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Abstract
The automated high-throughput laboratory offers unprecedented potential for scientific discovery, yet effectively
linking studies to existing knowledge remains a significant challenge. As the general body of scientific knowledge
grows, so too does the burden of contextualizing a new experiment. While ontologies and databases serve
as structured common repositories, their rigid schemas are often incompatible with the unstructured or semi-
structured formats of most laboratories. In this study we investigate the integration of large language models
(LLMs) with ontology-based vector databases to anchor semi-structured scientific experiments into knowledge
bases via automated retrieval. Our approach extracts scientific entities from unstructured experimental texts, and
grounds them to relevant ontology terms. We automate knowledge grounding, which enhances the integration
of unstructured experimental data into established formal scientific languages. We have tested our method on
a diverse selection of experimental yeast biology papers focused on Saccharomyces cerevisiae, a foundational
model system that has driven major discoveries in molecular and cellular biology, and observed strong pipeline
performance. We argue that such a knowledge grounding approach is a critical component for the new wave
of efficient artificial intelligence (AI) driven automated laboratories that integrate LLMs with high-throughput
experimentation and data-driven discovery.
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1. Introduction

The rise of automation in the laboratory presents a unique opportunity to generate scientific findings
at an unprecedented rate; however, a key issue remains overlooked. Empirical science relies on the
integration of experiments, data, and discoveries with existing knowledge. Linking to background
knowledge is a major challenge for the experimentalist, one that grows larger as the scientific corpus
expands. As laboratory automation accelerates this expansion, the linking problem grows, risking the
creation of vast quantities of isolated observations stranded on knowledge islands.

Take, for example, the most fundamental kernel of the experimental process: the hypothesis. In the
classical scientific method, an experiment is conducted to test a specific hypothesis, and knowledge is
generated by its subsequent confirmation or rejection [1]. For knowledge to effectively spread within
the scientific community, hypotheses must be clearly and universally understood. Achieving this
requires the use of consistent vocabulary and terminology shared by other scientists. This consistency
enables the scientific community to fully comprehend, replicate, and validate experimental findings,
strengthening the reliability of the conclusions. If knowledge linking is successful, a single experiment
may contribute to the general body of scientific knowledge. This process becomes even more important
when laboratory automation is introduced. Unlike the human scientist, a laboratory robot has no
understanding of the material it handles in the service of a hypothesis. As such, the hypothesis, and all
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sample metadata, must be sufficiently descriptive and exact to understand the results from an automated
laboratory.

Typically, hypotheses are written in natural language with constraints around key scientific concepts.
These constraints are implicit and can lead to confusion. For example, a scientist may contextualize their
hypothesis by using the word “yeast” when in fact they mean “Saccharomyces cerevisiae”. This choice
encodes the scope of the experiment’s findings and its implications for knowledge acquisition. These
choices, shaped by experiential understanding of terminology, can vary considerably among scientists,
types of publications, and research venues. Robust and systematic nomenclatures for scientific concepts,
materials, and actions are needed to avoid confusion. This codification of shared nomenclature takes
the form of knowledge bases.

Knowledge bases, specifically ontologies and databases, have proven to be highly effective as terminal
repositories of community knowledge and observations, respectively. Public databases have been
quintessential in advancing the life sciences since their adoption across the research community [2, 3, 4].
The Protein Data Bank (PDB) [5] is a prominent example of a successful knowledge repository. By
establishing a communal repository for standardized data, the PDB and its associated standards have
been invaluable to advancements in protein biology, from benchtop research to clinical applications,
notably by enabling the development of computational models for protein design [6]. Databases serve
as centralized repositories for findings from various laboratories, enforcing a standardized structure
across all entries. In this sense, scientific database structures are syntactical templates for how findings
should be communicated. Ontologies take this codification further by defining controlled vocabulary
terms (entities) and the formal relations between them. Ontologies and knowledge graphs provide
highly robust shared languages for information sharing [7, 8]. The knowledge structures (schemas) of
databases and ontologies are key to their communal utility. Such schemas embody a robust, widely
accepted community standard that facilitates effective communication of knowledge, enabling others to
understand and replicate findings.

Formalization requires effort, and effective knowledge base utilization requires strict adherence
to their structures. Yet scientists mostly work with unstructured or unlinked formats such as text
documents, spreadsheets, notebooks, and raw data. Conforming these to knowledge base structures is
a laborious process, especially if performed manually. As such, experimenters usually communicate
results in a semi-structured format, the scientific paper, leaving some burden of linking to the reader.
The significant increase in experiment execution and data generation rates from automated laboratories
makes manual knowledge linking infeasible necessitating computational approaches.

Generative artificial intelligence (AI) models, specifically large language models (LLMs), represent an
exciting opportunity to speed the adoption and implementation of automation for discovery science,
and their capabilities hint at promising abilities to aid in the knowledge linking process. They excel
at working with unstructured inputs and outputs; however, they do not natively interface well with
predefined knowledge schemas [8]. They have, however, proven adept at interfacing with structured
databases and application programming interfaces (APIs) when these structures are included in LLM
prompts [9]. Further, LLMs have been shown to excel in question answering applications when the
scope of answer is explicitly specified in input prompts. An exciting avenue of LLM usage combining
database access with prompt scoping is retrieval augmented generation (RAG) [10]. In this formulation,
the results of a database query-potentially initiated by an upstream LLM-are fed into a downstream
LLM prompt. Since the LLM is prompted to answer from the query results rather than its internal
knowledge, such an approach grounds answers to specific databases and limits hallucination.

In this work, we investigate the use of a combination of LLMs, database retrieval, and ontologies to
ground unstructured scientific inputs to formal knowledge bases. Specifically, we follow a retrieval
augmented generation approach utilizing LLMs coupled to vector database stores of ontologies to
ground terms in hypotheses to ontology identifiers. LLMs were used to extract hypotheses from a
pool of carefully selected yeast research papers and extract scientific entities before grounding them
to ontology terms. We tested our pipeline on a diverse selection of papers spanning a wide range of
research domains within the model organism Saccharomyces cerevisiae and found that this approach
effectively automates the grounding of knowledge from unstructured scientific experimental data.
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Figure 1: Pipeline, entity grounding scheme, and extraction knowledgemodel. Further details on pipeline
implementation, technical environment, and ontologies used are available in the Methods section. (A) The tested
pipeline flow. Computational modules involving a large language model (LLM) are shown in shaded gray. Papers
were ingested to produce hypothesis summaries in the Summarization module. Entities were extracted from the
unstructured hypotheses using a user-defined knowledge extraction schema in the Extraction module. Extracted
entities were grounded using the Grounding module using LLM interaction with vector stores compiled from
knowledge bases. (B) The grounding module involves a retrieval augmented generation (RAG) configuration to
map extracted entities to ontology terms. Given the input extracted entity and the original hypothesis, the LLM
creates a query search term and is presented with the closest ontology matches from the vector store. The LLM
then decides on the grounding given the hypothesis. (C) The knowledge extraction model used in tests. Four
extraction categories were tested, each linked to one or more ontologies. Extraction category model prompts
passed to the LLM for extraction are shown in italics.

2. Methods

2.1. Pipeline overview

The automated pipeline developed and tested consists of three modules: (1) hypothesis extraction from
the full text of a paper (summarization), (2) stratified entity extraction from the summarized hypothesis
(extraction), and (3) grounding of entities to ontological knowledge bases (grounding). Summarization
consists of presentation of the entire paper text to a LLM model which is prompted to consider the text
and produce the main hypothesis tested by the paper. The extraction module takes an input text and
extracts single entities/concepts of interest according to user-defined schema. The grounding module
takes these entities and links them to the best found term in ontologies specified by the user to fall under
a given schema category. Crucially, the entity grounding utilizes the LLMs fuzzy reasoning capabilities
to make a decision based on scientific context.

2.2. Manual selection of yeast biology research papers and extraction of hypotheses

A total of 15 recent research publications were manually selected to eclectically cover the field of yeast
(Saccharomyces cerevisiae) biology in an unbiased manner. To provide a framework for research paper
selection, we used the Gene Ontology (GO) [11] as a guide for selecting papers representative of a
broad range of scientific concepts. Papers were manually selected to partially or fully embody concepts
represented by direct children nodes of the root ‘Biological Process’ GO term. These ranged
from high level cellular processes such as cell division, reproduction, and homeostasis, to somewhat
more restricted phenomena including metabolism, gene regulation, and localized processes such as
chromatin reorganization, cellular component biogenesis and signaling. We excluded several GO terms



deemed to have no relevance to S. cerevisiae. Papers were also carefully selected to represent traditional
biological research domains including genomics, molecular biology and biochemistry, cellular biology,
systems biology, evolutionary biology and biotechnology. The 15 papers and their respective manually
annotated GO terms are shown in Table 1.

2.3. Manual hypothesis summarization

Three expert reviewers were assembled to read the papers and decide on consensus human extracted
hypotheses for comparison to the automated pipeline results. The 15 papers were divided into groups of
5 and each reviewer was assigned two of these groups for a total of 10 papers each. Each reviewer read
the assigned papers and extracted hypotheses for each of them independently of the other reviewers.
Reviewers were prompted to extract hypotheses that are clear, logically-sound, actionable, and reflective
of the paper’s aims. The three reviewers then compared individual results to produce a consensus
human hypothesis for each of the papers. The consensus hypotheses are shown in Table 2.

2.4. Automated hypothesis summarization

Papers were fed to the pipeline as PDF files and tokenized into LLM-compatible text inputs. Together
with the tokenized paper, the LLM was prompted to extract only the main hypothesis tested by the paper.
To provide a degree of consistency across extraction, the LLM was prompted to phrase the hypothesis
as a single sentence. Paper contents were tokenized and concatenated into a single annotated string
before injection into the LLM summarization prompt. Original page breaks and counts in the PDF
were maintained as annotation strings to give the LLM a sense of the paper’s physical structure. The
summary module flow was implemented using LangChain [12]. PDF files were processed using the
PyMuPDF library [13]. Output model specification and verification were implemented using Pydantic
[14]. The resulting extracted hypotheses are shown in Table 3.

2.5. Entity extraction and ontology selection

Input hypotheses were fed into the extraction module together with a user-defined knowledge extraction
schema of desired entity categories and annotated descriptions of each category. The module flow
was implemented using LangChain, and schemas were defined using Pydantic. Field descriptions in
the extraction model’s Pydantic class are fed to the LLM during the entity extraction task. Together
with the class-level docstring, these define the entity extraction task for the LLM. For example, the
class-level docstring “The entities extracted from a scientific hypothesis. The entities are divided into
different categories, these field lists MUST be mutually exclusive. An entity cannot be in more than
one list.” together with the category-level description “Any specific genes or proteins mentioned in the
hypothesis” were used to extract gene/protein entities. In principle, the module accepts any user-defined
Pydantic schema. The example schema and linked ontologies used in our testing is shown in Figure 1
including the prompt annotations used to define each category.

2.6. Retrieval Augmented Generation (RAG) grounding of hypotheses

Extracted entities from the hypotheses were grounded to ontologies in database vector store formats
using similarity search to term names from intermediate LLM-generated search terms. OWL [15] files
were downloaded for our chosen ontologies of interest and compiled to Faiss vector store databases
[16]. The following ontologies and versions were chosen for each schema category:

Biological components:

• Gene ontology (GO-plus, version 2024-09-08) [11]
• Ascomycete phenotype ontology (APO, version 2024-09-18) [17]

Genes/proteins:



• Protein ontology (PRO, version 2024-08-08) [18]

Taxa:

• NCBI Taxon (NCBITaxon, version 2024-07-01) [19]

Small molecules:

• Chemical Entities of Biological Interest (ChEBI, version 2024-07-27) [20]

The langchain-rdf [21] library was used to parse OWL files into a Faiss-compatible format. Input
user YAML files were used to link extraction schema categories with specific vector databases. We note
that a single vector database associated with an extraction category may contain one or more stored
ontologies according to the user’s preferences. In our case, the ‘Biological components‘ category was
linked to a vector store database containing terms from the GO and APO ontologies. For each entity,
the following procedure was performed. The LLM was first prompted to look at the hypothesis and the
individual entity to decide on appropriate search terms. This term could be the same as the extracted
entity or a modified entity term given the context of the hypothesis. Both cases were observed as output
in our pipeline runs. For example, during grounding of paper 1 hypothesis terms, the LLM decided to
use the search term “protein synthesis rate” when grounding the term “protein production rate”. Finally,
the generated search term was used as input for a similarity search against the vector database linked to
the entity’s schema category. Searches were based on ontology term names and the top 5 results were
presented to the LLM in a subsequent prompt. Given the top 5 search hits, the input hypothesis, and
the original entity, the LLM was prompted to select the best search term. The entire body of extraction
and grounding results is shown in the supplementary information.

2.7. Evaluation

The panel of three scientists compared the LLM-extracted hypothesis to the consensus human
hypothesis for each of the 15 papers. Each reviewer individually assigned an evaluation score between
1 and 3 for the LLM extraction performance based on the following criteria:

3 = The LLM hypothesis accurately summarizes the paper’s aims and agrees with the human
consensus hypothesis
2 = The LLM hypothesis differs slightly from the human consensus hypothesis but captures some or all
of the paper’s aims
1 = The LLM hypothesis does not correctly summarize the paper’s aims at all

For each paper, the individual scores were averaged across the three reviewers’ scores to produce an
average hypothesis evaluation score.

The three scientists also produced an individual entity score and a grounding score for each entity
extracted from each of the hypotheses. The entity score evaluated the quality of the entity extraction,
specifically how reasonable the extracted entity is. Reasonable entities were sought to be self-contained,
understandable, coherent scientific concepts/units that should map to ontology terms. The grading
criteria followed a 1-3 scale where:

3 = the entity is reasonable in the right category (e.g. is extracted as a “Taxa” when it should
be).
2 = reasonable entity in the wrong category or semi-reasonable entity in the right category.
1 = nonsensical/overly complex entity.

The grounding score was designed to evaluate the effectiveness of grounding based on the extracted
entity. In other words, in the context of the hypothesis, does the grounding do a good job of finding the
appropriate term in the ontology? The following 1-3 scale was used:



3 = The grounding term fits the entity very well in its context.
2 = The grounding term is related to the entity but not an exact fit.
1 = The grounding term is unrelated to the entity.

Evaluation scores and summaries are shown in Figure 2. The individual reviewer scores can be found
in the supplementary information.

2.8. Environment, models, and code availability

Gpt-4o (version 2024-08-06) was used as the LLM model for all pipeline tasks. The pipeline can currently
use any OpenAI model or model available through Ollama [22]. All text embedding was performed
with the FlagEmbedding (bge-small-en-v1.5) embedding model [23].

Vector store creation was performed on an Amazon Web Services (AWS) EC2 r5.4xlarge instance
with 16 vCPUs and 128 GB memory. Currently, the pipeline requires substantial memory to create
vector stores involving large ontology files (hundreds of MB or more). Once created, vector stores can
be reused without rebuilding. The prebuilt vector stores used in this work’s tests are available in this
work’s Zenodo repository https://doi.org/10.5281/zenodo.14014577.

The complete pipeline is available in the ragnosis GitHub repository https://github.com/gkreder/
ragnosis.

3. Results and Discussion

In this work, we aimed to assess the capability of current LLM-retrieval systems to automatically
link unstructured scientific content to structured knowledge bases. We tested our pipeline on 15
representative research papers in Saccharomyces cerevisiae biology, evaluating its ability to extract
hypotheses, identify key entities, and accurately ground these entities within selected ontologies. Our
findings demonstrate that this approach shows immense promise, closely matching human performance
on critical tasks.

3.1. Results

The automated hypothesis extraction module generated concise and accurate single-sentence hypotheses
for each paper, aligning closely with the human consensus hypotheses (Table 2 and Table 3). Human
evaluation of the results on a basic scale of 1-3 are shown in Figure 2A. Further details on the automated
hypothesis extraction, human consensus extraction, and evaluation can be found in the Methods section.

The entity extraction module was run on the hypotheses extracted using the automated pipeline. For
this test, entities were extracted into four schema categories: (1) biological components, (2) genes/pro-
teins, (3) taxa, and (4) small molecules. A total of 123 entities were extracted across all papers. On a
per-category basis the entity counts were the following: biological components: 73, genes/proteins: 27,
taxa: 14, small molecules: 9. Extracted entities were grounded using the pipeline with the compiled on-
tology vector stores. The prompts used to guide extraction for each category, along with the ontologies
associated with them, can be found in Figure 1C. Human evaluation scores, ranging from 1 to 3 on basic
scales, were assigned by a three-person review panel for both entity extraction and grounding. These
average scores across reviewers are shown in Figure 2B, while per-reviewer distributions for each score
are presented in Figure 2C. Full extraction and grounding results can be found in the supplementary
information.

3.2. Discussion

The hypothesis extraction demonstrated strong consistency between the automated outputs and the
consensus derived from human evaluators, mirroring broader findings that LLMs excel in summarization
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Figure 2: Evaluations of summarization, extraction, and grounding. Human evaluation scores from the
automated pipeline results. All scores were based on separate 1-3 scales of increasing quality and assigned
separately by three human reviewers. Evaluation criteria and the extraction categories are described in the
Methods section. (A) Hypothesis summarization scores per reviewer. Scores are reported individually. (B) Entity
and grounding scores. Scores are reported as the mean per-entity score across the three reviewers. Bubble size is
scaled and labeled according to the number of entities occupying the given coordinate at the bubble’s center.
Entities are visualized by extraction category. (C) Score distributions per reviewer by score type.

tasks [24]. Indeed, this task required no retrieval or grounding from the LLMs. Rather, it served as
a means of producing condensed unstructured scientific input to the downstream grounding task.
Nevertheless, the performance of the automated hypothesis extraction was impressive. Our primary
goal was to test entity extraction and knowledge grounding on unstructured input, and hypothesis
extraction effectively served this purpose.

Analysis of the hypothesis extraction process highlighted several key issues. The most significant
is defining what constitutes a hypothesis. Our tests focused on extracting hypotheses from papers
describing completed scientific studies. Both in human extraction and LLM prompting, efforts were
made to avoid incorporating the study’s results into the hypotheses. However, this was somewhat
unavoidable, as a paper’s narrative is naturally influenced by the study’s findings. Papers describe studies
with a priori aims that range from entirely speculative to purely confirmational, and the mechanistic
granularity of hypotheses tested can vary dramatically. Our human and automated results reflect this
heterogeneity. At times, the LLM incorporated more of the study’s results into its hypotheses (as
seen in paper 7), while in other cases, the human evaluators included more mechanistic detail (as in
paper 4). A related issue concerns the question of novelty. Hypotheses inherently rely on existing
knowledge, with their novelty stemming from the ability to shed new light on that knowledge, rather
than simply rephrasing it. This subtlety may be more challenging for LLMs to capture. For example,
the LLM-extracted hypothesis from paper 9 appears to suggest that the novelty of the work centers
on the characterization of the Spt6 protein, when in reality, the authors aimed to shed light on the



Cdc73 subunit of Paf1. Both human and LLM hypotheses describe the proposed relationship between
the proteins, but the LLM hypothesis frames Spt6 as the focus of discovery. In brief, modern scientific
studies do not uniformly adhere to the classical scientific method. They include engineering applications
and untargeted screens in addition to classical experiments. Such heterogeneity must be taken into
consideration in follow up automation development.

We found entity performance to be effective, regardless of the type of hypothesis used as input. Terms
tended to fit the categories and were generally well-scoped. Notably, the extraction process is flexible,
allowing the user to specify their desired input schema categories to guide identification of relevant
entities. This user-defined input schema for entity extraction has been successfully demonstrated in
previous work, such as in [25], and our results further validate its effectiveness and viability. A key
consideration is that the flexibility of knowledge schema choice leads to variations in performance de-
pending on the input knowledge model. This is not a question of computational extraction performance,
but rather schema design.

As shown in Figure 2, entity extraction performance varies significantly across categories. The
‘Biological components’ category exhibits the weakest performance, primarily due to its inherent
vagueness compared to more specific categories like ‘Taxa’, particularly in the context of our paper set
focused solely on yeast biology. This touches on the larger question of knowledge modeling in the life
sciences and beyond. The design and optimal use of descriptive and appropriate knowledge schema for
scientific domains is a fruitful field in itself [26, 27, 28]. This work does not aim to rigorously compare
schemas; rather, we emphasize that our retrieval approach facilitates the linking of unstructured scientific
texts to any knowledge schema. The effectiveness of this linking is inherently constrained by the quality
of the chosen schema. Entity extraction also suffers from the vague definition of an entity. A few times,
entire phrases were extracted as an entity, for example “spectrum of beneficial mutations”
from paper 3 or “cell wall protein mannosylation” from paper 12. Such compound entities
could likely be further decomposed into more modular knowledge units. Conversely, the pipeline
extracted overly specific entities at times, such as “serine 15” from paper 10. In some instances, the
grounding scheme successfully overcame these vague or overly specific extractions, as described below.
A straightforward approach would be to base the knowledge extraction schema on the knowledge
base itself. Ontologies effectively capture the hierarchical structure of encoded knowledge, and basing
extracted categories on ontology levels would undoubtedly enhance grounding performance. We believe
this approach will be especially well-suited for grounding applications on static knowledge bases. Often,
experiments will involve unexplored areas of knowledge and existing knowledge bases will provide an
incomplete structure of the scientist’s domain. Such cases will require user-defined knowledge schema
and perhaps iterated cycles of knowledge base modification from experimental results. We envision
automated closed-loop cycles of experimental grounding and knowledge base improvement involving
intermediate test schema.

The most significant neurosymbolic performance enhancement in our pipeline comes from retrieval
augmented generation (RAG) grounding of extracted terms, yielding highly promising results. Previous
approaches have utilized LLMs for schema-aligned entity extraction, however they typically rely on
traditional deterministic methods for grounding within ontologies or knowledge bases. In contrast, our
method and concurrent new approaches [29] integrate LLMs directly in the grounding process, marking
a shift toward more adaptable, context-sensitive knowledge grounding. This is achieved through RAG,
presenting the LLM with a choice of possible grounding terms and leaving the final choice to the LLM
given the input context. The grounding evaluation scores, shown in Figure 2, largely reflect that the
automated LLM-retrieval approach performs well on this task. The LLM’s fuzzy logic is crucial in
selecting among the database hits. A clear example of this occurred across multiple papers, where
the pipeline accurately grounded protein entities to their correct species designation within the PRO
ontology. For instance, when grounding the entity “Cln3”, it correctly selected “S000000038 CLN3
(yeast)” instead of alternative terms such like “protein CLN3 (mouse)”, “G1/S-specific
cyclin CLN3 (Candida albicans SC5314)”, or “protein CLN3 (human)”, all of which are
also present in the ontology. Such logic would be challenging to implement deterministically across
different use cases, but it leverages the strengths of LLMs, where they excel in handling complex,



context-dependent reasoning. As noted earlier, the grounding scheme effectively compensated for
poorly extracted entities by utilizing the hypothesis context. For instance, it grounded “cell wall
protein mannosylation” from paper 12 to “GO_0035268 protein mannosylation,” and
“serine 15” from paper 10 to “MOD_00696 phosphorylated residue.” Full details of the
extraction and grounding results are provided in the supplementary information.

Further development will be undertaken to improve the performance of the extraction and grounding
modules. One notable improvement will come from basing candidate ontology term presentation to
the LLM on semantic search to more than the term name in the ontology. Knowledge base terms often
contain annotations, synonyms, and relations to other terms. Basing the vector store search on these
rather than purely term names will likely further improve the quality of the candidates for the LLM to
choose from. We also note that the choice of ontologies to search was somewhat arbitrary and based on
our test entity extraction schema. Some choices were straightforward, such as grounding entities in the
"Taxa" category to the NCBITaxon ontology. Choosing GO-Plus and APO for the “biological components”
category likely omitted other ontologies with potentially relevant terms. More comprehensive study of
the design of these elements warrants further investigation. Such development will build on prior and
ongoing efforts to robustly systematize and encode scientific knowledge, hypotheses, protocols, data,
and findings [30, 31, 32, 33]. Further expansion beyond hypotheses must also be explored. An especially
promising direction will be in grounding raw and processed data from experiments to knowledge base
terms. For example, sample identifiers in experimental data may be automatically contextualized to
other experiments through iterated rounds of context presentation and grounding. Such a scheme
would increase the insight generated from a single experiment and allow for richer meta-analysis.

Based on our human evaluations, we found that the extraction and grounding pipeline performed
well for knowledge grounding and represents a promising direction for future research. Reflective of the
scientific process itself, the evaluators varied in their assessments but were in general agreement (Figure
2). Our tests were conducted on a small, representative set of papers spanning a broad range of topics
within yeast biology. However, there is no reason to believe that our approach would not be suitable
for larger-scale work that encompasses a broader range of scientific knowledge, inputs and outputs,
and applications - given appropriate resources. Beyond its use in mining public data, we envision
such a pipeline as a crucial component of a fully automated self-driving laboratory where AI agents
generate hypotheses, conduct experiments, and analyze data in iterative cycles of closed-loop discovery.
Approaches that integrate laboratory robotics with symbolic systems and knowledge bases have been
and continue to be developed [34, 35, 36]. However, experimental knowledge is often inherently
unstructured, making such neurosymbolic systems crucial for the future of automated laboratories,
as they leverage the strengths of both logical and subsymbolic generative approaches. By leveraging
these advanced systems, we are approaching a new phase in scientific research, where automation and
intelligent knowledge grounding can open valuable opportunities for discovery and innovation.
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A. Tables

Table 1
Paper GO Terms

Paper GO Term

1 [37] Cellular Process (GO:0009987)
2 [38] Metabolic Process (GO:0008152)
3 [39] Chromatin Organization (GO:0006325)
4 [40] Metabolic Process (GO:0008152)
5 [41] Response to Stimulus (GO:0050896)
6 [42] Developmental Process (GO:0032502)
7 [43] Localization (GO:0051179)
8 [44] Biological Regulation (GO:0065007)
9 [45] Biological Regulation (GO:0065007)
10 [46] Signaling (GO:0023052)
11 [47] Cellular Component Organization or Biogenesis (GO:0016043)
12 [48] Cellular Process (GO:0009987)
13 [49] Biological Phase (GO:0044848)
14 [50] Homeostatic Process (GO:0042592)
15 [51] Response to Stimulus (GO:0050896)
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Table 2
Human Extracted Hypotheses

Paper Human Hypotheses

1 [37] Progression through the START Checkpoint of the cell cycle is dependent on an
increased production rate of Cln3 which does not scale relative to cell size increase.

2 [38] In Saccharomyces cerevisiae, the Hsl1 protein kinase inhibits the activity of the Pah1-
encoded phosphatidate phos-phatase (PAP) by phosphorylation at sites Ser-748 and
Ser-773 of the PAP protein, leading to a reduced conversion of phosphatidate (PA)
into diacyl-glycerol (DAG) and increase in the synthesis of membrane phospholipids.

3 [39] Whole genome duplication (WGS) in Saccharomyces cerevisiae provides an imme-
diate fitness advantages via accumulation of structural variants enabling adaptive
strategies to environment, however this comes at a cost of slowing long-term adapt-
ability, for example via recessive mutations, aneuploidies, and copy-number variants.

4 [40] Increased production of pentacyclic triterpenes in Saccharomyces cerevisiae can be
engineered through overexpression of mevalonate (MVA) pathway genes such as
ERG13 (HMGS) and HMG1 (HMGR), overexpression of lupeol synthase, deletion
of the negative regulator of the MVA pathway, ROX1, and repression of the sterol
synthesis pathway gene ERG7.

5 [41] Under hydrogen peroxide induced stress in Saccharomyces cerevisiae, the Opi1p
protein translocates to the nucleus to repress transcription of inositol upstream acti-
vating sequence (UAS-INO)-containing genes for the cell to adapt its cell membrane
to reduce permeability to exogenous hydrogen peroxide.

6 [42] SPO73 acts in a pathway involving SPO71, VPS13 and SPO1 to regulate proper
prospore membrane elongation in Saccharomyces cerevisiae.

7 [43] The peroxisomal import membrane protein, Pex14p, is regulated by phosphorylation
in saccharomyces cerevisiae.

8 [44] The Saccharomyces cerevisiae transcription factor, Crf1p, activates the transcription
of the ribosomal biogenesis genes, UTP22 and HMO1, as a mechanism to fine-tune
responses to mTORC1 signaling.

9 [45] The Cdc73 subunit of the Paf1 complex in Saccharomyces cerevisiae interacts with
subunits of the Pol II elongation complex in an unknown manner.

10 [46] One or all of the kinases, Ymr291w/Tda1, PKA, Sch9, and Snf1 phosphorylate hexoki-
nase ScHxk2 at phosphorylation site serine 15 to activate transcription of glucose-
repressible genes under low external glucose levels in Saccharomyces cerevisiae

11 [47] The number of Golgi cisternae produced and maintained in a Saccharomyces cere-
visiae is tightly regulated by the GPI-anchored protein sorting process in the endo-
plasmic reticulum, particularly to the endoplasmic reticulum exit sites (ERESs).

12 [48] In Saccharomyces cerevisiae, genes related to cell wall biosynthesis and maintenance,
are direct determinants of the budding lifespan of the cell, as measured by its repro-
ductive longevity or budding cycle capacity.

13 [49] In Saccharomyces cerevisiae, visible light affects the Yeast Respiratory Oscillator
(YRO) through impacting oxidative state, leading to negative effects on metabolism.

14 [50] The heat shock response program in Saccharomyces cerevisiae involves changes to
the expression of genes encoding proteins with a wide range of functions in addition
to molecular chaperones.

15 [51] Under glucose starvation and carbon scarcity conditions in Saccharomyces cereivisae,
Acetyl-CoA driven histone acetylation is shifted to focus on up-regulation of transcrip-
tional programs focused on starvation survival and metabolism regulation, namely
gluconeogenis and fat metabolism.



Table 3
LLM Extracted Hypotheses

Paper LLM Hypotheses

1 [37] The differential scaling between protein production rate and cell size dynamics leads
to a temporal increase in Cln3 concentration, which promotes commitment to the
cell division cycle in budding yeast.

2 [38] The phosphorylation of Pah1 by the septin-associated protein kinase Hsl1 inhibits
phosphatidate phosphatase (PAP) activity, thereby promoting membrane phospho-
lipid synthesis at the expense of triacylglycerol synthesis in Saccharomyces cerevisiae.

3 [39] Whole genome duplication (WGD) in haploid Saccharomyces cerevisiae populations
provides a direct fitness advantage, but results in a reduced adaptation rate due to
a shift in the spectrum of beneficial mutations and the accumulation of recessive
deleterious mutations, indicating a trade-off between immediate fitness gains and
long-term adaptability.

4 [40] Upregulating the mevalonate pathway and repressing sterol synthesis in Saccha-
romyces cerevisiae enhances the production of triterpenes, specifically by overex-
pressing MVA pathway genes, deleting the ROX1 gene, and using a copper-regulated
promoter to redirect metabolic flux from sterol biosynthesis to the production of
pentacyclic triterpenes such as lupeol and _-amyrin.

5 [41] Hydrogen peroxide (H2O2) in concentrations that induce adaptation regulates the
translocation of the transcriptional repressor Opi1p to the nucleus in Saccharomyces
cerevisiae, affecting the expression of UASINO-containing genes, and this process
involves the oxidation of cysteine residue 159 of Opi1p.

6 [42] SPO73 and SPO71 function cooperatively to promote prospore membrane elongation
during sporulation in Saccharomyces cerevisiae, acting in opposition to SPO1, while
VPS13 plays a distinct role in prospore membrane development.

7 [43] Phosphorylation of Pex14p at serine 266 modulates the peroxisomal import of citrate
synthase 2 (Cit2p) in Saccharomyces cerevisiae, thereby helping the cells to adjust
their carbohydrate metabolism according to the nutritional conditions.

8 [44] Crf1p functions as an activator of the ribosomal biogenesis genes UTP22 and HMO1,
and its presence is required to prevent rebinding of Ifh1p to some gene promoters after
mTORC1 inhibition, thereby optimizing transcriptional responses during mTORC1
inhibition.

9 [45] Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at
active genes in Saccharomyces cerevisiae, suggesting that Spt6 plays a critical role in
recruiting or retaining Paf1C on transcribing RNA polymerase II.

10 [46] Ymr291w/Tda1 is essential for the phosphorylation of hexokinase isoenzyme ScHxk2
at serine 15 in Saccharomyces cerevisiae, and this phosphorylation is crucial for glu-
cose signaling, particularly under conditions of limited external glucose availability.

11 [47] Protein sorting in the endoplasmic reticulum, particularly the sorting of GPI-anchored
proteins into selective ER exit sites, plays a critical role in maintaining Golgi biogenesis
by affecting the number of Golgi cisternae in budding yeast.

12 [48] Disturbances in cell wall biosynthesis, particularly in chitin biosynthesis and cell wall
protein mannosylation, affect the budding lifespan of Saccharomyces cerevisiae yeast,
with specific mutations leading to either a reduction or increase in lifespan, suggesting
that cell wall integrity and composition play a significant role in determining yeast
longevity.

13 [49] Visible light, particularly blue and green wavelengths, significantly modulates the
period and amplitude of the yeast respiratory oscillation (YRO) by inhibiting respi-
ration through light absorption by cytochromes, which affects electron transport
and oxidative phosphorylation, and this modulation is similar to the effects observed
with the electron transport inhibitor sodium azide.

14 [50] The heat shock response (HSR) in yeast is modular and involves the upregulation of
genes to counterbalance increased protein turnover due to stress, maintaining protein
homeostasis by replenishing proteins through increased synthesis and chaperoning,
with distinct programs activated depending on the severity of the stress.

15 [51] Glucose starvation induces a switch in the histone acetylome, mediated by the histone
deacetylase Rpd3p and the acetyltransferase Gcn5p, to activate genes involved in
gluconeogenesis and fat metabolism, thereby promoting cell survival under conditions
of limited acetyl-CoA.
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