. This 70/30
splitting proportion proved to be more performant compared to the 80% for training and 20% for testing
considered as common split as discussed in Géron A. [22]. The shuffling process ensures that each
subset (training, validation, and test) is representative of the overall dataset. This preventive measure
mitigates potential biases that might arise from the original order of the data, ultimately leading to
reliable cross-validation results in subsequent steps [22].

The next step involves organizing the features, targets, and evaluation metrics to be utilized for the
daily soil temperature prediction model. The targets are the daily soil temperatures at various depths,
specifically 2 cm, 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm. The features were initially used as independent
input variables, a correlation and feature importance analysis were subsequently conducted to identify
the most influential features for each target variable. Since the problem requires a regression model to
predict daily soil temperature, the main evaluation metrics adopted for the prediction model includes
the coefficient of determination (R²), mean absolute error (MAE), mean squared error (MSE) and root
mean squared error (RMSE).

The regression models tested and compared consist of Stacking Regressor, CatBoost Regressor,
HistGradientBoosting Regressor, RandomForest Regressor, AdaBoost Regressor, Ridge regressor, Support
Vector Regression with both linear and non-linear kernels, Lasso Regressor, and ElasticNet Regressor.
This comprehensive set of models were manipulated for a comparative analysis to identify the most
suitable algorithm for the daily soil temperature prediction task. The models were fitted with the best
params. Then cross-validation was performed followed by residual analysis. Residuals analysis was
used as a valuable tool to evaluate the model’s fit to the data. Finally, feature importance and backward
feature elimination technique were employed.

4. Results

There are fourteen basic features (predictor variables) and six target (soil temperature) variables. To gen-
erate an optimized dataset for predicting soil temperature at six different depths, various preprocessing
methods were employed. Table 1 summarizes the two main cases and the resulting datasets produced
after applying the preprocessing steps. The dataset cases have normalized and denormalized versions
and the performance of the predictions for each dataset case was evaluated. The dataset cases are
generally categorized into time-independent shuffled meteorological datasets (Case 1) and time-series
meteorological datasets (Case 6). The prediction performance analysis was done for the all datasets
cases to identify which dataset case fits best for the models. Other dataset cases were also tested and
found less performative. Among the dataset cases, Case 1 and Case 6 were identified as having superior
performance.



Table 2
ST2, ST5, ST10, ST20, ST50 and ST100 prediction performance results of 5 models for the training set’s
5-fold cross-validation, validation set’s 1-fold validation and test set phases for the Z-score outlier
filtered dataset (Case 1)

Target Model
Evaluation Phases

Train set CV (5-Fold) Validation set Test set
R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

ST2

RF-R 0.9791 0.7309 0.9960 0.9767 0.6883 0.9476 0.9816 0.7650 1.0311
XGB-R 0.9807 0.7049 0.9571 0.9800 0.6519 0.8856 0.9833 0.7271 0.9564
CATB-R 0.9812 0.7018 0.9437 0.9802 0.6702 0.8862 0.9835 0.7268 0.9522
HGB-R 0.9808 0.7001 0.9560 0.9797 0.6768 0.9219 0.9826 0.7258 0.9625
STACK-R 0.9821 0.6795 0.9230 0.9811 0.6499 0.8766 0.9843 0.7059 0.9286

ST5

RF-R 0.9971 0.2514 0.3646 0.9969 0.2355 0.3489 0.9974 0.2546 0.3681
XGB-R 0.9996 0.0978 0.1377 0.9996 0.0897 0.1251 0.9997 0.0932 0.1269
CATB-R 0.9995 0.1150 0.1537 0.9995 0.1060 0.1398 0.9996 0.1175 0.1497
HGB-R 0.9996 0.0996 0.1419 0.9996 0.0906 0.1237 0.9997 0.0958 0.1295
STACK-R 0.9996 0.0925 0.1286 0.9997 0.0840 0.1138 0.9997 0.0886 0.1194

ST10

RF-R 0.9984 0.1694 0.2643 0.9986 0.1609 0.3164 0.9978 0.1586 0.2398
XGB-R 0.9987 0.1421 0.2374 0.9990 0.1330 0.2899 0.9981 0.1332 0.2105
CATB-R 0.9985 0.1650 0.2566 0.9987 0.1595 0.3097 0.9979 0.1560 0.2300
HGB-R 0.9987 0.1450 0.2358 0.9990 0.1340 0.2922 0.9981 0.1323 0.2075
STACK-R 0.9988 0.1363 0.2282 0.9990 0.1276 0.2857 0.9982 0.1265 0.2011

ST20

RF-R 0.9974 0.1972 0.3221 0.9977 0.1930 0.3728 0.9966 0.1859 0.2969
XGB-R 0.9974 0.1937 0.3189 0.9979 0.1916 0.4089 0.9969 0.1796 0.2799
CATB-R 0.9972 0.2124 0.3332 0.9975 0.2134 0.3922 0.9962 0.2056 0.3113
HGB-R 0.9972 0.2021 0.3297 0.9979 0.1927 0.3917 0.9962 0.1833 0.2833
STACK-R 0.9975 0.1828 0.3061 0.9980 0.1758 0.3741 0.9966 0.1714 0.2746

ST50

RF-R 0.9932 0.3260 0.4486 0.9866 0.3071 0.4191 0.9944 0.3327 0.6441
XGB-R 0.9950 0.3095 0.4233 0.9860 0.2940 0.3976 0.9949 0.3189 0.6333
CATB-R 0.9944 0.3325 0.4468 0.9859 0.3157 0.4197 0.9949 0.3341 0.6377
HGB-R 0.9936 0.3129 0.4334 0.9862 0.2954 0.4056 0.9947 0.3171 0.6294
STACK-R 0.9942 0.3030 0.4149 0.9865 0.2855 0.3874 0.9952 0.3081 0.6228

ST100

RF-R 0.9941 0.2434 0.3367 0.9945 0.2226 0.3128 0.9951 0.2320 0.3193
XGB-R 0.9951 0.2259 0.3069 0.9961 0.2105 0.2803 0.9961 0.2324 0.4086
CATB-R 0.9948 0.2370 0.3164 0.9917 0.2228 0.2993 0.9955 0.2379 0.3911
HGB-R 0.9953 0.2270 0.3017 0.9961 0.2034 0.2767 0.9962 0.2208 0.4149
STACK-R 0.9965 0.2165 0.2950 0.9920 0.2016 0.2730 0.9963 0.2186 0.3655

Z-score outlier filtered dataset (Case 1) results: Upon comprehensive performance evaluation of
the time-independent datasets, the Z-score outlier filtered dataset (Case 1) emerged as the top performer
out of the time-independent dataset cases. R 2, MAE and RMSE metrics were used as evaluation metrics.
For a best model, the MAE and RMSE should be ideally the same. The performance results of the four
base models (RF-R, XGB-R, CATB-R, HGB-R) and the meta-model (STACK-R) for the Case 1 dataset are
listed in Table 2 for all targets.
Time-series dataset (Case 6) results: The dataset was divided into training, validation, and test

sets sequentially in proportions of 70%, 15%, and 15%, respectively. As presented in Table 3, the
performance results from the 10-Fold cross-validation (CV), 5-Fold CV, and test set evaluation were
within a comparable range, except for ST50. In the case of ST50, there was a notable difference between
the 10-Fold CV and 5-Fold CV RMSE values. Similarly, the test RMSE value significantly deviates from
the CV RMSE value. For predicting soil temperatures at depths beyond 2 cm, historical soil temperatures
data was used alongside the meteorological features.

Observed versus predicted values analysis: Scatter plots were employed to visualize the models’
performance by comparing observed values against predicted values, examining the outliers between
these two sets for each target variable. The scatter plot of the observed values against the STACK-R
predicted values for soil temperatures at 2 cm, 5 cm, 10 cm, 20 cm and 100 cm depths are depicted in



Table 3
ST2, ST5, ST10, ST20, ST50 and ST100 prediction performance results of 5 models for the training set’s 10-fold
cross-validation, validation set’s 5-fold cross-validation and test set phases for the time-series dataset (Case 6)

Target Models
Evaluation Phases

Train set CV (10-Fold) Valid. set CV (5-Fold) Test set
R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

ST2

RF-R 0.9956 0.3079 0.4317 0.9941 0.3528 0.5119 0.9975 0.2457 0.3512
XGB-R 0.9957 0.3086 0.4310 0.9951 0.3606 0.5158 0.9973 0.2597 0.3651
CATB-R 0.9962 0.3318 0.4523 0.9718 0.7838 1.1207 0.9966 0.3065 0.4122
HGB-R 0.9961 0.2868 0.4056 0.9953 0.3151 0.4598 0.9980 0.2296 0.3186
STACK-R 0.9964 0.2791 0.3903 0.9963 0.3213 0.4573 0.9980 0.2260 0.3135

ST5

RF-R 0.9994 0.0961 0.1408 0.9982 0.1390 0.2771 0.9998 0.0576 0.0900
XGB-R 0.9991 0.1112 0.1660 0.9982 0.1526 0.2788 0.9997 0.0800 0.1153
CATB-R 0.9983 0.1822 0.2550 0.9861 0.5403 0.7719 0.9991 0.1501 0.2081
HGB-R 0.9991 0.0971 0.1514 0.9981 0.1387 0.2887 0.9998 0.0658 0.0956
STACK-R 0.9993 0.1003 0.1492 0.9983 0.1411 0.2727 0.9998 0.0659 0.0888

ST10

RF-R 0.9991 0.1182 0.1713 0.9974 0.1933 0.3267 0.9976 0.1321 0.3324
XGB-R 0.9988 0.1297 0.1878 0.9972 0.2162 0.3371 0.9980 0.1204 0.3031
CATB-R 0.9983 0.1774 0.2548 0.9906 0.4476 0.6149 0.9978 0.1607 0.3184
HGB-R 0.9989 0.1131 0.1699 0.9975 0.1823 0.3187 0.9981 0.1065 0.2998
STACK-R 0.9990 0.1137 0.1671 0.9976 0.1866 0.3196 0.9979 0.1122 0.3125

ST20

RF-R 0.9979 0.1426 0.2206 0.9983 0.1615 0.2518 0.9994 0.0918 0.1576
XGB-R 0.9974 0.1649 0.2445 0.9981 0.1864 0.2673 0.9992 0.1018 0.1844
CATB-R 0.9962 0.2264 0.3154 0.9916 0.4154 0.5694 0.9987 0.1563 0.2353
HGB-R 0.9977 0.1482 0.2244 0.9983 0.1555 0.2496 0.9992 0.0908 0.1791
STACK-R 0.9978 0.1429 0.2178 0.9985 0.1598 0.2374 0.9994 0.0889 0.1601

ST50

RF-R 0.9651 0.1905 0.7164 0.9982 0.1551 0.2270 0.8753 0.2450 2.1349
XGB-R 0.9580 0.2282 0.8400 0.9981 0.1635 0.2359 0.9475 0.2848 1.8391
CATB-R 0.9708 0.2884 0.6477 0.9893 0.4201 0.5584 0.8996 0.3444 1.9161
HGB-R 0.9751 0.1690 0.5218 0.9986 0.1321 0.2021 0.9081 0.3890 1.8333
STACK-R 0.9750 0.1935 0.5210 0.9986 0.1398 0.2014 0.9071 0.3634 1.8424

ST100

RF-R 0.9992 0.0662 0.0968 0.9990 0.0972 0.1389 0.9990 0.0596 0.1429
XGB-R 0.9992 0.0695 0.1004 0.9986 0.1147 0.1611 0.9991 0.0632 0.1394
CATB-R 0.9964 0.1553 0.2267 0.9862 0.3928 0.5049 0.9984 0.1132 0.1815
HGB-R 0.9992 0.0628 0.0930 0.9991 0.0859 0.1258 0.9991 0.0533 0.1354
STACK-R 0.9992 0.0689 0.0982 0.9987 0.1078 0.1353 0.9991 0.0595 0.1391

Figure 4. For an ideal model, the scatter plot would show a straight diagonal line marked in red colour
in the plots indicating perfect accuracy of the model prediction.
Feature Importances: Feature importance analysis evaluates the contribution of each feature in

predicting a specific target. The feature importance analysis showed that precipitation, air pressure
and day have the least impact on the upper layers of the soil temperatures at ST2, ST5, ST10 and ST20.
Conversely, the impact of air temperature decreases as the depth of the soil increases whereas the
influence of evaporation, earth heat flux and radiation balance increases.

Based on the feature importances analysis, backward elimination (sensitivity analysis) technique
was tested for few features but not exhaustively tested for every possible combination because it takes
time to simulate all possible combinations of features based on the feature importances for a specific
target. The snow depth and evaporation features were removed to test their impact on the prediction
performance for ST2. The impact of eliminating evaporation and snow depth did not affected the
prediction of ST2 significantly. The importance of evaporation and snow depth in predicting ST2 is
9.68% and 3.74%.



Figure 1: Scatter plots of observed values against predicted values of soil temperatures at 2, 5, 10 and 20 cm for
STACK-R model for Case 1 dataset

5. Discussions

The data from AgriSenze™ solution was manipulated and valuable information was extracted to enhance
decision-making. In this study, soil temperature was the primary focus of data analytics due to its
major influence on plant growth and the available rich data source collected from NMBU. The soil
temperature data analytics involved model-driven soil temperature predictions at six different depths: 2
cm, 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm. The soil temperature prediction modelling process tested
approximately 10 different models, including linear models (Lasso, ElasticNet, RidgeCV), non-linear
model (SVR), tree-based models (RF-R, XGB-R, CATB-R, HGB-R), and meta-estimator (STACK-R). The
study did not discuss the linear and SVR models in detail because in the preliminary testing they were
found to be comparatively less efficient for the specific dataset used in this study.

According to the different pre-processing stages, various dataset cases were generated as shown
previously in Table 1, and based on the preliminary assessment the candidate models (RF-R, XGB-
R, CATB-R, HGB-R, STACK-R) were tested for each case. Case 1 proved to be superior to all other



pre-processed datasets except the Case 6, time-series dataset which may need further validation.
For the time-independent modelling, STACK-R demonstrated superior performance across all eval-

uation phases. This is because the stacking regressor leverages the strengths of the base models by
learning from their performance. The other four base models (RF-R, CATB-R, XGB-R, HGB-R) have
nearly similar performance except the RF-R has higher errors than the other models for almost all
targets 2. The cause of the minimum error occurrence in different split sets is due to the nature of
the data in the split sets. The prediction error for ST2, soil temperature at 2 cm, (RMSE = 0.9286) is
higher compared to other soil depths. This is because the model for ST2 relies solely on meteorological
variables, while the model for ST5 also incorporates the highly correlated soil temperature data at 2
cm. Similarly, the model ST10 considers the temperatures at the two shallower depths above it. This
pattern continues for all higher depth soil temperature predictions.

The prediction accuracies were checked by dropping the historical soil temperature features from
dataset resulting in weaker performance, for example for target ST5, when ST2 feature is dropped out,
the prediction error increased from RMSE of 0.1286 to 0.9334. This is close to the prediction error of
ST2 which was solely predicted from meteorological parameters only. The study by Bilgili M. et al. [15]
supports this result that incorporating historical soil temperature data in the input helps to increase the
prediction accuracy.

The model for ST2 is robust for outliers and has good generalization capabilities across wide range
of data points according to the residual analysis- While the most stable prediction was achieved for
ST50 with mean RMSE of 0.4015 and standard deviation of 2.6% between the cross-validation errors,
the most accurate prediction was achieved for ST5 with mean RMSE of 0.1234 and standard deviation
of 4%. Models can have good generalization capabilities across their wider range of data points but less
stable (has higher variance in its prediction error) and less accurate (has higher mean prediction error)
in the overall prediction error.

The time-dependent modelling with the time-series dataset (Case 6) exhibited a significant improve-
ment in performance for some of the targets compared to the time-independent modelling. However,
further validation is necessary to ensure that the prediction is consistent for any time-series data. While
an exhaustive validation could not be performed due to time constraints, very promising and interesting
results were observed. The modelling results are illustrated in Table 3. With the exception of the
targets ST5 and ST50, all other targets demonstrated relative improvements in performance. The most
crucial improvement in this time-series modelling was observed for ST2 with almost 50% decrease in
RMSE, as all other soil temperatures depend on the impact of ST2 either directly or indirectly. This
represents a promising result that warrants further consideration in the future work, involving more
extensive validation and analysis on time-series modelling with more advanced deep learning models.
This validation is highly required because a recent study by Imanian H. et al. [19] had suggested that
time-series machine learning models face challenges in accurately predicting soil temperature especially
for cold climates. The evaluation of the time-series modelling on the ST50 test set yielded somewhat
strange results, necessitating further validation to determine whether the test set data is causing the
extreme change in RMSE or if the model is not robust for all types of time-series data. This aspect will
be considered in future work.

The other essential analysis done was the feature importances and backward feature elimination
process. The prediction of soil temperature at 2 cm is fully dependent on the meteorological parameters
and air temperature is the most crucial parameter with overall weight 56.61% (mean + max + min
air temperatures) followed by the month, evaporation and snow depth at 14.68%, 9.68% and 3.74%
respectively. The backward feature elimination showed that the ST2 prediction performance remained
relatively similar regardless of whether evaporation and snow depth data were included or excluded
in the Case 1 dataset. This could be due to some reasons: 1) it could be because majority of the snow
depth data was missing in the original dataset, hinting that the impact of snow depth could be more
pronounced if the actual snow depth data were accurately measured, 2) it could be because in cold
climates the topsoil surface temperature is highly influenced by ice layer temperature during the winter
season and that information is not well captured in snow depth dataset, 3) the impact of snow depth
on topsoil temperature is relatively negligible. Similarly, the effect of evaporation, which was filled



Table 4
Summary of few recent studies on soil temperature predictions

Reference Country Dataset Method Depth (cm) 𝑅2 RMSE
Hao et al. (2021)
[24]

Lagern, Oensin-
gen, Fluhli
Switzerland

Daily (2004 -
2014)

EEMD-CNN 5 0.9970 0.4660

10 0.9980 0.3750
25 0.9990 0.2760

Imanian H. et al.
(2022) [23]

Ottawa,
Canada

Hourly (01 June
2020 - 31 August
2020)

Stacking 0 - 7 0.9800 0.6600

MLP 0 - 7 0.9800 0.6700
Deep Learning 0 - 7 0.9800 0.6600

Bilgili M. et al.
(2023) [15]

Sivas, Turkey Daily (2010 -
2019)

ENN 5 0.9900 1.3186

ANFIS-FCM 50 0.9988 0.1388
MARS-GP 100 0.9999 0.0634

Imanian H. et al.
(Dec 2023) [19]

Iqaluit, Canada Hourly (2021) MLP-shuffled 0 - 7 0.9498 1.4600

MLP-shuffled 0 - 7 0.9660 1.1825
Churchill,
Canada

Mampitiya L. et
al. (2024) [10]

Nukus, Uzbek-
istan

Monthly (1989 –
2018)

Bi-LSTM Soil sur-
face

0.9450 4.1290

LSTM 10 0.9630 2.5120
This Study
(2024)

Ås, Norway
(Cold climate)

Daily (01 Jan
2000 – 01 April
2024)

Stacking Regres-
sor (RF-R, CATB-
R, XGB-R, HGB-
R)

2 0.9843 0.9286

5 0.9996 0.1286
10 0.9990 0.2857
20 0.9980 0.3747
50 0.9952 0.6228
100 0.9963 0.3837

by using the daily average data across all the years and zero for the cold season, could be increased if
the actual measured data was accurate in the dataset. The feature importance analysis revealed that
mean air temperature has a major influence on predicting soil temperatures at shallower depths, and
its influence reduces as the soil depth increases. Conversely, precipitation had the least impact on
soil temperature predictions across all depths. The feature sensitivity analysis conducted by Imanian
H. et al. [19], on soil temperature predictions, for cold climates at 0-7cm depth strengthened similar
findings. The evaporation, earth heat flux and radiation have considerable impact on the prediction
of deeper soil depths, supporting the assertions by Farhangmehr V. et al. [14] that features should
not be disregarded without a thorough analysis of feature importance if prediction accuracy is the
primary concern. The month and mean air temperature emerged as significant features for most target
variables. The influence of the month feature increased as the soil depth increased, potentially due
to the soil temperature at deeper depths taking longer to change. As a result, monthly variations in
meteorological parameters are more pronounced than daily fluctuations at these deeper soil levels. The
soil temperatures at greater depths are affected by the long-term averaged effects of meteorological
parameters.

Even though direct one-to-one quantitative comparison is not recommended due to many research
contexts, contextually the performance results in table 4 indicate that the modelling in this study has
close performance metrics to the recent models especially on cold weather climates by Imanian H. et al.
[19, 23] and for some of the soil depths even better performances are recorded in this study.



6. Conclusion

The dataset consisted of fourteen independent meteorological variables and six dependent soil tem-
perature variables at six soil depths. Considering the soil temperature variables at shallower depths
as inputs for predicting temperatures at deeper depths helped increase the prediction accuracy. The
soil temperature prediction models yielded comparably good results, with the potential for future
improvements expected to enhance the accuracy of certain models, such as ST2 and ST50.

Research on soil temperature prediction for cold and snowy climates is rare and relatively challenging
compared to ordinary and hot climates due to the less impact of air temperature on soil temperature dur-
ing colder periods. Nevertheless, this study has successfully developed a model-based soil temperature
prediction with performance results comparable to most existing research and even better performance
at some soil depths. Although it is difficult to compare the prediction performance results directly with
the results from other research without contextualizing the dataset, location, season, depth of soil and
scaling factors used by the research, some results taken from the recent research are presented here for
contextual analysis.
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