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Abstract 
Face recognition in dynamic real-world conditions presents a challenge due to varying lighting, partial 
occlusions, and pose variations. While convolutional graph networks (GCNs) and transformer-based 
architectures achieve high performance in addressing these issues, their black-box nature complicates 
interpretation. This paper proposes a methodology to enhance the explainability of dynamic face 
recognition models using graph-based approaches and attention mechanisms for implementing the model 
to the Hybrid Intellectual System. We introduce visualisation methods for key facial landmarks and frame 
significance in video sequences through Explainable AI (XAI) techniques, such as Attention Attribution, 
Feature Ablation, Grad-CAM, and Attention Rollout. Experimental results indicate that the proposed 
approach can improve model interpretability without compromising accuracy. This research explores a 
multimodal approach by integrating Llama-based Llasa speech synthesis by combining natural language 
processing with visual facial expression detection. 
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1. Introduction 

Facial recognition in real-world dynamic conditions is still one of the most challenging and 
demanding areas in computer vision. FR has a wide range of practical paths to evolve, from public 
security technologies to the more detailed analysis of personal emotions and interactions in social 
robotics. We can see significant progress in recent years; however, the task remains challenging due 
to the wild dynamic conditions, changing lights, head poses, and the presence of partial occlusions. 

In computer vision, in particular, the Facial Expression Recognition (FER) field, Convolutional 
NNs (CNNs) are used the most frequently for static and dynamic 2D recognition tasks. However, 
CNN may lose their performance in 3D tasks because of object position changes. Applying Graph 
Convolutional Networks (GCN) instead for such tasks is reasonable as they effectively capture spatial 
relationships between facial key points, allowing more precise detection of changes. At the same 
time, Transformer-based networks [1], initially built for natural language processing tasks, have 
great potential for temporal sequence processing, capturing dynamic changes with high complexity. 

Incorporating NLP-driven models such as Llama-based Llasa into this framework enables a 
multimodal approach, where facial expressions are not only recognised but also translated into 
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contextually appropriate speech responses. Llasa integration enables expressive speech synthesis by 
matching language patterns [27-29] with emotional expressions, ensuring that detected facial 
expressions can simulate human-like speech. Furthermore, it will enhance affective computing, 
making human-AI integrations more emotionally aware. Incorporating the scalability of Llama-
based architectures, Llasa provides highly accurate speech synthesis that captures not only the 
lexical content but also the emotional subtext of detected facial expression patterns. 

However, networks with a complicated architecture remain "black boxes", which affect more than 
performance but also end-user trust. This second aspect is crucially vital in specific domains such as 
medicine, security, and personal data processing.  

The issue of interpretability has gained increasing importance due to the growing interest in 
transparency and explainability in AI-driven decision-making. Users and developers must 
understand which features and frames are decisive in a model's predictions. This is why integrating 
explainable AI (XAI) approaches into face recognition models is a key direction for enhancing their 
practical value. 

Human conversation is naturally multimodal: meaning is encoded not only in text but also in 
facial expression, vocal prosody and gesture. These paralinguistic features colour literal words, 
attitude and emotional tone that are essential for smooth flow and mutual understanding. Dialogue 
systems and social agents that rely on text alone, therefore, miss a substantial portion of the 
communicative channel, leading to responses that can feel tone-deaf or robotic. Multimodal affective 
language understanding seeks to fuse verbal and non-verbal cues so that artificial agents can 
interpret and respond with emotionally congruent behaviour, bringing machine interaction closer to 
human conversational norms. 

This study aims to develop and integrate specialised XAI methods into graph-based and 
Transformer architectures to improve recognition accuracy and significantly enhance the 
interpretability of decision-making processes. Specifically, the focus is on analysing and visualising 
the most relevant facial landmarks and key video frames that substantially impact the final 
classification outcome. In addition, this research explores the integration of SpatioTemporal Graph 
Transformer (STGT) with the Llasa text-to-speech synthesis model [4] to create a hybrid multimodal 
system, ensuring an emotionally adaptive AI system [13]. 

2. Related works 

2.1. Graph Methods for Dynamic Facial Expression Recognition 

Graph-based approaches leverage facial landmark points to construct a structured representation of 
the face, where each node corresponds to a specific coordinate in space. This method enables 
efficient modelling of spatial and temporal relationships between facial regions, which is crucial for 
dynamic facial expression recognition (DFER) [15]. Unlike traditional 2D representations, increasing 
the dimensionality from 2D to 3D enhances the ability to capture subtle depth variations in facial 
expressions, leading to more accurate and robust emotion classification. One of the most effective 
frameworks for real-time 3D facial landmark extraction is MediaPipe [5], developed by Google. It 
defines a 3D face model using 468 key points, which are detected and tracked across video sequences. 
The MediaPipe Face Landmark Model normalises the X and Y coordinates within a range of 0 to 1. 
At the same time, the Z-coordinate is estimated relative to the X-axis using a perspective projection 
camera model, with values ranging between -1 and 1. This approach ensures a consistent and stable 
representation of depth, which is critical for analysing microexpressions and subtle facial 
movements in dynamic sequences. MediaPipe shows a strong ability to detect landmarks on frames 
with interferences, as shown in Figure 1. 

Given its high computational efficiency and real-time processing capabilities even on mobile 
devices, MediaPipe serves as a strong foundation for integrating graph-based methods into Graph 
Neural Networks (GNNs) [14] and Transformer models for DFER [15]. The framework's ability to 
accurately capture 3D facial dynamics in real-time makes it highly suitable for graph-based facial 



representation [25], enabling more expressive feature extraction while maintaining a balance 
between performance and accuracy. Additionally, the integration of 3D landmarks with graph-based 
models allows for improved spatial reasoning, helping the model better understand facial 
deformations over time. 

 

 

  (A)          (B)  
 
Figure 1: MediaPipe Face Mesh [5] detected landmarks on MAFW [3] sample (A) landmarks 
detected without interferences; (B) landmarks detected with interferences 

 

2.2. Implementing Transformer-based networks for DFER  

Transformer-based networks have recently gained attention for Dynamic Facial Expression 
Recognition (DFER) due to their effectiveness in modelling long-range dependencies in sequential 
data. Unlike traditional Convolutional neural networks (CNNs), which primarily focus on spatial 
feature extraction, or Long Short-Term Memory networks (LSTMs) and Recurrent neural networks 
(RNNs), which capture temporal patterns but often struggle with long-term dependencies, 
Transformers use self-attention mechanisms to process facial expressions across multiple frames 
holistically. 

DFER is increasingly proficient at analysing spatiotemporal features [2] from video sequences. 
The ViViT [23] model improves on traditional CNN-RNN hybrid approaches by employing factorised 
attention mechanisms to directly extract both spatial and temporal representations, thereby 
eliminating the need for recurrent layers. These abilities allow us to pick up subtle patterns of 
changes in facial expression over time. 

ViViT works by dividing video frames into patches, which are embedded in a high-dimensional 
feature space. These patch embeddings then pass through spatiotemporal self-attention layers, 
allowing the model to effectively learn spatial dependencies alongside temporal variations. It enables 
accurate detection of subtle facial movements (patterns), including micro-expressions. 

Additionally, ViViT's scalability to more extended video sequences makes it well-suited for real-
world applications where emotions change dynamically. By integrating pose-invariant and 
occlusion-aware learning strategies it ensures robust performance under varying conditions. Recent 
studies [6] show that ViViT outperforms traditional CNN-LSTM models and other Transformer 
models when dealing with pose variations, lighting changes, and expression intensity changes, 
highlighting its promise in the field of deep learning-based affective computing. 

In DFER, each video sequence can be represented as a temporal-spatial graph, with facial 
landmarks serving as nodes and their relationships evolving. A Spatial Transformer within the 
network learns to focus on critical facial regions through landmark-level attention. At the same time, 



a Temporal Transformer captures the sequential dependencies between frames, allowing the system 
to detect subtle transitions in expressions. 

This architecture is particularly beneficial for addressing challenges such as occlusions, pose 
variations, and fine-grained emotional cues, ultimately enhancing recognition accuracy. 

2.3. Explainable AI (XAI) for DFER 

Explainable AI (XAI) in dynamic facial expression recognition (DFER) enhances model transparency 
and fosters trustworthiness by tackling challenges such as temporal dependencies, pose variations, 
and micro-expressions. Traditional facial expression recognition models, such as RNNs and CNNs, 
often perform as black-box classifiers, making their predictions difficult to interpret. To mitigate this 
issue, techniques like LIME and SHAP [24] are employed to identify influential facial features, while 
Grad-CAM [7] visualises the key facial regions that contribute to the classifications. 

DFER requires models capable of processing sequences over time. Transformers, which utilise 
self-attention mechanisms [2], allow models to focus on critical frames, thereby improving 
interpretability. Graph-based approaches represent facial landmarks as nodes in a graph neural 
network (GNN) and employ attention mechanisms to dynamically highlight important regions. In 
addition, adaptations of Grad-CAM for temporal-spatial graphs can generate heatmaps over time, 
enhancing the explainability of the model. Prototype-based methods, such as ProtoPNet, provide 
case-based reasoning, and Contrastive Explanation Methods (CEMs) help distinguish subtle 
differences in expressions. 

Evaluating XAI in DFER involves human-in-the-loop studies, faithfulness tests, and ensuring 
alignment with psychological theories of emotion perception. However, challenges remain in 
interpreting temporal features, mitigating bias, and ensuring real-time explainability for applications 
in healthcare and surveillance. Future research should aim to develop scalable, real-time XAI 
techniques to further enhance the transparency and effectiveness of DFER models. 

3. Methods and Materials 

3.1. Dataset and Preprocessing 

The MAFW dataset served as the foundation for data preprocessing. Initially, video files were 
processed using MediaPipe Face Mesh, which facilitated the extraction of a comprehensive set of 468 
key points representing facial landmarks. To optimise the performance of the Transformer model, a 
deliberate reduction of these key points was implemented, narrowing them down to a more 
manageable 68.  

These selected key points were systematically organised into distinct datasets according to the 
number of frames present in each video segment. As a result, three separate datasets were 
meticulously curated for videos containing up to 50, 100, and 150 frames, which collectively 
amounted to a substantial total of 8,120 video entries. However, it is worth noting that not every 
video was paired with corresponding class labels, prompting an adjustment of the final count to 7,706 
videos. 

The data structure prepared for model training is provided in Figure 2. 

3.2. Model Architecture 

The proposed SpatioTemporal Graph Transformer (STGT) is designed for dynamic facial recognition 
by capturing both spatial and temporal dependencies in facial landmark sequences. 

 The Landmark Embedding Layer converts raw 3D landmark coordinates into a higher-
dimensional representation. It employs a linear transformation to map the input format of 
(B, T, N, 3) into an embedding space of (B, T, N, embed_dim). 



 Spatial Transformer Block applies multi-head self-attention to model the spatial 
dependencies across facial landmarks within a single frame. It processes the data in the 
format (B, N, T, embed_dim) to allow landmarks (nodes) to attend to one another. 
Additionally, it uses Layer Normalization and Feedforward Networks to enhance the 
representations. 

 Temporal Transformer Block captures sequential dependencies between frames using 
stacked Transformer Encoder layers. The input format (B, T, embed_dim) is passed through 
these layers to model long-range dependencies. It also incorporates gradient tracking hooks 
to facilitate Grad-CAM-based interpretability. 

 Classification Head representations are aggregated using Global Average Pooling over time. 
The pooled features are then passed through a fully connected layer for final classification. 

 
Figure 2: Data formatted and refactored into solid dataset 

 

3.3. XAI implementation 

In dynamic facial expression recognition (DFER) using Graph Transformer models, explainability is 
essential for understanding how the model interprets spatial-temporal facial landmarks to infer 
emotions. Several techniques can enhance the interpretability and trustworthiness of the model, 
including Attention Attribution, Feature Ablation, Grad-CAM, and Attention Rollout. 

Attention Attribution [19] is the method which helps identify which facial landmarks contribute 
the most to the model's decision by analysing the self-attention weights in the Transformer layers. 
Since the Graph Transformer processes 68 facial landmarks as nodes, Attention Attribution can 
highlight which regions of the face (e.g., eyebrows, mouth, eyes) are most relevant to specific 
expressions over time. 

Feature Ablation systematically removes or masks specific input features (facial landmarks) to 
assess their impact on model predictions. This technique can be applied to subsets of facial nodes or 
temporal frames to determine whether certain facial regions or time steps are crucial for emotion 
classification. For instance, it can help verify whether jaw movements or subtle eye changes are more 
significant for detecting emotions like anger or sadness. 

Grad-CAM is widely used in CNN-based vision [6] models. Still, it can also be adapted 
to Transformer-based architectures by visualising the importance of different regions in an input 
sequence. In a Graph Transformer model for DFER, Grad-CAM can generate heatmaps over 



the facial graph nodes, indicating which parts of the face influence the model's classification at 
different time steps. 

Attention Rollout aggregates attention maps across multiple layers of the Transformer, providing 
insights into how low-level local attention in early layers evolves into global contextual attention in 
deeper layers. This technique is instrumental in hybrid models combining local graph-based learning 
and global Transformer attention, helping to analyse whether the model progressively 
captures short-term facial micro-expressions before forming high-level temporal patterns. 

3.4. Metrics 

The evaluation of the SpatioTemporal Graph Transformer for dynamic facial expression 
recognition is carried out using multiple performance metrics that access both classification accuracy 
and model interpretability. Integrated metrics ensure that the system effectively recognises emotions 
and provides insights into which spatial (facial landmarks) and temporal (frame-based changes) 
patterns contribute the most to predictions.  

For training stability, we will use Cross-Entropy Loss with class weights, as the dataset may 
contain an imbalanced distribution of emotions. Class weights are computed dynamically to ensure 
balanced learning.  

The weighted cross-entropy loss used to handle class imbalance was calculated using the formula: 
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where 

 C is the number of emotion classes,  
 𝑤 is the weight assigned to class 𝑖, 
 𝑦  is the ground truth label (one-hot encoded), 
 𝑦ො is the predicted probability for class 𝑖.  

The loss function is designed to penalise incorrect predictions based on class imbalance, ensuring 
that smaller-class emotional patterns are learned effectively. 

For model performance evaluation, we use training and validation loss as baseline standards. The 
training process logs epoch-wise loss values to monitor the model's convergence. A learning rate 
scheduler adjusts the learning rate dynamically when validation loss stagnates, which prevents 
overfitting. We use the confusion matrix to achieve a detailed breakdown of model predictions versus 
actual labels. It highlights misclassification patterns, helping refine the feature extraction process. 
The matric is plotted using seaborn heatmaps for visual analysis of prediction distributions. 

For classification robustness, we use Grad-CAM [7] for Spatial and Temporal attention analysis. 
Grad-CAM is used to visualise which facial landmarks are most influential in classification. We will 
create two types of heatmaps for spatial Grad-CAM (which highlights key facial features that 
contribute to predictions) and temporal Grad-CAM (which identifies critical time frames where 
emotion transitions occur). These visualisations provide explainability, making the model's decisions 
more interpretable. 

Grad-CAM generates attention heatmaps by computing the gradient of the largest class score 
with respect to the feature maps. The Grad-CAM activation for a given location (𝑥, 𝑦) is: 

𝐿ீௗିெ
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where 

 𝐴(𝑥, 𝑦) is the activation map of the 𝑘-th convolutional feature map,   
 𝛼

  is the importance weight computed as: 
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 𝑆is the predicted score for class 𝑐, 
 𝑍 is the total number of spatial locations. 

 
For temporal Grad-CAM, this process is extended over time by computing gradients across 
sequential frames. 

For model selection and optimisation, we provide checkpoints with the best validation loss. The 
system automatically saves the best model based on validation loss. A model is only saved if it 
improves validation loss and maintains a reasonable training loss (>0.4) to prevent premature 
convergence. 

By integrating classification metrics, loss analysis, confusion matrix visualisation and 
interpretability techniques, we ensure a comprehensive evaluation of the hybrid SpatioTemporal 
Graph Transformer and Llasa speech synthesis system. The combination listed above ensures not 
only accuracy but the trustworthiness and interpretability of the system, making it suitable for real-
world affective computing applications. 

3.5. Integrating Model to the Hybrid Intellectual System 

To build a Hybrid Intellectual System, we will integrate the SpatioTemporal Graph Transformer 
(STGT) at the perception front end alongside a speech-to-text transformer that supplies live 
transcripts. The resulting affect stream and transcripts are fed to the dialogue-reasoning layer, which 
drives the Llama-based Llasa speech synthesis model [4], which relies on language processing [9] to 
ensure natural and contextually appropriate emotional outcomes. Using self-attention mechanisms, 
the STGT assigns importance to key patterns, identifying expressions (anger, happiness, sadness, 
surprise, fear, etc.) and pushes small messages of emotion label and confidence to the dialogue 
manager that updates 20 times per second. The manager stores the latest label in its state slot for 
user emotion and conduct, prompting the underlying language model to produce an empathic 
response. For instance, if the user's emotion is Sad, it asks the language model for a gentle, caring 
response. For Angry, it changes to calm and solution-focused wording.  

The chatbot will be fine-tuned on videos containing real-world dialogue samples between 2 
people, where it will learn some behaviour patterns and then refine them with human feedback to 
provide addressing – not mirroring response style. 

The finished sentence, along with matching emotional labels, is mapped to linguistic prosody [22] 
and translated into linguistic attributes such as pitch variation, speech rate and pause insertions. 

Llasa incorporates text transformers (Llama-based architecture) to interpret the semantic 
meaning behind the generated or predefined speech content [21]. The speech tokeniser ensures that 
the emotion detected in the dialogue manager message aligns with the intonation and rhythm of the 
synthesised speech.  

Each emotion-labelled sentence undergoes a transformation to match the phonetic and prosodic 
attributes of expressive speech. For example, for angry expressions, the speech sounds sharp and has 
increased volume.  

Llasa employs vector quantisation (VQ) codecs to convert text-based tokens into expressive 
speech waveforms. Using Process Reward Models (PRMs), the system interactively refines speech 
synthesis by adjusting articulation, tone and rhythm to align with both visual emotional cues and 
linguistic context [10]. The final speech is temporally synchronised with an emotion label 



corresponding to the user's facial expressions, ensuring that spoken words and tone appear together 
naturally. 

4. Experiments and results 

4.1. Model definition and training 

Original data was merged into a tabular format, describing each frame for video. An embedding layer 
transformed these landmarks into higher-dimensional vectors. Facial landmarks were treated as 
nodes in a graph for each frame, utilising multi-head attention to model spatial dependencies. 
Temporal block processed frame-level embeddings, capturing temporal relationships across frames. 
The classifier head aggregated the features to predict expression categories from 11 classes. Initially, 
the model was trained on a dataset of 50 frames to establish baseline accuracy. Then, the dataset was 
expanded to include sequences of 100 frames to improve the model's capability to handle extensive 
temporal contexts. The last dataset containing the most extended sequences of 150 frames was used 
for training to optimise the model's capability to handle extensive temporal contexts. The model's 
output metrics are provided in Table 1. Memory-efficient training methods and computational 
optimisations were applied to ensure efficiency and enhance performance. 

 
Table 1 
GCN + Transformer Model Trained 

classes Precision Recall F1-Score Support 
1 0.78 0.79 0.78 543 
2 0.90 0.93 0.91 566 
3 0.92 0.61 0.76 545 
4 0.88 0.85 0.86 561 
5 0.99 0.97 0.98 572 
6 0.92 0.89 0.90 564 
7 0.83 0.96 0.89 566 
8 
9 
10 
11 

0.90 
0.86 
0.94 
0.98 

0.80 
0.92 
0.99 
1.00 

0.85 
0.88 
0.96 
0.99 

558 
562 
565 
563 

Accuracy 
Macro avg 

Weighted avg 

 
0.89 
0.91 

 
0.89 
0.90 

0.90 
0.89 
0.91 

6165 
6165 
6165 

 
The accuracy of the trained model is shown in Figure 3. 

4.2. XAI methods implementation 

To highlight the aspects that the model uses in its decision-making process, we implemented XAI 
methods for a more precise analysis. Attention attribution was implemented by extracting attention 
weights directly from the model's Multi-Head Attention layers. Within the Spatial Transformer 
Block, we obtained attention weights for each frame, revealing how much importance the model 
assigned to each facial landmark during decision-making. Similarly, in the Temporal Transformer 
Block, attention weights were extracted across frames to identify key temporal segments influencing 
the classification outcomes. The attention weights are shown as heatmaps of facial landmarks, clearly 
indicating which points are most important for the accurate classification of facial expressions. It 
provides a clearer understanding of the decision-making process in the model. 

A systematic feature ablation strategy was applied to test the significance of features. Specific 
subsets (subgroups) of facial landmarks were gradually removed, and the resulting change in 



classification accuracy was observed. This study allowed us to determine which facial features 
contributed the most to the model's decision-making process. By quantifying these effects, we gain 
confidence in the interpretability and robustness of the model. 

Grad-CAM was integrated to further enhance interpretability. Grad-CAM enabled visualisation 
of the gradients flowing into the last convolutional layer (adapted to our transformer-based 
approach), highlighting specific facial landmarks and regions significantly influencing classification 
outcomes, as shown in Figure 4. It allowed us to visually verify the robustness of the model's 
attention mechanisms and to confirm the correct identification of critical facial areas linked to 
specific emotional expressions. 

 
Figure 3: Confusion matrix for STGT model after 74 training epochs 

Temporal Grad-CAM implemented in the project provides visualisation of changes in the model's 
attention for different frames in sequences. Figure 5 visualises the epoch 10 model, which shows 
unrelated diffuse attention, but the 60th epoch model gathers more extended periods where attention 
is high.  

Layer-wise Relevance Propagation [18] was used extensively to quantify and visualise the 
contributions of individual landmarks and specific frames toward classification decisions. By 
propagating relevance scores from the output back to the input features, LRP [17] enabled a detailed 
analysis of each landmark's influence across time, facilitating the understanding of how temporal 
dynamics affect the model's predictions. 



Taken together, these complementary XAI techniques offer a triangulated view of the model's 
decision-making process. Insights gleaned from the heatmaps and relevance scores feed directly into 
an iterative training loop, guiding hyper-parameter tuning and data-augmentation choices that 
further sharpen both accuracy and transparency.  

 
(A)       (B) 



Figure 4: (A) Grad-CAM shows important nodes on 10th epoch; (B) Grad-CAM shows important 
nodes on 60th epoch – targeted class – 2 - Disgust. 

 
      (A) 

 
      (B) 

Figure 5: Temporal Grad-CAM on (A) 10th epoch; (B) 60th epoch for targeted class 2 - Disgust 

5. Discussion and future research 

The results of this study demonstrate the effectiveness of the SpatioTemporal Graph Transformer 
(STGT) in improving the explainability of Dynamic Facial Expression Recognition (DFER) while 
maintaining high classification accuracy. By combining graph-based facial landmark processing with 
transducer-based temporal modelling, the system effectively captures both spatial dependencies and 
temporal changes in facial expressions. In addition, the integration of methods for increasing 
explainability, such as Grad-CAM, attention attribution, and feature ablation, provides essential 
insights into the model's decision-making process, increasing interpretability and confidence in AI-
based face recognition systems. 

In plans is experimenting with YOLO[11] for multiple face recognition and comparing its 
capability with MediaPipe in dynamic facial expression recognition. MediaPipe offers lightweight 
landmark detection in real-time, and YOLO[12] object detection may provide higher precision in 
challenging conditions. This comparison will help determine what method works best and if 
integrating both would be beneficial. 

Recent advancements in transformer-based architectures, such as ViViT (Video Vision 
Transformer), have shown that self-attention mechanisms can significantly improve performance by 
modelling long-range dependencies more effectively than CNN-RNN hybrids. ViViT segments video 



frames into patch embeddings and processes both spatial and temporal information cohesively, 
removing the necessity for recurrent structures. However, ViViT does not clearly encode the 
structural relationships between facial landmarks, which limits its interpretability in deep fake 
emotion recognition (DFER) tasks. 

A significant point of the proposed method is its ability to highlight facial landmarks that make 
the most impact and keyframes in video sequences, making sure that classification is not purely 
"black-box" on output. Increased interpretability is extremely important in healthcare, security, and 
human-computer interaction applications, where understanding how and why a model makes a 
specific prediction is as important as its accuracy. Moreover, using attention-based explanations 
allows the model to be adjusted based on real-world changes such as lighting conditions such as 
lightning conditions, occlusions and head position. 

Despite these advancements, several challenges remain. We will move from independent modules 
to a unified STGT – ASR perception stack feeding a dialogue manager that, in turn, drives Llasa TTS. 
The incorporation of Llasa would enable multimodal emotional AI in the conversational system, 
where detected facial expressions dynamically affect emotionally expressive speech output. Future 
work will be focused on implementing real-time synchronisation between facial expression 
recognition and speech generation [26], ensuring that spoken emotions match detected facial cues. 

Additionally, current Grad-CAM-based explainability techniques primarily focus on spatial 
attention rather than temporal dependencies in facial expressions. Future improvements should 
explore temporal Grad-CAM visualisations to better understand how the model tracks emotion 
transitions over time, while language-side XAI – via token-level attention rollouts will expose why 
the bot chooses an appropriate expression in response.  

Another perspective way for work includes increasing the diversity of data used for training. To 
advance beyond clip-level emotion tagging, future work should train the pipeline on long-form 
dialogue video datasets that align face video, raw speech and full transcripts across multi-sentence 
turns. Resources such as MELD, IEMOCAP, CMU-MOSEI/MOSI and SEWA supply precisely this 
alignment, allowing STGT to model avoiding facial affect, ASR to capture prosodic cues, and the 
dialogue manager to learn how emotions ebb and flow throughout an extended exchange. Leveraging 
such material will equip the agent to maintain affective context over multiple turns and to generate 
responses that are not merely reactive but emotionally coherent within the broader conversation. 

Facial expressions and their dynamic patterns can differ across age groups, ethnicity and social 
context. The model should be trained more in a broader range of samples to ensure its robustness 
and clearer classification ability. For real-world applications, it is mandatory to ensure that potential 
biases are decreased to a minimum before deploying. Future enhancement of the model could explore 
lightweight transformer architectures or efficient attention mechanisms such as sparse attention or 
low-rank adaptations to reduce processing overhead while maintaining accuracy. 

6. Conclusions 

This study introduces a comprehensive solution for Dynamic Facial Expression Recognition (DFER) 
by combining SpatioTemporal Graph Transformer (STGT) methods with Explainable AI (XAI) 
techniques and Llama-based Llasa speech synthesis. The framework captures spatial relationships 
among facial landmarks and the temporal dynamics of facial movements, achieving accurate and 
interpretable emotion classification. 

To enhance model interpretability, the research utilises advanced XAI methods like Grad-CAM, 
Attention Attribution, and Feature Ablation. These techniques allow for clear visualisation of the 
facial features and temporal segments that influence the model's decisions, addressing the challenge 
of interpretability in AI-driven facial recognition systems and providing valuable insights for users 
and developers. 

Moreover, the integration of NLP-driven speech synthesis via Llasa TTS substantially enriches 
the system's multimodal interaction capabilities. This enhancement facilitates the synchronised 
expression of recognised emotions is converted into matching prosody, so the agent voices its 



response that fits the user's affect through natural and expressive speech outputs. Such multimodal 
integration is particularly impactful for advancing applications within human-computer interaction, 
affective computing, accessibility tools, and other interactive AI-driven environments. 

The study demonstrates the integration of an event-driven pipeline – STGT for facial expression 
affect, a transformer ASR for live transcripts, a dialogue manager that fuses the two, and Llasa TTS 
for prosody-controlled speech that robust visual emotion recognition with expressive speech 
synthesis. It also identifies specific areas requiring further enhancement. Particularly, achieving real-
time synchronisation between user expressional input and corresponding voice-moduled output 
remains challenging due to computational constraints and latency issues. 

Research shows that transformer-based architectures surpass traditional CNNs and LSTMs in 
DFER tasks. However, challenges remain with dataset biases, occlusion handling, and head pose 
variations. Future research should focus on optimising real-time model performance, refining XAI 
methodologies for better temporal explainability, and diversifying training datasets to ensure fair 
performance across demographic groups. 

In conclusion, this study contributes to emotionally responding to AI by enhancing both model 
accuracy and interpretability. The proposed hybrid system establishes a robust and adaptable 
foundation for future exploration and developments in multimodal emotion recognition systems, 
intelligent interactive agents, and a range of practical affective computing applications. 

7. Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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