
Automated Policy Negotiation: a Four-Course Meal
Patrick Hochstenbach1,2,∗,†, Beatriz Esteves2,† and Ruben Verborgh2,†

1Ghent University Library, Ghent, 9000, Belgium
2IDLab, Ghent University - imec, Ghent, Belgium

Abstract
Ensuring that humans and autonomous agents can accurately interpret and act on complex policies is critical
to maintaining trust, compliance, and accurate data exchange across the Web. Without interoperable and
machine-interpretable policies governing the exchange of personal data on the Web, there is a strong risk of
misinterpretation and legal ambiguity when automated agents negotiate and instantiate data-sharing agreements.
In this regard, this article identifies a set of challenges that need to be tackled by policy-based agents to have
(semi)automated communication and negotiation of data exchange terms for the sharing and using personal data
on the Web. A literature review was conducted to assess the progress made in addressing the set of challenges
across four domains: (i) compliance checking, (ii) consistency checking, (iii) requirement checking, and (iv)
negotiation. By examining the state of the art, we demonstrate that these challenges are interrelated but are
addressed using a heterogeneous mix of solutions, prioritizing pragmatism over a formal foundation that applies
across all four domains. The way forward lies in the resurgence of logic programming languages that offer
essential support for built-in predicates, negation, and meta-programming.

Keywords
Policies, compliance checking, consistency checking, requirement checking, negotiation, autonomous agents

1. Introduction

Current web practices, such as invasive user tracking practices using cookies, have led to distrust in
online data and service exchange scenarios [1, 2]. To mitigate this distrust and in an attempt to comply
with GDPR requirements, websites have implemented mechanisms such as cookie consent pop-ups to
allow users to set their privacy preferences. However, such pop-ups have unclear privacy policies, which
often do not comply with the law, undermine user experience, and reduce their willingness to exercise
agency over their data [3, 4]. Moreover, no standardization is available for setting these preferences and
policies. This not only impairs the clarity and comprehension of data exchanges, leading to inaccurate
and unaccountable data transfers, but also eliminates any possibility of automation.

In this context, the development of standardized interfaces that transport data within a “trust enve-
lope” — a secure vessel embedding usage policies, provenance and other contextual information — could
ensure that information flows with integrity, accountability, and purpose [5]. Such envelopes would
allow the sharing of data with trust, allowing people, organizations, and machines to have an evolvable
and mutually beneficial relationship, where all parties involved can derive value from data and data-
related service exchanges. However, for diverse parties to operate within such dynamic ecosystems,
they must agree on using interoperable policies to express data exchange conditions. These policies
should be expressive enough to account for technical, societal, and legal constraints while enabling
autonomous web agents to negotiate and instantiate precise data-sharing agreements on behalf of
humans and organizations. The advent of non-deterministic agents, such as large language models,
presents privacy risks [6, 7] and offers little transparency [8] regarding the reasoning behind their
decisions. Trustworthy agents must rely on deterministic policy engines that guarantee a uniform

OPAL’25: ODRL And Beyond: Practical Applications And Challenges For Policy-Base Access And Usage Control, colocated with the
Extended Semantic Web Conference 2025, June 1–5, 2025, Portorož, Slovenia
∗Corresponding author.
Envelope-Open Patrick.Hochstenbach@UGent.be (P. Hochstenbach); Beatriz.Esteves@UGent.be (B. Esteves); Ruben.Verborgh@UGent.be
(R. Verborgh)
Orcid 0000-0001-8390-6171 (P. Hochstenbach); 0000-0002-8596-222X (R. Verborgh)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Patrick.Hochstenbach@UGent.be
mailto:Beatriz.Esteves@UGent.be
mailto:Ruben.Verborgh@UGent.be
https://orcid.org/0000-0001-8390-6171
https://orcid.org/0000-0002-8596-222X
https://creativecommons.org/licenses/by/4.0/deed.en


interpretation of policies, so that they can act and interact reliably in decentralized systems such as the
web.

This article examines a set of technical challenges that must be addressed when deterministic policy-
based agents participate in data-sharing agreements. The ultimate goal is to achieve trustworthy (semi-
)automated policy negotiation. These challenges are linked to policy compliance checking, consistency
checking, requirements checking, and negotiation, all of which are necessary features that agents must
possess to be able to negotiate data exchange terms for the sharing and usage of personal data on the
web. We provide a definition for each challenge and describe the metrics to be used to evaluate the
integration of such features into a policy engine. Moreover, building on these definitions, we describe
our vision for a fully automated web agent, which requires a solution for all identified challenges,
and provide insight into current technologies that tackle at least one of these challenges. Building on
this analysis, we argue that a solution to all challenges must be based on interoperable standards and
specifications, including policy languages such as the W3C’s Open Digital Rights Language (ODRL) [9].
However, formal semantics must support these standards, as multiple technologies may need to work
in tandem to overcome these challenges. Without formal semantics, selecting a technology to address
one challenge may impede progress on others. We hypothesize that any trustworthy autonomous web
agent that negotiates data exchanges requires at least a technical solution for all four challenges.

The remainder of this article is structured as follows: Section 2 provides an overview of the identified
challenges, including definitions and examples; in Section 3, we discuss our vision to solve said challenges
towards the development of policy-based web agents; Section 4 provides an overview of related work
per identified challenge; and, finally, Section 5 concludes the article and offers future lines of research.

2. Challenges

This section outlines four key challenges in automating policy negotiation, derived from our insights
following a literature review on the current state of the art of automated policy negotiation. We identify
the minimal capabilities that any policy-negotiating agent should possess: a mechanism to verify
whether a state of the world aligns with a set of policies, a method to compare policies and detect
inconsistencies, a technique to query a set of policies to uncover missing requirements for fulfilling
a policy, and a means to generate new policies. These mechanisms can be found with many names
in the literature. We settled for terminology we found in [10] and [11]. An alternative model can be
found in Kiruthika’s “Lifecycle Model of a Negotiating Agent” [12]. Our model offers a more holistic
perspective on the various challenges an automated agent will encounter, whereas Kiruthika presents a
more process-oriented view of the different stages of negotiation.

Definition 1. Compliance checking verifies whether a state of the world conforms to specified norms.

For example, consider the following policy and state of the world:

Policy 1. Alice is permitted to use the file data.txt.

SotW 1. Alice reads the file data.txt.

We use the terminology “state of the world” as defined in Slabbinck [13] as: “a set of knowledge
representing real-world information aiding the evaluation of ... policies”. This definition is quite generic
and can encompass any facts, actions, or outstanding obligations that can be used as inputs for policy
decisions.

Given Policy 1 and SotW 1, a compliance checking process would classify SotW 1 as permitted. We
assume in this example that some background information is available indicating that reading is a
subclass of using. The nature of this background information is dependent on the policy framework.
When multiple actions are available in the state of the world, then a compliance checking process should
indicate if the combinations of actions conforms to the specified norms. This can lead to interesting



challenges when the deontic nature of the verbs used in policies is taken into account. The policy “Alice
is prohibited to drink and drive,” would permit a state of the world where Alice drinks, a state of the
world where Alice drives, but not a state of the world where Alice drinks and drives.

The characteristic feature of compliance checking software is the ability to transform a policy
language into computationally executable representations. When provided with the state of the world,
the compliance assessment should determine the fulfillment status of obligations and the permissibility
or prohibition of proposed actions in this state. Metrics to evaluate such a system include evaluating
processing speed and scalability, expressivity of the state of the world and supported policies, adherence
to (web) standards, and benchmarking with test cases.

Definition 2. Consistency checking is detecting whether two or more policies contradict each other.

Consider a new added following policy:

Policy 2. Alice is prohibited to use file data.txt.

In this example, Policies 1 and 2 contradict each other by granting and denying the same subject
the right to perform the same action. In our case, there is no need to introduce any potential state of
the world. Regardless of the input, the combination of Policies 1 and 2 remains problematic. In logic,
anything can be proven from a contradiction, a principle known as ex falso quodlibet. However, beyond
logical inconsistency, there is also a trust aspect when two parties create or apply policies containing
contradictory norms. While our example is relatively simple, one can easily envision scenarios where
interactions between parties handling personal data require careful scrutiny to avoid ambiguities.

Costantino et al. [14] defined other types of conflicts. A policy is considered an exception to another
policy if it grants or denies the right to perform an action while one or more terms of the policy are
a subclass of the terms of the other. For example, when Alice is granted the right to use a file in one
policy and denied the right to print the file in another policy (considering print as a subclass of use).
Policies are considered correlated if they have different effects (granting versus denying an action) and
the conditions of the rules intersect each other. For example, if Alice is granted the right to use the file
on weekends but denied this right on the first day of the month.

The ODRL policy language provides defeasibility mechanisms within their expressivity that can
resolve inconsistencies such as the ones demonstrated in the previous examples. One can specify a
conflict strategy that demands that the permission rule in Policy 1 must override the prohibition rule
in Policy 2. Such an override is known as a superiority relation in defeasible logic. To indicate that
Policy 1 takes precedence over Policy 2, the rule “Policy 1 > Policy 2” can be introduced, e.g., in a
policy enforcement mechanism. Although superiority relations may help mitigate conflicts, they do not
guarantee the resolution of every policy conflict. In Example 35 of the ODRL Information Model 2.2 [9],
it is demonstrated that specifying "conflict":"perm", i.e., permissions override prohibitions, in one
policy alongside "conflict":"prohibit", i.e., prohibitions override permissions, in another policy
gives rise to a direct contradiction that cannot be solved and results in a void policy.

A key characteristic of consistency checking software is its capacity to analyze policies in their
executable form to identify potential contradictions without needing access to the current state of the
world. Instead of executing the policy with the current state of the world as input, the semantics of the
policy itself need to be analyzed. Metrics to evaluate such systems include complexity analysis of the
algorithms used, processing speed, scalability, and benchmarking with test cases.

Definition 3. Requirements checking is querying a set of policies to determine which rights are granted
or denied, which obligations must be fulfilled, and which constraints must be satisfied for a right to be
granted.

For example, consider the following set of policies:

Policy 3. Alice is permitted to play the file 1999.mp3 with the duty to pay 5 euro.



Policy 4. Alice is prohibited from selling the file 1999.mp3.

Given Policies 3 and 4, and considering “Policy 4 > Policy 3” as a superiority relation to deal with
policy inconsistencies, a requirements checking tool should be able to answer queries such as:

Q1. Is Alice prohibited to sell the file 1999.mp3? Yes.
Q2. Is Alice prohibited to pay 5 euro? No.
Q3. Is Alice prohibited to play the file 1999.mp3, if she is not paying 5 euros? Yes.

The queries illustrate both the syntactical and semantic requirements for requirements checking
tools. If these policies were expressed in web language such as RDF, Q1 could be addressed syntactically
using a SPARQL query using graph pattern matching. However, Q2 and Q3 require an interpretation of
the deontic verbs that are used in the policies and queries, and may also need support for negations and
defeasible norms. For example, answering Q2 and Q3 requires understanding the relation between a
prohibition and a duty and the deontic definitions of a duty (D), prohibition (F) and permission
(P): D(A) =𝑑𝑒𝑓F(¬A)=𝑑𝑒𝑓 ¬P(¬A). A prohibition to “pay 5 euro” is identical to a duty “not paying 5
euro”. A requirements checker should be able to calculate that a duty “not paying 5 euro” and a duty
“paying 5 euro” are incompatible, regardless of the state of the world, even under an open-world
assumption. Moreover, to answer Q3, the meaning of not needs to be clarified – does not indicate that
Alice is unwilling to pay (a fact), or that there is no information about the payment (which requires
some interpretation in an open-world assumption)? Both interpretations of not may lead to the same
conclusions, or they may not, depending on the policy framework.

Part of what is expected from a requirements checker overlaps with that of a compliance checker.
What differentiates a requirements checker is its ability to query the output of a compliance checking
process – for example, to identify the duties that must be fulfilled or to interpret the meaning of a
negative compliance result (“computer says no”). Querying both the policies and the output of the
compliance process offers insight into the capabilities and outcomes of policy compliance.

The key characteristic of requirements checking software is its ability to make policies in their
syntactic or executable form explainable to human and machine targets. Possible metrics to evaluate
these tools include the expressivity of the query language. Can the tool perform only graph pattern
matching, or does it understand the semantics of the policy language? Can the tool answer only
‘Yes’/‘No’ questions, or can it produce more elaborate answers for questions such as “Show all the
actions Alice is permitted to do”. Furthermore, benchmarks can be imagined to evaluate the scalability
or completeness of the results, and user surveys can provide insights into the ability of the tool to
provide a human-interpretable result.

Definition 4. Policy negotiation is a (semi-)automated process in which two parties establish the
conditions and terms for data exchange and usage. The result of such a negotiation process is a policy.

Consider a scenario in which Alice is the provider of the dataset (D1) containing her personal
information, including dietary habits. FoodMarket (FM) is a website that Alice uses to buy groceries.
When Alice connects to FoodMarket through her web browser, the FM system automatically filters
products that match her dietary preferences, provided that Alice consents to sharing this information
with the system (FM). An automated agent in Alice’s web browser negotiates with the FM a data
exchange and usage policy based on her personal preferences. Alice finds only products that match her
diet on the FM website as a result of this negotiation.

For instance, Alice’s preferences include the policies:

Policy 5. Grocery stores are permitted to use my dietary information for filter queries

The FoodMarket could have a policy:

Policy 6. FoodMarket provides filter queries for customers that provide data sharing of dietary informa-
tion.



The policy agreement after the negotiation process includes:

Policy 7. FoodMarket is permitted to use Alice’s allergy, intolerance, dietary restrictions, and eating
habits data for the purpose of filtering search results.

This is a theoretical example, without expressing strict GDPR compatibility, aimed at demonstrating
the possible outcome of a negotiation. The generated policy materialized Grocery stores as FoodMarket,
dietary information as allergy, intolerance, dietary restrictions, and eating habits, and filter queries as
filtering search results into an agreement that establishes the conditions for a concrete data exchange
instance.

The key characteristics of policy negotiation solutions depend on their ability to analyze the policy
requirements of both parties, evaluate these requirements, generate a new policy, check the generated
policy for inconsistencies against existing preferences, and present the results of this process in a clear
and explainable manner to both parties. Metrics for evaluating such systems involve all the metrics
for compliance checking, consistency checking, and requirements checking, as well as user surveys
that include user satisfaction and user correction rates (the frequency with which users override the
generated policies).

3. Policies Are Essentially a Computer Program.

In this section, we argue that the four challenges of Section 2 are interrelated and arrive at our hypothesis
that a trustworthy automated agent requires a solution for all four challenges.

Compliance checking requires software solutions to transform policy documents into executable
formats, in some cases necessitating the integration of multiple technologies. The literature, explored
in Section 4, highlights implementations in ASP, Prolog, Haskell, OWL, OWL with SPARQL, OWL with
SHACL, and OWL with RIF. Each solution has its capabilities, strengths, and weaknesses. Each solution
is treated as a black box for this discussion.

Compliance
Checker

INPUT

POLICY
PROGRAM

Yes

No

Figure 1: Compliance checking
software as a black
box.

Figure 1 provides a graphical illustration of the compliance
checker as a black box. The state of the world is codified by the
INPUT file that the compliance checker processes into a Yes/No out-
put: “Yes”, if the input complies with the policies, and “No” if not.
The cases in which compliance software cannot provide an output
in this simple abstraction are beyond the scope of this analysis.
Moreover, we argue that a policy (or a set of policies) is in effect a
computer program. Policies are rules that the compliance checker
must follow to arrive at an output. The syntactical form of the
policy, e.g., the ODRL document, has to be differentiated from its
executable form, e.g., by involving description logics, ASP, SPARQL,
SHACL, etc. In this document, we will refer to this executable form
as the formalization of a policy language.

An automated agent tasked with negotiating policies must compare the terms of data exchange and
usage from different parties to generate a new policy with the agreed terms. Within our abstraction,
such an agent, in effect, compares computer programs representing each party’s policies to produce
a new program. The terms, conditions, and resulting policy must consistently enable effective data
exchange. A policy negotiation agent must also present both parties with an explainable version of the
generated policy, ensuring transparency and facilitating mutual understanding.

Such an analysis, comparison, and presentation of explainable policies “as computer programs” is
only possible if there is a mutual understanding between the different software solutions – across
all four challenges – regarding the meaning and scope of the policies. Such mutual understanding
is facilitated by the formalization of a policy’s semantics. In such a case, a local system can analyze
policies and search for conflicting rules. In the absence of formalization, however, the implementation



defines the policies’ semantics. In this case, policy consistency checkers and requirements checkers
must interpret the possible execution states of a program, presenting a much more complex challenge.

4. Related Work

A brief literature review was conducted across the four challenges to validate the presented vision. This
review is not extensive and provides only an insight into the technologies that are already explored, and
if they match our insights. In future work, this analysis will be expanded to share further insights and
expand the coverage of the literature review. An overview of the literature mentioned in this section
is provided in Table 1. When a solution could apply to more than one challenge, we chose the most
relevant categorization.

4.1. Compliance Checking

The topic of policy compliance checking provides the most extensive sources of literature. Three
significant trends can be recognized: an early phase that utilizes logic programming languages such as
Prolog, a middle phase focused on OWL and Semantic Web techniques, and a current resurgence of
traditional programming languages.

Wieringa [15] provides an extensive overview of the application of deontic logic in computer sci-
ence. He reports on early work in 1985 to implement compliance checking software in Prolog for the
Imperial College library and the formalization of the British Nationality Act. Chong [16] introduces
“LicenseScript”, a language for implementing digital rights management in Prolog.

Gandon [17] uses a combination of RDF Named Graphs, OWL, and SPARQL to formalize LegalRuleML
using deontic reasoning. Named graphs are used to capture the state of the world, but because OWL
does not have named graph support, extensions in SPARQL had to be added. A similar approach
was taken by Francesconi [11] without requiring named graphs. The authors acknowledge that their
implementation works for simple cases however it needs to be further extended to model complex
modalities and constraints. SHACL is proposed for more complex reasoning. Fornara [18] requires
a combination of OWL and RIF to cope with reasoning over temporal intervals modeled with ODRL.
Kirrane [19] formalizes the SPECIAL policy language using OWL to develop a compliance checking
architecture. Compliance checking is achieved using off-the-shelf reasoners by restricting the deontic
requirements of policies to permissions.

In recent years, traditional programming languages have gained renewed attention to formalize
policies. De Vos [20] formalized the Institutional Action Language (InstAL) using the ASP programming
language. One of the reasons not to use OWL was computational tractability issues when using the
RDF open world assumption. Robaldo [21] formalized LegalRuleML using ASP and compared it with
a SHACL-based formalization. The authors motivate their choice by the lack of expressivity of OWL
to encode defeasibility in normative reasoning. Van Binsbergen [22] formalized the eFLINT policy
language in Haskell. One of the reasons for this choice was the fact that the complex conditions in
law, regulations, and data sharing agreements could not be captured with existing solutions. Recently,
Slabbinck [13] formalized the ODRL policy language using Notation3 with an implementation in Prolog.
To validate the approach, an extensive suite of test cases was developed.

4.2. Consistency Checking

On the topic of policy consistency, some theoretical works are available. Gangadharan [23] explores the
requirements for service license composition using the “matchmaker” algorithm applied to an extension
of the ODRL policy language for service licenses: ODRL/L(S). Villata [25] explores algorithms for license
compatibility in the context of data reuse use cases. The authors model licenses using the Creative
Commons (CC) vocabulary. Rotolo [26] extends the work of Villata by supporting a broader set of



Table 1
Overview of the related literature per challenge theme.

Challenge References Language Formalization

Compliance checking

Wieringa 1994 [15] Libary Regulations Prolog
Chong 2006 [16] LicenseScript Prolog
Gandon 2017 [17] LegalRuleML OWL+SPARQL
Fornara 2019 [18] ODRL OWL+RIF
De Vos 2019 [20] InstAL ASP
Kirrane 2021 [19] SPECIAL OWL
Van Binsbergen 2022 [22] eFLINT Haskell
Francesconi 2023 [11] LegalRuleML OWL+SPARCL+SHACL
Robaldo 2023 [21] LegalRuleML ASP/SHACL
Slabbinck 2025 [13] ODRL Prolog

Consistency checking

Gangadharan 2007 [23] ODRL/L(S) Theory
Sensoy 2012 [24] OWL-POLAR OWL+Pellet
Villata 2012 [25] CC Theory
Rotolo 2013 [26] CC,ODC,GNU,... Theory
Costantino 2018 [14] CNL4DSA Maude
Pellegrini 2018 [27] ODRL ASP
Inclezan 2023 [28] 𝒜𝒪𝒫 ℒ ASP

Requirements checking

Pandit 2018 [29] GDPRov, GDPRtEXT SPARQL
Okoyomon 2019 [30] Consent screens Regex
Hamdani 2021 [31] Privacy policies NLP
Akaichi 2023 [10] ODRL OWL+SHACL
Adhikari 2025 [32] Survey paper -

Negotiation

Baarslag 2017 [33] - Protocol
Kiruthika 2020 [12] Survey paper -
Yumasak 2024 [34] ODRL IDSA
IDSA 2025 [35] ODRL Protocol

licenses, including Open Data Commons (ODC) and GNU licenses. The authors formalize such licenses
using a combination of deontic and defeasible logic.

Sensoy [24] introduces the policy language OWL-POLAR and formalizes it using OWL. The reasoning
mechanism for consistency checks is executed using the Pellet reasoner. However, consistency checking
in OWL-POLAR is limited due to its reliance on non-monotonic features in the formalization, which
are non-standard in OWL-DL. Costantino [14] formalizes data privacy agreements using a language
named “Controlled National Language for Data Sharing Agreements” (CNL4DSA). CNL4DSA is an XML
language with a formal foundation based on a labelled transition system. This allows for a translation to
rewriting logic-based languages of which the Maude System1 is an implementation. Maude is the formal
reasoning tool for which the authors provide conflict detection algorithms. Pellegrini [27] describes the
Data Licenses Clearance Center (DALICC) framework, which supports the legal securing of derivative
works created from third-party data and software. One of the tasks of the DALICC framework is to
analyze license compatibility. The authors formalize licenses using ODRL, which are then translated into
ASP for further analysis, enabling the detection of potential conflicting licensing terms. Inclezan [28]
describes the 𝒜𝒪𝒫 ℒ policy language, designed to specify policies for autonomous agents operating in
dynamic environments. The𝒜𝒪𝒫 ℒ language is formalized using ASP, enabling the analysis of policies
for inconsistencies (rules that contradict each other), underspecification (rules that never trigger), and
ambiguities (rules that permit an action in one answer set but deny it in another).

4.3. Requirements Checking

Three main approaches can be identified when it comes to requirements checking solutions.

1https://maude.cs.illinois.edu/wiki/The_Maude_System

https://maude.cs.illinois.edu/wiki/The_Maude_System


The first is a syntactic analysis of the formalization of a policy language. This approach is exemplified
by Pandit [29], who formalized the General Data Protection Regulation (GDPR) using the GDPRov and
GDPRtEXT ontologies. With these ontologies, subsets of consent and personal data obligations can be
queried using SPARQL.

The second approach uses semi-automated heuristics to analyze policies that are published as plain
text. Okoyomon [30] uses regular expression (Regex) matching to analyze the consent screens of 68
thousand apps in the Google Play Store. Hamdani [31] employs a natural language processing (NLP)
approach to extract data practices from privacy policies. The extracted information is then formalized
into rules, allowing further analysis and evaluation. A survey paper of NLP techniques for analyzing
privacy polices can be found in Adhikari [32].

The third approach requires the semantic analysis of a policy language. This approach is exemplified
by Akaichi [10] in the Generic Graph Pattern-based Policy Framework for Usage Control (GUCON),
which investigates the applicability of OWL and SHACL to formalize the ODRL policy language.
The authors present an algorithm that analyzes applicable permissions, prohibitions, obligations, and
dispensations relevant to a given action.

4.4. Policy Negotiation

Negotiation is a complex process, and its automation is equally intricate. Kiruthika [12] provides an
overview of the lifecycle models of negotiation agents in the literature, evaluating techniques such
as artificial intelligence, game theory, and evolutionary programming. To our knowledge, no fully
automated agents are available to negotiate policies. However, extensive research is available on trust
negotiation, determining under what conditions an agent can access a particular piece of information.
Semi-automated techniques for negotiating policies can be found in Baarslag [33], who creates a
protocol for permission management, and Yumasak [34], who utilizes the (International Data Spaces
Association (IDSA) contract negotiation protocol [35]. Both approaches implement a policy negotiation
engine, which assists users in streamlining complex negotiations. While the burden on the user to
reach an agreement is reduced, Baarslag observes that this does not necessarily lead to decreased user
engagement with the systems involved.

5. Conclusions and Future Work

A four-course solution is required if trustworthy (semi-)automated policy negotiation is our ultimate
goal. This relies on portable semantics for the policy language across the four components of the
challenges as presented in this paper. Implementing policy languages in an RDF model, such as ODRL,
ensures the portability of syntax and entity meanings, but this alone does not guarantee a portable
policy logic. To achieve this, the conclusions drawn by a compliance checker must align with those of a
consistency checker, requirements checker, and policy negotiator, requiring a common logic.

The logic behind implementing RDF-based policy languages using combinations such as
OWL+SPARQL+SHACL remains unclear. In its executable form, e.g., as input to a consistency checker,
a policy becomes a complex interplay of these technologies’ expressivity, obscuring the intended logic
of the policy language. The syntax, portability, and application of ODRL for expressing data-related
service exchanges are very promising; however, the informal semantics of ODRL complicate the path to
a comprehensive solution. Combining deontic and defeasible logic, with support for various forms of
negation and possible disjunction, may require formalizations beyond what standard Semantic Web
technologies can offer. As highlighted in our literature review, there are signs that the community is
gravitating back toward logic programming languages.

We see significant advantages in moving away from Semantic Web languages and returning to logic
programming languages like ASP and Prolog for the formalization of policy languages. Our literature
study revealed few compelling reasons to use Semantic Web languages, apart from their off-the-shelf
availability and the optimistic expectation that Semantic Web techniques can be applied universally.
One of the most compelling reasons to use Semantic Web languages can be found in compliance



checking use cases, given the availability of many ontologies to describe the many facets of real-world
policies. However, one of the most significant disadvantages is their limited support for built-ins, such
as date-time calculations, string parsing, and cryptography, which are indispensable when handling
privacy-related data. Semantic Web languages also typically have limited support for classical negation
and negation-as-failure, which is required for consistency checking. Exceptions might be found in the
Notation3 [36] and RDF Surfaces [37] languages; both are not web standards but provide a potential for
a best-of-both-worlds approach. Notation3 provides a rich set of built-ins and a monotonic version of
negation-as-failure. RDF Surfaces is a sub-language of Notation3 based on classical first-order logic and
supports classical negation.

Our community lacks many implementations for the second, third, and fourth courses. However,
developing a non-trivial subset of ODRL with formal semantics for the first three courses may inspire
progress on the ultimate challenge – the fourth course, the “dessert” of policy negotiation. With ODRL,
we have a standardized syntax for expressing data policies; now, we need to identify the logic that
can support the formal meaning of these policies across all challenges. To find inspiration for our
path, we should not wait for the perfect solution but instead pursue any direction that may lead us
toward a fulfilling outcome. As demonstrated by Google and Apple, the path to real-world agentic AI
remains long and challenging.2 Our insights do not resolve the issues of agency and planning that
automated agents must overcome. However, we emphasize that deterministic AI, particularly in the
form of symbolic reasoning, should be an integral part of the solution to building trustworthy agents.
Achieving this requires a unified syntax and logic approach for all use cases. Mixing many logics to
formalize a policy language will only push us further from our shared ultimate goal.

Acknowledgments

This research was funded by SolidLab Vlaanderen (Flemish Government, EWI and RRF project
VV023/10).

Declaration on Generative AI

During the preparation of this work, the author(s) used Grammarly in order to: Grammar and spelling
check. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the publication’s content.

References

[1] N. Samarasinghe, M. Mannan, Towards a global perspective on web tracking 87 (2019) 101569.
doi:10.1016/j.cose.2019.101569.

[2] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub, T. Holz, We value your privacy ... now
take some cookies: Measuring the GDPR’s impact on web privacy, in: Proceedings 2019 Network
and Distributed System Security Symposium, 2019. doi:10.14722/ndss.2019.23378.

[3] E. Papadogiannakis, P. Papadopoulos, N. Kourtellis, E. P. Markatos, User tracking in the post-
cookie era: How websites bypass GDPR consent to track users, in: Proceedings of the Web
Conference 2021, WWW ’21, Association for Computing Machinery, 2021, pp. 2130–2141. doi:10.
1145/3442381.3450056.

[4] G. Kampanos, S. F. Shahandashti, Accept all: The landscape of cookie banners in greece and the
UK, 2021. doi:10.48550/arXiv.2104.05750.

[5] R. Verborgh, No more raw data, 2023. URL: https://ruben.verborgh.org/blog/2023/11/10/
no-more-raw-data/.

2See for examples the struggles Google and Apple have in rolling out AI agents in https://www.computing.co.uk/event/2025/
agentic-ai-complex-google-demis-hassabis and https://www.nytimes.com/2025/03/14/podcasts/hardfork-siri-starlink.html

http://dx.doi.org/10.1016/j.cose.2019.101569
http://dx.doi.org/10.14722/ndss.2019.23378
http://dx.doi.org/10.1145/3442381.3450056
http://dx.doi.org/10.1145/3442381.3450056
http://dx.doi.org/10.48550/arXiv.2104.05750
https://ruben.verborgh.org/blog/2023/11/10/no-more-raw-data/
https://ruben.verborgh.org/blog/2023/11/10/no-more-raw-data/
https://www.computing.co.uk/event/2025/agentic-ai-complex-google-demis-hassabis
https://www.computing.co.uk/event/2025/agentic-ai-complex-google-demis-hassabis
https://www.nytimes.com/2025/03/14/podcasts/hardfork-siri-starlink.html


[6] B. C. Das, M. H. Amini, Y. Wu, Security and privacy challenges of large language models: A survey
57 (2025) 1–39. doi:10.1145/3712001.

[7] B. Yan, K. Li, M. Xu, Y. Dong, Y. Zhang, Z. Ren, X. Cheng, On protecting the data privacy of large
language models (LLMs) and LLM agents: A literature review (2025) 100300. doi:10.1016/j.hcc.
2025.100300.

[8] J. Marques-Silva, X. Huang, Explainability is not a game, Commun. ACM 67 (2024) 66–75.
doi:10.1145/3635301.

[9] R. Iannella, S. Villata, ODRL Information Model 2.2, W3C Recommendation 15 February 2018
(2018). URL: https://www.w3.org/TR/odrl-model/.

[10] I. Akaichi, G. Flouris, I. Fundulaki, S. Kirrane, GUCON: A generic graph pattern based policy
framework for usage control enforcement, in: A. Fensel, A. Ozaki, D. Roman, A. Soylu (Eds.), Rules
and Reasoning, Springer Nature Switzerland, 2023, pp. 34–53. doi:10.1007/978-3-031-45072-3_
3.

[11] E. Francesconi, G. Governatori, Patterns for legal compliance checking in a decidable framework
of linked open data 31 (2023) 445–464. doi:10.1007/s10506-022-09317-8.

[12] U. Kiruthika, T. S. Somasundaram, S. K. S. Raja, Lifecycle model of a negotiation agent: A survey
of automated negotiation techniques 29 (2020) 1239–1262. doi:10.1007/s10726-020-09704-z.

[13] Wout Slabbinck, Julián Andrés Rojas, Beatriz Esteves, Pieter Colpaert, Ruben Verborgh, Interop-
erable Interpretation and Evaluation of ODRL Policies, in: Accepted for Semantic Web - 22nd
International Conference, ESWC 2025, 2025.

[14] G. Costantino, F. Martinelli, I. Matteucci, M. Petrocchi, Efficient detection of conflicts in data sharing
agreements, in: P. Mori, S. Furnell, O. Camp (Eds.), Information Systems Security and Privacy,
Springer International Publishing, 2018, pp. 148–172. doi:10.1007/978-3-319-93354-2_8.

[15] R. J. Wieringa, J.-J. C. Meyer, Applications of deontic logic in computer science: a concise overview,
in: Deontic logic in computer science: normative system specification, John Wiley & Sons, Inc.,
1994, pp. 17–40.

[16] C. N. Chong, R. Corin, J. Doumen, S. Etalle, P. Hartel, Y. W. Law, A. Tokmakoff, LicenseScript: A
logical language for digital rights management 61 (2006) 284–331. doi:10.1007/BF03219910.

[17] F. Gandon, G. Governatori, S. Villata, Normative requirements as linked data, in: Legal Knowledge
and Information Systems, IOS Press, 2017, pp. 1–10. doi:10.3233/978-1-61499-838-9-1.

[18] N. Fornara, A. Chiappa, M. Colombetti, Using semantic web technologies and production rules for
reasoning on obligations and permissions, in: M. Lujak (Ed.), Agreement Technologies, Springer
International Publishing, 2019, pp. 49–63. doi:10.1007/978-3-030-17294-7_4.

[19] S. Kirrane, J. D. Fernández, P. Bonatti, U. Milosevic, A. Polleres, R. Wenning, The SPECIAL-k
personal data processing transparency and compliance platform, 2021. doi:10.48550/arXiv.2001.
09461.

[20] M. De Vos, S. Kirrane, J. Padget, K. Satoh, ODRL policy modelling and compliance checking, in:
P. Fodor, M. Montali, D. Calvanese, D. Roman (Eds.), Rules and Reasoning, volume 11784, Springer
International Publishing, 2023, pp. 36–51. doi:10.1007/978-3-030-31095-0_3.

[21] L. Robaldo, F. Pacenza, J. Zangari, R. Calegari, F. Calimeri, G. Siragusa, Efficient compliance
checking of RDF data 33 (2023) 1753–1776. doi:10.1093/logcom/exad034.

[22] L. T. van Binsbergen, M. G. Kebede, J. Baugh, T. v. Engers, D. G. van Vuurden, Dynamic generation
of access control policies from social policies 198 (2022) 140–147. doi:10.1016/j.procs.2021.12.
221.

[23] G. R. Gangadharan, M. Weiss, V. D’Andrea, R. Iannella, Service license composition and compati-
bility analysis, in: B. J. Krämer, K.-J. Lin, P. Narasimhan (Eds.), Service-Oriented Computing –
ICSOC 2007, Springer, 2007, pp. 257–269. doi:10.1007/978-3-540-74974-5_21.

[24] M. Sensoy, T. J. Norman, W. W. Vasconcelos, K. Sycara, OWL-POLAR: A framework for semantic
policy representation and reasoning 12-13 (2012) 148–160. doi:10.1016/j.websem.2011.11.005.

[25] S. Villata, F. Gandon, Licenses compatibility and composition in the web of data, 2012. URL:
https://inria.hal.science/hal-01171125.

[26] A. Rotolo, S. Villata, F. Gandon, A deontic logic semantics for licenses composition in the web of

http://dx.doi.org/10.1145/3712001
http://dx.doi.org/10.1016/j.hcc.2025.100300
http://dx.doi.org/10.1016/j.hcc.2025.100300
http://dx.doi.org/10.1145/3635301
https://www.w3.org/TR/odrl-model/
http://dx.doi.org/10.1007/978-3-031-45072-3_3
http://dx.doi.org/10.1007/978-3-031-45072-3_3
http://dx.doi.org/10.1007/s10506-022-09317-8
http://dx.doi.org/10.1007/s10726-020-09704-z
http://dx.doi.org/10.1007/978-3-319-93354-2_8
http://dx.doi.org/10.1007/BF03219910
http://dx.doi.org/10.3233/978-1-61499-838-9-1
http://dx.doi.org/10.1007/978-3-030-17294-7_4
http://dx.doi.org/10.48550/arXiv.2001.09461
http://dx.doi.org/10.48550/arXiv.2001.09461
http://dx.doi.org/10.1007/978-3-030-31095-0_3
http://dx.doi.org/10.1093/logcom/exad034
http://dx.doi.org/10.1016/j.procs.2021.12.221
http://dx.doi.org/10.1016/j.procs.2021.12.221
http://dx.doi.org/10.1007/978-3-540-74974-5_21
http://dx.doi.org/10.1016/j.websem.2011.11.005
https://inria.hal.science/hal-01171125


data | proceedings of the fourteenth international conference on artificial intelligence and law, in:
ICAIL13, 2013. doi:10.1145/2514601.2514614.

[27] T. Pellegrini, V. Mireles, S. Steyskal, O. Panasiuk, A. Fensel, S. Kirrane, Automated rights clearance
using semantic web technologies: The DALICC framework, in: T. Hoppe, B. Humm, A. Reibold
(Eds.), Semantic Applications: Methodology, Technology, Corporate Use, Springer, 2018, pp.
203–218. doi:10.1007/978-3-662-55433-3_14.

[28] D. Inclezan, An ASP framework for the refinement of authorization and obligation policies 23
(2023) 832–847. doi:10.1017/S147106842300011X.

[29] H. J. Pandit, D. O’Sullivan, D. Lewis, Queryable provenance metadata for GDPR compliance 137
(2018) 262–268. doi:10.1016/j.procs.2018.09.026.

[30] E. Okoyomon, N. Samarin, P. Wijesekera, A. Elazari Bar On, N. Vallina-Rodriguez, I. Reyes,
A. Feal, S. Egelman, On the ridiculousness of notice and consent: Contradictions in app privacy
policies, 2019. URL: https://dspace.networks.imdea.org/handle/20.500.12761/690, accepted: 2021-
07-13T09:37:41Z.

[31] R. E. Hamdani, M. Mustapha, D. R. Amariles, A. Troussel, S. Meeùs, K. Krasnashchok, A com-
bined rule-based and machine learning approach for automated GDPR compliance checking, in:
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, ACM,
2021, pp. 40–49. doi:10.1145/3462757.3466081.

[32] A. Adhikari, S. Das, R. Dewri, Natural language processing of privacy policies: A survey, 2025.
doi:10.48550/arXiv.2501.10319.

[33] T. Baarslag, A. T. Alan, R. Gomer, M. Alam, C. Perera, E. H. Gerding, M. Schraefel, An automated
negotiation agent for permission management (2017) 380–390.

[34] S. Yumusak, S. Gheisari, J. O. Salas, S. A. Moqurrab, L.-D. Ibáñez, G. Konstantinidis, Data sharing
negotiation and contracting, 2024. URL: https://ceur-ws.org/Vol-3828/paper39.pdf.

[35] P. Koen, M. Kollenstart, J. Marino, J. Pampus, A. Turkmayali, S. Steinbuss, A. Weiß, Dataspace pro-
tocol 2025-1-RC1, 2025. URL: https://eclipse-dataspace-protocol-base.github.io/DataspaceProtocol/
2025-1-RC1/#example-contract-agreement-request.

[36] D. Arndt, W. Van Woensel, D. Tomaszuk, G. Kellogg, Notation3, 2023. URL: https://w3c.github.io/
N3/spec/.

[37] P. Hochstenbach, RDF surfaces: Computer says no, in: ESWC 2023 Workshops and Tutorials Joint
Proceedings, volume 3443, 2023. URL: https://ceur-ws.org/Vol-3443/.

http://dx.doi.org/10.1145/2514601.2514614
http://dx.doi.org/10.1007/978-3-662-55433-3_14
http://dx.doi.org/10.1017/S147106842300011X
http://dx.doi.org/10.1016/j.procs.2018.09.026
https://dspace.networks.imdea.org/handle/20.500.12761/690
http://dx.doi.org/10.1145/3462757.3466081
http://dx.doi.org/10.48550/arXiv.2501.10319
https://ceur-ws.org/Vol-3828/paper39.pdf
https://eclipse-dataspace-protocol-base.github.io/DataspaceProtocol/2025-1-RC1/#example-contract-agreement-request
https://eclipse-dataspace-protocol-base.github.io/DataspaceProtocol/2025-1-RC1/#example-contract-agreement-request
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://ceur-ws.org/Vol-3443/

	1 Introduction
	2 Challenges
	3 Policies Are Essentially a Computer Program.
	4 Related Work
	4.1 Compliance Checking
	4.2 Consistency Checking
	4.3 Requirements Checking
	4.4 Policy Negotiation

	5 Conclusions and Future Work

