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Abstract
In this work, we propose a general framework for designing neural network architectures inspired by dynamic
differential equations, utilizing the operator-splitting technique. The central idea is to treat neural network
design as a discretizations of a continuous-time optimal control problem, where the underlying dynamics are
governed by differential equations serving as constraints which is then unrolled as our network. These dynamics
are discretized through operator-splitting schemes, which allow complex evolution equations to be decomposed
into simpler substeps. Each step in the splitting scheme is then unrolled and interpreted as a layer in a neural
network, with certain control variables modeled as learnable parameters. This formulation provides a principled
way to incorporate prior knowledge about dynamics and structure into the network design. Using our theory,
we give a rigorous mathematical explanation of the well-known UNet and show that it is a discretizations of a
simple differential equation. By adding regularization to UNet, we can derive the PottsMGNet also through our
proposed framework.
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1. Introduction

Deep neural networks have achieved remarkable success across diverse tasks, including image seg-
mentation [1, 2, 3], image denoising [4, 5], and natural language processing [6]. Extensive research
has sought to explain the empirical success of deep neural networks and establish connections with
mathematical models. One line of research focuses on representation and generalization theory. These
studies demonstrate that, with properly designed architectures, deep networks can approximate target
functions [7], functionals [8], or operators [9] to arbitrary accuracy while achieving generalization
errors dependent on sample size.

Another research direction leverages mathematical models to interpret network behaviors and inspire
new architectures. For instance, works such as [10] reinterpret neural networks as discretized dynamical
systems, while [11] explores links to control theory. Unrolling is used in [12, 13] to incorporate networks
with mathematical algorithms. Inspired by some control problems, some stable architectures have
been proposed in [14, 15]. The weak formulation of PDEs motivated Zang et al. [16] to design
weak adversarial networks, which was later extended to constrained optimization in [17]. Recent
works like [18, 19, 20] unify the Potts model, operator-splitting methods, and control theory to derive
interpretable networks. For example, Tai et al. [18] developed PottsMGNet, which achieved robust
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image segmentation across noise levels via a unified framework grounded in multigrid and control
perspectives. Notably, their analysis revealed that many encoder-decoder networks implicitly implement
operator-splitting algorithms for control problems. Further advancing this interplay, Liu et al. [20]
proposed a double-well network that learns region force terms in the Potts model through neural
representations. We also want to mention that the work [21] has provided another way to interpret
neural networks through multigrid techniques.

In this work, we aim to present a general framework for designing neural networks based on dynamic
differential equations using operator-splitting technique. The basic idea is discretizing a continuous
control problem using the dynamic system as a constraint which is then approximated by some operator-
splitting schemes. We unroll this splitting scheme as a neural network with some control variables
parameterized as learnable modules. We also illustrate this approach through examples of the UNet
and the PottsMGNet.

2. The Central Ideas

A central insight of our work is that deep neural networks (DNN) can be naturally derived as dis-
cretizations of continuous control problems governed by partial differential equations. This perspective
provides a unifying framework to design and interpret network architectures through dynamical
systems and optimal control.

Consider a continuous control problem where the state evolution is described by a PDE of the form:

𝜕𝑡𝑢 = 𝒜(𝑢, 𝜃) for (x, 𝑡) ∈ Ω × [0, 𝑇 ], 𝑢(0) = 𝑢0 in Ω, (1)

where Ω is the spatial computational domain, 𝒜 is a differential operator parameterized by the control
variable 𝜃 which could depends on both x, 𝑡 or one of them. The function 𝑢0 is the initial condition. By
properly discretizing this PDE in time by operator-splitting methods and unrolling the dynamics over
discrete steps, we can derive a numerical scheme for solving (1). It is shown that this scheme has the
same architecture of a network, for which the control variables plays the role of network learnable
parameters. Based on this scheme, one optimizes control variables to minimize a given cost functional
so that 𝑢(𝑇 ) matches the target state. The optimization procedure is the same as network training.
This is a general framework that applies to all networks. From another perspective, it also implies

that for any given network, we can find a corresponding control problem so that this network is a
numerical scheme (with proper discretization and unrolling) solving this problem. This framework
offers several advantages:

• Theoretical Analysis: Tools from PDE theory (e.g., stability, convergence, and regularity
analysis) can be applied to study the behavior of DNNs.

• Architecture Design: New network architectures can be derived by choosing appropriate PDE
models and discretization schemes. It enables to equip the designed neural networks with different
kinds of physical properties which are often desired, but have not been able to achieve with
existing networks.

• Scalability, Interoperability and Explainability: The continuous viewpoint provides insights
into the role of depth, initialization, and parameterization in DNNs.

In the following sections, we give details of this idea and demonstrate how to use operator-splitting
methods and unrolling to discretize the control problems. Applications of this framework on UNet [1]
and PottsMGNet [18] will be discussed.

3. Discretization by Operator-Splitting Methods

Assume that we have decomposed the differential operator 𝒜 in the following form:

𝜕𝑡𝑢 =
𝐾
∑
𝑖=1

𝒜𝑖(𝑢, 𝜃), 𝑢(0) = 𝑢0,



where each 𝒜𝑖(𝑢, 𝜃) is possibly nonlinear and acts as a distinct operator. Operator-splitting methods
approximate the full solution by evolving 𝑢 through each operator sequentially or in parallel over a time
step 𝜏. For example, the sequential splitting [22, 23] evolves the solution by applying the sub-solvers
sequentially:

𝑢𝑛+1 = 𝑆𝜏 ,𝑡
𝑛

𝐾 ∘ ⋯ ∘ 𝑆𝜏 ,𝑡
𝑛

1 (𝑢𝑛),

where 𝑆𝜏 ,𝑡
𝑛

𝑖 (𝑢̂) = 𝑢(𝑡𝑛 + 𝜏) denotes the solution operator of

𝜕𝑡𝑢 = 𝒜𝑖(𝑢, 𝑡), 𝑢(𝑡𝑛) = 𝑢̂.

The solution operator 𝑆𝜏 ,𝑡
𝑛

𝑖 (𝑢̂) can either be solved explicitly or approximated numerically. The parallel
splitting scheme [24] solves each sub-problem in parallel and combines them together

𝑢𝑛+1 = 1
𝐾

𝐾
∑
𝑖=1

𝑆𝐾𝜏 ,𝑡
𝑛

𝑖 (𝑢𝑛).

We may also apply the sequential and parallel schemes together to form hybrid splitting schemes as
explained in Appendix A, see also [18, Appendix D] for some more details.

After splitting, unrolling methods are used to construct neural networks. Unrolling maps the splitting
scheme to a neural network architecture, where each operator 𝑆𝑖 becomes a network layer. Specifically,
we have the following construction:

1. Layer structure: Each time step 𝑢𝑛 → 𝑢𝑛+1 is unrolled into 𝐾 sub-layers, one per operator 𝑆𝑖. If 𝒜𝑖
is known (e.g., a Laplacian), we implement 𝑆𝑖 as a fixed layer. If 𝒜𝑖 contains unknown learnable
parameters, we represent 𝑆𝑖 as a trainable neural network block.

2. Parameterization: Replace unknown 𝒜𝑖 with learnable modules 𝒜 𝜃𝑖
𝑖 (𝑢, 𝑡) with parameters 𝜃𝑖(𝑡).

The operator 𝑆𝑖 becomes a learnable layer 𝑆𝜏 ,𝑡
𝑛,𝜃𝑖

𝑖 .

3. Unrolled network: By replacing 𝑆𝑖 with 𝑆𝜏 ,𝑡
𝑛,𝜃𝑖

𝑖 in the splitting scheme, we get a neural network
model 𝑁Θ with learnable parameters Θ = {𝜃𝑖(𝑡𝑛)}

𝐾,𝑁
𝑖=1,𝑛=1.

This unrolled network can be trained by minimizing the discrepancy between predictions from a
given initial condition 𝑢𝑗0 and the corresponding ground-truth solutions 𝑦 𝑗 (e.g., MSE):

ℒ(Θ) =
𝑁̂
∑
𝑗=1

‖𝑁Θ(𝑢
𝑗
0) − 𝑦 𝑗‖

2
.

where {𝑢𝑗0, 𝑦 𝑗}𝑁̂𝑗=1 is a set of training samples. Let us emphasis that we can use other loss functions
instead of MSE, such as the cross-netropy loss. Different deep neural networks in the literature are just
different approximations of some specially chosen PDEs or ODEs. In the following section, we will
show that the well-known UNet [1] is just an unrolling of a numerical approximation of a special PDE,
see (2).

4. UNet as Multigrid Operator Splitting

The well-known deep neural network UNet [1] is designed to segment images into foreground and
background represented by a binary image. By applying the framework in Section 2-3, we show that it
is just a numerical approximation of a PDE.

4.1. The control problem

Given an input image 𝑓 defined on the image domain Ω, we consider the following initial value problem

{
𝜕𝑢(x,𝑡)

𝜕𝑡 = 𝑊(x, 𝑡) ∗ 𝑢(x, 𝑡) + 𝑑(𝑡) − 𝜖 ln 𝑢(x,𝑡)
1−𝑢(x,𝑡) , (x, 𝑡) ∈ Ω × (0, 𝑇 ],

𝑢(x, 0) = 𝐻(𝑓 (x)), x ∈ Ω,
(2)



where ∗ denotes convolution, 𝑊(x, 𝑡), 𝑑(𝑡) are control variables which will be learned in the training
process. The convolution kernel 𝑊(x, 𝑡) ∶ 𝐷 × (0, 𝑇 ] → ℝ is supported on some spatial domain 𝐷 ⊂ ℝ2.
In practice, 𝐷 can be different from Ω, and is usually a small region. In this paper, for simplicity, we take
𝐷 = Ω = [−1, 1]2. When computing convolution, we extend functions to ℝ2 by padding convolution
kernels 𝑊(x, 𝑡) by 0 and solution function 𝑢(x, 𝑡) periodically.
Equation (2) evolves any input image 𝑓 into a probability in 𝑢(𝑥, 𝑡) ∈ [0, 1], see [18, Appendix A]

and [25] for some more details with the derivation of this equation. Above, 𝐻(𝑓 ) is some operation to
generate initial condition from 𝑓. Due to the appearance of the term ln 𝑢

1−𝑢 , the solution of the above
equation is forced to be in (0, 1). For numerical consideration and to make the connection between
operator-splitting methods and neural networks clearer, we introduce a constraint 𝑢(𝑥, 𝑡) ≥ 0 to the
control problem. Due to the property of the term ln 𝑢

1−𝑢 , the introduced constraint does not change the
solution. Next, we incorporate the constraint into the equation by introducing an indicator function

{
𝜕𝑢
𝜕𝑡 − 𝑊(x, 𝑡) ∗ 𝑢 − 𝑑(𝑡) + 𝜖 ln 𝑢

1−𝑢 + 𝜕ℐΣ(𝑢) ∋ 0, (x, 𝑡) ∈ Ω × (0, 𝑇 ],
𝑢(x, 0) = 𝐻(𝑓 (x)), x ∈ Ω,

(3)

where
Σ = {𝑢 ∶ 𝑢(x, 𝑡) ≥ 0 for (x, 𝑡) ∈ Ω × (0, 𝑇 ]},

ℐΣ is the indicator function of Σ and 𝜕ℐΣ denotes the subdifferential of ℐΣ. By solving (3) for any input
image 𝑓, the initial value 𝑢(x, 0) will evolve to 𝑢(x, 𝑇 ), which is a probability function. By choosing
𝜖 close to 1, we can force this probability function to be close to a binary function. For simplify of
explanation, we will take 𝜖 = 1 and this is also the value the original UNet is using.

To solve (3) numerically, [26] decomposed control variables (learnable variables) {𝑊 (x, 𝑡), 𝑑(𝑡)} in (3)
using the multigrid idea. Here, we introduce a simplified version of their algorithm that can recover a
simple UNet-like structure. The discussion can be generalized to recover the original UNet structure
from (3).

4.2. Decomposition of control variables

In traditional multigrid methods, a popular framework is the ”fine grid → coarse grid → fine grid”
strategy [27, 28]. Such a form of V-cycle multigrid method can be interpreted as space decomposition
and subspace correction [29, 30].

Motivated by the fact that images can be viewed as piecewise constant functions in practice, in this
paper, we consider piecewise constant approximation of different resolutions. Let 𝑠 > 0 be some integer.
For the finest resolution, we consider discretizing 𝐷 into (2𝑠)2 small squares, each of which is of size
(2−𝑠+1) × (2−𝑠+1). They are called pixels in image processing and rectangular elements in finite elements
methods. In real applications, the finest mesh is the grid the input image is given. Denote ℎ1 = 2−𝑠+1
and this set of pixles by 𝒯 1. Starting with 𝒯 1, we can define a sequence of coarse pixels {𝒯 𝑗}𝑠+1𝑗=1.
Specifically, let ℎ𝑗 = 2𝑗−1ℎ1 = 2𝑗−𝑠. The set 𝒯 𝑗 consists of coarse pixels with size ℎ𝑗 × ℎ𝑗 that form a
partition of 𝐷. For each 𝒯 𝑗, we can define a set of piecewise constant basis functions. For the 𝑘-th pixel
in 𝒯 𝑗, denoted by 𝜔𝑘, we define 𝜙

𝑗
𝑘(x) such that it equals to 1 if x ∈ 𝜔𝑘 and equals to 0 otherwise. We

denote the space spanned by this set of functions by 𝒱 𝑗. We have that

𝒱 𝑠+1 ⊂ 𝒱 𝑠 ⊂ ⋯ ⊂ 𝒱 1. (4)

Note that each function in 𝒱 𝑗 has 22(𝑠+1−𝑗) coefficients and dim(𝒱 𝑗) = 22(𝑠+1−𝑗). Traditional multigrid
methods solve the decomposed subproblems by simple Gauss-Seidel or Jacobi iterations. Here, the
multigrids problems are used in a different way.
We will decompose {𝑊 (x, 𝑡), 𝑑(𝑡)} into a sum of variables with different scales over the multigrids.

Then, we use a hybrid splitting method to solve (3) so that all decomposed variables are distributed into
several subproblems, which are solved sequentially or in parallel. Within one iteration of the splitting
method, all decomposed variables are gone through. The general splitting idea is to split the operators
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Figure 1: An illustration of the V-cycle and the decomposition (5) with 𝐽 = 3. The 𝑝𝑗
𝑘’s illustrate patches

for (8) with 𝑚 = 1.

based on a V-cycle according to the grid level, cf. Figure 1 for an illustration. We decompose all terms
in the right-hand side of (3) via the following steps:

1. According to the idea of a V-cycle, we decompose 𝑊(x, 𝑡) and 𝑑(𝑡) as

𝑊(x, 𝑡) = 𝐴(x, 𝑡) + 𝐴̃(x, 𝑡), 𝑑(𝑡) = 𝑏(𝑡) + 𝑏̃(𝑡). (5)

These variables will be further decomposed next. Above, 𝐴, 𝑏 are sums of control variables in the
left branch of the V-cycle, and 𝐴̃, 𝑏̃ are sums of the control variables in the right branch, see an
illustration in Figure 1. We also decompose the nonlinear operator as follows:

− ln 𝑢
1 − 𝑢

− 𝜕ℐΣ(𝑢) = 𝑆(𝑢) + ̃𝑆(𝑢). (6)

Here, 𝑆(𝑢) contains nonlinear operations in the left branch and ̃𝑆(𝑢) contains nonlinear operations
in the right branch. In particular, we put − ln 𝑢

1−𝑢 in ̃𝑆(𝑢) only, i.e., 𝑆(𝑢) = 𝜕ℐΣ(𝑢) and ̃𝑆(𝑢) =
𝜕ℐΣ(𝑢) − ln 𝑢

1−𝑢 . Later, we will show that our operator splitting method recovers a simplified
UNet, in which the operation − ln 𝑢

1−𝑢 corresponds to the sigmoid layer at the end of UNet.
2. We further decompose the operators into components at different grids as:

𝐴(x, 𝑡) =
𝐽
∑
𝑗=1

𝐴𝑗(x, 𝑡), 𝑏(𝑡) =
𝐽
∑
𝑗=1

𝑏𝑗(𝑡), 𝑆(𝑢) =
𝐽
∑
𝑗=1

𝑆𝑗(𝑢),

𝐴̃(x, 𝑡) =
𝐽−1
∑
𝑗=1

𝐴̃𝑗(x, 𝑡) + 𝐴∗(x, 𝑡), 𝑏̃(𝑡) =
𝐽−1
∑
𝑗=1

𝑏̃𝑗(𝑡) + 𝑏∗(𝑡), ̃𝑆(𝑢) =
𝐽−1
∑
𝑗=1

̃𝑆𝑗(𝑢) + 𝑆∗(𝑢), (7)

where 𝐴𝑗, 𝑏𝑗, 𝐴𝑗, 𝑏̃𝑗 contain control variables at grid level 𝑗, 𝐴∗, 𝑏∗ are control variables that are
applied to the output of the V-cycle at the finest mesh. Operators 𝑆𝑗(𝑢) = ̃𝑆𝑗(𝑢) = 𝜕ℐΣ(𝑢) are
applied to the intermediate solution on grid level 𝑗. Operator 𝑆∗(𝑢) = − ln 𝑢

1−𝑢 is applied to the
output of the V-cycle at the finest mesh.

3. At grid level 𝑗 in the left branch, 𝐴𝑗 is defined on 𝐷, which contains 22(𝑠+1−𝑗) coefficients to be
learned. This leads to a high complexity when 𝑗 is small. In order to decrease the complexity,
we decompose 𝐴𝑗 into a sum of 𝐴𝑗

𝑘 which is nonzero only on small patch 𝑝𝑗𝑘 of size (𝑚ℎ𝑗) × (𝑚ℎ𝑗),
denoted by {𝐴𝑗

𝑘}
𝑐𝑗
𝑘=1, where 𝑐𝑗 is the total number of patches 𝑝𝑗𝑘. Normally, we take 𝑚 = 3 or 5 and

all 𝑝𝑗𝑘 shall cover 𝐷. Patches with 𝐽 = 3, 𝑚 = 1 is illustrated in Figure 1. Each 𝐴𝑗
𝑘 equals to 𝐴

𝑗 over
𝑝𝑗𝑘 if the support sets 𝑝

𝑗
𝑘 do not overlap. We also decompose 𝑏𝑗 and 𝑆𝑗 into a sum of 𝑐𝑗 components.

Thus we have

𝐴𝑗(x, 𝑡) =
𝑐𝑗
∑
𝑘=1

𝐴𝑗
𝑘(x, 𝑡), 𝑏

𝑗 =
𝑐𝑗
∑
𝑗=1

𝑏𝑗𝑘(𝑡), 𝑆
𝑗 =

𝑐𝑗
∑
𝑘=1

𝑆𝑗𝑘(𝑢). (8)



Note that 𝐴𝑗
𝑘’s have different supports, making specifying the support for each function compli-

cated. In order to simplify the settings, we shift 𝑝𝑗𝑘 so that they are centered at (0, 0). Specifically,
for each 𝐴𝑗

𝑘, let 𝜒
𝑗
𝑘 be a shifting kernel so that 𝐴𝑗

𝑘 = 𝜒 𝑗
𝑘 ∗ 𝐴̂

𝑗
𝑘 where 𝐴̂

𝑗
𝑘 supported on a square cen-

tered at (0, 0) is a shifted version of 𝐴𝑗
𝑘. According to the shift-invariant property of convolution,

we have

𝐴𝑗(x, 𝑡) ∗ 𝑢(x, 𝑡) =
𝑐𝑗
∑
𝑘=1

𝐴𝑗
𝑘(x, 𝑡) ∗ 𝑢(x, 𝑡) =

𝑐𝑗
∑
𝑘=1

(𝜒 𝑗
𝑘(x, 𝑡) ∗ 𝐴̂

𝑗
𝑘(x, 𝑡)) ∗ 𝑢(x, 𝑡)

=
𝑐𝑗
∑
𝑘=1

𝐴̂𝑗
𝑘(x, 𝑡) ∗ (𝜒

𝑗
𝑘(x, 𝑡) ∗ 𝑢(x, 𝑡)). (9)

Thus learning a kernel of with 22(𝑠+1−𝑗) coefficients is converted to learning 𝑐𝑗 kernels 𝐴̂
𝑗
𝑘(x, 𝑡)with

𝑚 × 𝑚 coefficients arond the origin. In implementation, 𝑐𝑗 corresponds to the number of channels

in a CNN and {𝐴𝑗
𝑘}
𝑐𝑗
𝑘=1 corresponds to CNN convolution kernels of size 𝑚 ×𝑚. In our experiments,

for simplicity, we omit the shifting operator 𝜒 𝑗
𝑘 and replace (𝜒 𝑗

𝑘(x, 𝑡) ∗ 𝑢(x, 𝑡)) by 𝑢(x, 𝑡)) and it
gives good results. This is also what is done in the original UNet. The same decomposition is
done for 𝐴̃𝑗, 𝑏̃𝑗 and ̃𝑆𝑗.

4. For each grid level 𝑗 and each channel 𝑘, we further decompose

𝐴̂𝑗
𝑘(x, 𝑡) =

𝑐𝑗−1
∑
𝑠=1

𝐴𝑗
𝑘,𝑠(x, 𝑡), (10)

and 𝐴𝑗
𝑘,𝑠(x, 𝑡) has support around the origin with 𝑚 × 𝑚 coefficients. The purpose of this decom-

position is to increase the number of parameters for the training variables. In our algorithm,
each channel will compute an intermediate result. In the computation, 𝐴𝑗

𝑘,𝑠 is used to convolve
with the intermediate solution in the 𝑠-th channel of grid level 𝑗 − 1. The same decomposition is
conducted for 𝐴̃𝑗

𝑘.

Before the decomposition, the control variables are 𝑊(x, 𝑡), 𝑏(𝑡). After these decompositions, we
see that the control variables are decomposed as in the following and the control variables are now
𝐴𝑗
𝑘,𝑠(x, 𝑡), 𝑏

𝑗
𝑘(𝑡), 𝐴̃

𝑗
𝑘,𝑠(x, 𝑡), 𝑏̃

𝑗
𝑘(𝑡), 𝐴

∗
𝑘,𝑠(x, 𝑡), 𝑏

∗
𝑘 (𝑡),:

𝐴(x, 𝑡) =
𝐽
∑
𝑗=1

𝑐𝑗
∑
𝑘=1

𝑐𝑗−1
∑
𝑠=1

𝐴𝑗
𝑘,𝑠(x, 𝑡), 𝐴̃(x, 𝑡) =

𝐽−1
∑
𝑗=1

𝑐𝑗
∑
𝑘=1

𝑐𝑗−1
∑
𝑠=1

𝐴̃𝑗
𝑘,𝑠(x, 𝑡) +

𝑐1
∑
𝑠=1

𝐴∗
𝑠 (x, 𝑡), (11)

𝑏(x, 𝑡) =
𝐽
∑
𝑗=1

𝑐𝑗
∑
𝑘=1

𝑏𝑗𝑘(x, 𝑡), 𝑏̃(x, 𝑡) =
𝐽−1
∑
𝑗=1

𝑐𝑗
∑
𝑘=1

𝑏̃𝑗𝑘(x, 𝑡) + 𝑏̃∗(x, 𝑡), (12)

and the operators 𝑆(𝑢), ̃𝑆(𝑢) are decomposed as:

𝑆(𝑢) =
𝐽
∑
𝑗=1

𝑐𝑗
∑
𝑘=1

𝑆𝑗𝑘(𝑢), ̃𝑆(𝑢) =
𝐽−1
∑
𝑗=1

𝑐𝑗
∑
𝑘=1

̃𝑆𝑗𝑘(𝑢) + 𝑆∗(𝑢) (13)

with 𝑆𝑗𝑘(𝑢) = ̃𝑆𝑗𝑘(𝑢) = 𝜕ℐΣ(𝑢), 𝑆∗(𝑢) = − ln 𝑢
1 − 𝑢

. (14)

The original PDE (2) is turned to

{
𝜕𝑢
𝜕𝑡 = 𝐴 ∗ 𝑢 + 𝐴̃ ∗ 𝑢 + 𝑏 + 𝑏̃ + 𝑆(𝑢) + ̃𝑆(𝑢), (x, 𝑡) ∈ Ω × [0, 𝑇 ],
𝑢(x, 0) = 𝐻(𝑓 ), x ∈ Ω.

(15)

To solve (15), we use a hybrid splitting method shown in Appendix A. Divide the time interval [0, 𝑇 ]
into 𝑁 subintervals with time step 𝜏 = 𝑇/𝑁. Denote the computed solution at time 𝑡𝑛 = 𝑛𝜏 by 𝑈 𝑛. The
resulting algorithm that updates 𝑈 𝑛 to 𝑈 𝑛+1 is summarized in Algorithm 1, where 𝒟 and 𝒰 represent
the downsampling and upsampling operator respectively. For simplicity, variable dependencies on x
are omitted.



Algorithm 1: A hybrid splitting method to approximate the PDE (15) for UNet
Data: The initial condition solution 𝑈 𝑛.
Result: The computed solution 𝑈 𝑛+1.
Set 𝑐0 = 1, 𝑣 01 = ̄𝑣 0 = 𝑈 𝑛.
for 𝑗 = 1, ⋯ , 𝐽 do

for 𝑘 = 1,⋯ , 𝑐𝑗 do
Compute 𝑣 𝑗𝑘 ∈ 𝒱 𝑗 by solving

𝑣 𝑗𝑘 − 𝒟(𝑣 𝑗−1)
2𝑗−1𝑐𝑗𝜏

−
𝑐𝑗−1

∑
𝑠=1

𝐴𝑗
𝑘,𝑠(𝑡𝑛) ∗ 𝒟(𝑣 𝑗−1𝑠 ) − 𝑏𝑗𝑘(𝑡𝑛) − 𝑆 𝑗𝑘(𝑣

𝑗
𝑘) ∋ 0. (16)

end for
Compute 𝑣 𝑗 = 1

𝑐𝑗
∑𝑐𝑗

𝑘=1 𝑣
𝑗
𝑘.

end for
Set 𝑢𝐽 = 𝑣 𝐽, and 𝑢𝐽𝑘 = 𝑣 𝐽𝑘 for 𝑘 = 1, ..., 𝑐𝐽.
for 𝑗 = 𝐽 − 1,⋯ , 1 do

Compute for 𝑘 = 1, ..., 𝑐𝑗
𝑢𝑗𝑘 =

1
2
𝑣 𝑗𝑘 +

1
2
𝒰(𝑢𝑗+1) (17)

for 𝑘 = 1,⋯ , 𝑐𝑗 do
Compute 𝑢𝑗𝑘 ∈ 𝒱 𝑗 by solving

𝑢𝑗𝑘 − 𝒰(𝑢𝑗+1)
2𝑗−1𝑐𝑗𝜏

−
𝑐𝑗+1

∑
𝑠=1

𝐴̃𝑗
𝑘,𝑠(𝑡𝑛) ∗ 𝒰(𝑢𝑗+1𝑠 ) − 𝑏̃𝑗𝑘(𝑡𝑛) − ̃𝑆 𝑗𝑘(𝑢

𝑗
𝑘) ∋ 0. (18)

end for
Compute 𝑢𝑗 = 1

𝑐𝑗
∑𝑐𝑗

𝑘=1 𝑢
𝑗
𝑘.

end for
Compute 𝑈 𝑛+1 by solving

𝑈 𝑛+1 − 𝑢1

𝜏
− 𝐴∗(𝑡𝑛) ∗ 𝑢1 − 𝑏∗(𝑡𝑛) − 𝑆∗(𝑈 𝑛+1) ∋ 0. (19)

4.3. On the solution to (16), (18) and (19)

Observe that (16) and (18) are in the form of

𝑢 − 𝑢∗

𝛾 𝜏
−

𝑐
∑
𝑠=1

𝐴̂𝑠 ∗ 𝑢∗𝑠 − 𝑏̂ + 𝜕ℐΣ(𝑢) ∋ 0, (20)

where 𝛾 is some constant, 𝑢∗ = 1
𝑐 ∑

𝑐
𝑠=1 𝑢∗𝑠 is known, 𝐴̂𝑠 is a convolution operator, 𝑐 is the number of

input channel, 𝑏̂ is a bias function. The solution to (20) is computed by a two-sub-step splitting method:

{
̄𝑢 = 𝑢∗ + 𝛾𝜏 (∑𝑐

𝑠=1 𝐴̂𝑠 ∗ 𝑢∗𝑠 + 𝑏̂) ,
𝑢− ̄𝑢
𝛾 𝜏 + 𝜕ℐΣ(𝑢) ∋ 0.

(21)

In (21), there is no difficulty in solving for ̄𝑢 in the first sub-step as it is an explicit step. Let us emphasis
that the term ∑𝑐

𝑠=1 𝐴̂𝑠 ∗ 𝑢∗𝑠 + 𝑏̂ in this step is exactly the Pytorch function Conv2d. For u in the second
sub-step, it is, in fact, a projection. Its closed-form solution is given as

𝑢 = max{ ̄𝑢, 0} = ReLU( ̄𝑢), (22)

where ReLU(𝑢) = max{ ̄𝑢, 0} is the rectified linear unit.
Problem (19) can be written as

𝑢 − 𝑢∗

𝛾 𝜏
= 𝐴̂ ∗ 𝑢∗ + 𝑏̂ − ln 𝑢

1 − 𝑢
. (23)



Following the steps for solving (16) and (18) above, we solve (23) as

{
̄𝑢 = 𝑢∗ + 𝛾𝜏 (∑𝑐

𝑠=1 𝐴̂𝑠 ∗ 𝑢∗𝑠 + 𝑏̂) ,
𝑢− ̄𝑢
𝜏 = − ln 𝑢

1−𝑢 .
(24)

The first sub-step is an explicit step using Pytorch function Conv2d. We solve the second sub-step
approximately by a fixed point iteration. Initialize 𝑝0 = ̄𝑢. Given 𝑝𝑘, we update 𝑝𝑘+1 by solving

𝑝𝑘 − ̄𝑢
𝜏

= − ln
𝑝𝑘+1

1 − 𝑝𝑘+1
, (25)

for which we have the closed-form solution

𝑝𝑘+1 = Sig (−
𝑝𝑘 − ̄𝑢

𝜏
) , (26)

where Sig(𝑥) = 1
1+𝑒−𝑥 is the sigmoid function. By repeating (26) so that 𝑝𝑘+1 converges to some function

𝑝∗, we set 𝑢 = 𝑝∗. In particular, since 𝑝0 = ̄𝑢, the updating formula (26) always gives 𝑝1 = 0.5. If we
only consider a two-step fixed point iteration, we get

𝑢 = Sig (−0.5 − ̄𝑢
𝜏

) = Sig ( ̄𝑢 − 0.5
𝜏

) . (27)

4.4. Algorithm 1 recover the UNet

We first show that a building block of Algorithm 1 is equivalent to a layer of a simplified UNet. Each
layer of UNet is a convolution layer activated by ReLU:

{
̄𝑣 = ∑𝑐

𝑠=1 𝐾𝑠 ∗ 𝑣∗𝑠 + 𝑏,
𝑣 = ReLU( ̄𝑣 ),

(28)

where 𝐾𝑠 is a convolutional kernel and 𝑏 is the bias. In Algorithm 1, the building block is (20) and (23),
which is solved by (21) and (24). In fact, (28) (or problem (24)) and (21) have the same form. Specifically,
in the first equation of (21) we have

̄𝑢 =𝑢∗ + 𝛾𝜏 (
𝑐
∑
𝑠=1

𝐴̂𝑠 ∗ 𝑢∗𝑠 ) + 𝛾𝜏𝑏̂ =
𝑐
∑
𝑠=1

(1/𝑐 + 𝛾𝜏𝐴̂𝑠) ∗ 𝑢∗𝑠 + 𝛾𝜏𝑏̂, (29)

where 1 denotes the identity kernel satisfying 1 ∗ 𝑔 = 𝑔 for any function 𝑔. In (28), set

𝐾𝑠 = 1/𝑐 + 𝛾𝜏𝐴̂𝑠, 𝑏 = 𝛾 𝜏𝑏̂. (30)

We have ̄𝑣 = ̄𝑢, and 𝑣 = 𝑢. Essentially, Algorithm 1 and UNet are the same. Thus, we have shown that a
simplified UNet structure (with only 1 convolution layer at each data resolution) is equivalent to one
iteration of Algorithm 1. UNet architecture consists of four components: encoder, decoder, bottleneck,
and skip-connections, each of which has a corresponding component in the structure of Algorithm 1:

1. Encoder: Encoder in UNet corresponds to the left branch of the V-cycle in Algorithm 1. The
number of data resolution levels corresponds to the number of grid levels 𝐽.

2. Decoder: Decoder in UNet corresponds to the right branch of the V-cycle in Algorithm 1.
3. Bottleneck: Bottleneck in UNet corresponds to the computations at the coarsest grid level (grid

level 𝐽) in Algorithm 1.
4. Skip-layer connection: Skip-layer connections in UNet correspond to the relaxation steps (17)

in Algorithm 1.

Therefore, a one-step operator splitting of the control problem (15) is exactly equivalent to a simplified
UNet.



Algorithm 2: A hybrid splitting method to solve the control problem (15) for PottsMGNet
Data: The initial condition solution 𝑈 𝑛 at time step 𝑡𝑛.
Result: The computed solution 𝑈 𝑛+1.
Set 𝑐0 = 1, 𝑣 01 = ̄𝑣 0 = 𝑈 𝑛.
for 𝑗 = 1, ⋯ , 𝐽 do

for 𝑘 = 1,⋯ , 𝑐𝑗 do
Compute 𝑣 𝑗𝑘 ∈ 𝒱 𝑗 by solving

𝑣 𝑗𝑘 − 𝒟(𝑣 𝑗−1)
2𝑗−1𝑐𝑗𝜏

−
𝑐𝑗−1

∑
𝑠=1

𝐴𝑗
𝑘,𝑠(𝑡𝑛) ∗ 𝒟(𝑣 𝑗−1𝑠 ) − 𝑏𝑗𝑘(𝑡𝑛) − 𝑆 𝑗𝑘(𝑣

𝑗
𝑘) ∋ 0. (31)

end for
Compute 𝑣 𝑗 = 1

𝑐𝑗
∑𝑐𝑗

𝑘=1 𝑣
𝑗
𝑘.

end for
Set ̄𝑢𝐽 = 𝑣 𝐽, and ̄𝑢𝐽𝑘 = 𝑣 𝐽𝑘 for 𝑘 = 1, ..., 𝑐𝐽.
for 𝑗 = 𝐽 − 1,⋯ , 1 do

for 𝑘 = 1,⋯ , 𝑐𝑗 do
Compute 𝑢𝑗𝑘 ∈ 𝒱 𝑗 by solving

𝑢𝑗𝑘 − 𝒰( ̄𝑢𝑗+1)
2𝑗𝑐𝑗𝜏

−
𝑐𝑗+1

∑
𝑠=1

𝐴̃𝑗
𝑘,𝑠(𝑡𝑛) ∗ 𝒰( ̄𝑢𝑗+1𝑠 ) − 𝑏̃𝑗𝑘(𝑡𝑛) − ̃𝑆 𝑗𝑘(𝑢

𝑗
𝑘) ∋ 0. (32)

end for
Compute for 𝑘 = 1, ..., 𝑐𝑗

̄𝑢𝑗𝑘 =
1
2
𝑣 𝑗𝑘 +

1
2
𝑢𝑗+1𝑘 (33)

Compute ̄𝑢𝑗 = 1
𝑐𝑗
∑𝑐𝑗

𝑘=1 ̄𝑢𝑗𝑘.
end for
Compute 𝑈 𝑛+1 by solving

𝑈 𝑛+1 − ̄𝑢1

𝜏
− 𝐴∗(𝑡𝑛) ∗ ̄𝑢1 − 𝑏∗(𝑡𝑛) − 𝑆∗(𝑈 𝑛+1) ∋ 0. (34)

5. Case study: PottsMGNet

In the previous section, we presented how to use the framework introduced in Section 2-3 to show that
the operator splitting scheme of (15) is equivalent to a UNet. In this section, we show that PottsMGNet
proposed in [18] is another instance of this framework. Specifically, we will consider a modified control
problem of (15) and a modified splitting scheme of Algorithm 1.

5.1. Constructing a PottsMGNet

We consider the control problem (15) with decomposition (5)-(10). Here, the decomposition of the
nonlinear operator 𝑆 and ̃𝑆 as in (14) are defined as

𝑆𝑗𝑘(𝑢) = −
(2𝑗−1)−1

𝜅
ln 𝑢

1 − 𝑢
, ̃𝑆𝑗𝑘(𝑢) = −

(2𝑗)−1

𝜅
ln 𝑢

1 − 𝑢
, 𝑆∗(𝑢) = −1

𝜅
ln 𝑢

1 − 𝑢
− 𝜂𝐺𝜎 ∗ (1 − 2𝑢),

where 𝜅 is a normalization term, 𝜂 is a weight parameter, and 𝐺𝜎 is the Gaussian smoothing kernel with
variance 𝜎2. To solve this new system, we consider a multi-step operator splitting algorithm (Algorithm
2) using the hybrid splitting method in Appendix A for approximating the solution of (15) with the
above given split of operators.
When solving the subproblems (31) and (32), we adopt a similar sequential splitting method as (21).

The second substep is then defined as

𝑢 = (ℐ − 𝛾𝜏𝑆)−1( ̄𝑢),

which can be approximately solved by a fixed point iteration as for the second substep in (24). By
unrolling Algorithm 2, we can get a simplified PottsMGNet [18].



5.2. Comparison with UNet

Compared with the UNet structure, the PottsMGNet starts with a control problem with a different
nonlinear term 𝑆 and ̃𝑆, which results in a different activation function at each layer of the resulted neural
network. The position of the relaxation step is also different, which leads to a different skip-connection
structure. Additionally, the UNet is a one-step algorithm while the PottsMGNet is a multi-step algorithm.
Similar to UNet, we can also extend Algorithm 2 to a multi-channel case by further split the control
variables.

6. Conclusion

In this work, we present a framework to design novel neural networks using operator splitting of
some control problems. Networks designed in this way are usually robust to disturbances in the input,
because concerned control problems usually include some regularization terms. We also presented how
to derive UNet and PottsMGNet from this framework. In the future, we would apply this framework to
other types of networks like graph neural networks.

Declaration on Generative AI

During the preparation of this work, the authors used DeepSeek in order to: Grammar and spelling
check. After using these tools, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.

Appendix

A. Hybrid Splitting Schemes for Initial Value Problems and Neural
Network Design

We discuss a hybrid splitting scheme proposed in [18] as a powerful technique for solving initial value
problems, which can be effectively leveraged to design and understand the architecture of deep neural
networks. A hybrid splitting scheme combines the principles of parallel and sequential splitting schemes
to decompose complex problems into more manageable subproblems.
Consider the initial value problem:

𝑢𝑡 +
𝑀
∑
𝑚=1

(
𝑐𝑚
∑
𝑘=1

𝑑𝑚
∑
𝑠=1

𝐵𝑚𝑘,𝑠(x, 𝑡 ; 𝑢) +
𝑐𝑚
∑
𝑘=1

𝐶𝑚𝑘 (x, 𝑡 ; 𝑢) +
𝑐𝑚
∑
𝑘=1

𝑓 𝑚𝑘 (x, 𝑡)) = 0 on Ω × [0, 𝑇 ], 𝑢(0) = 𝑢0.

We can first split it into 𝑀 sequential steps, where each step consists of 𝑐𝑚 parallel substeps. At the
(𝑛 + 1)-th time step, denote the intermediate result computed in the 𝑘-th branch of the 𝑚-th sequential
step by 𝑢𝑛+𝑚/𝑀𝑘 , and define 𝑢𝑛+(𝑚−1)/𝑀 = 1

𝑐𝑚
∑𝑐𝑚

𝑘=1 𝑢
𝑛+(𝑚−1)/𝑀
𝑘 . The function 𝑢𝑛+𝑚/𝑀𝑘 is computed by

solving:

𝑢𝑛+𝑚/𝑀𝑘 − 𝑢𝑛+(𝑚−1)/𝑀

𝑐𝑚𝜏
= −

𝑑𝑚
∑
𝑠=1

𝐵𝑚𝑘,𝑠(x, 𝑡
𝑛; 𝑢𝑛+(𝑚−1)/𝑀𝑠 ) − 𝐶𝑚𝑘 (x, 𝑡

𝑛+1; 𝑢𝑛+𝑚/𝑀𝑘 ) − 𝑓 𝑚𝑘 (x, 𝑡𝑛).

Here, the operators 𝐵𝑚𝑘,𝑠 are treated explicitly, while the operators 𝐶𝑚𝑘 are treated implicitly. Functions
𝑓 𝑚𝑘 can be treated explicitly as shown here. Starting with 𝑢𝑛,0 = 𝑢𝑛, this algorithm iterates through 𝑚
from 1 to 𝑀 and 𝑘 from 1 to 𝑐𝑚 to compute 𝑢𝑛+1.
When 𝐵𝑚𝑘,𝑠 and 𝐶𝑚𝑘 are Lipschitz continuous, this hybrid splitting scheme is first-order accurate [18,

Theorem D.1], meaning that the error ‖𝑢𝑛+1 − 𝑢(𝑡𝑛+1)‖∞ is of the order 𝑂(𝜏).
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