
Towards a Formal Semantics of the Open Digital Rights
Language (ODRL 2.2)
Piero Andrea Bonatti1,†, Nicoletta Fornara2,*,† and Andreas Harth3,†

1University of Naples “Federico II”, Napoli, Italy
2Università della Svizzera italiana, Lugano, Switzerland
3Friedrich-Alexander-Universität Erlangen-Nürnberg & Fraunhofer Institute for Integrated Circuits IIS, Nuremberg, Germany

Abstract
The Open Digital Rights Language (ODRL 2.2), being a W3C Recommendation since 2018, is a popular candidate
for a policy language applied in data spaces. However, ODRL does not yet have a formal semantics. In this paper,
we address this issue by making the first steps towards a formal, declarative semantics for ODRL. We start by
covering a subset of the language that includes only ODRL’s main features (permissions, prohibitions, obligations,
duties, refinements and constraints). This exercise naturally reveals "gray areas" in ODRL’s informal semantics,
as well as lack of expressiveness; both will be pointed out during the formalization.

Keywords
Policy Languages, ODRL 2.2, Formal Semantics

1. Introduction

The realization of open and distributed ecosystems in which organizations, individuals, and digital
companions can exchange data or resources is becoming increasingly important, as shown by the
studies of various W3C Community Groups and data space initiatives supported by the European
Commission1. Prerequisites for the realization of such systems are: (i) the sovereignty of participants
over their resources, i.e., the ability to define rules for accessing and using these resources; (ii) the
possibility of having interactions based on agreements and policies; (iii) the ability to verify the
compliance of interactions with respect to the agreements and policies stipulated and also with respect
to legislation. Central to building such systems is a language for specifying policies that can express, at
least, permissions, prohibitions, and obligations for the various actions that can be performed on digital
resources.

The Open Digital Rights Language (ODRL) is a policy language that can be applied to a broad variety
of scenarios. Originally designed for Digital Rights Management (DRM) applications, ODRL is now
being used to express manifold contracts and policies, such as data licensing [1], privacy policies [2],
and access control policies [3]. ODRL is machine readable, so the various computational tasks that
apply to policies (such as validation, enforcement, monitoring, compliance checking, and explanation,
just to name a few) can in principle be performed by algorithms – an essential feature in scenarios that
require the processing of large numbers of policies.

However, ODRL 2.2 [4, 5] is currently lacking formal semantics, which jeopardizes several of the
intended applications. In general, it is essential that all the parties that have to deal with a policy
understand the policy in the same way. Otherwise, their actions may result in policy violations and
possibly sanctions. In particular, the party that states a policy and the party that shall comply with
it need to share a common understanding of the meaning of the policy. Moreover, all the algorithms

ODRL and beyond: Practical Applications and chaLlenges for policy-base access and usage control. OPAL 2025. Co-located with
the Extended Semantic Web Conference, Portorož, Slovenia · June 1, 2025.
*Corresponding author.
†
These authors contributed equally.
$ pab@unina.it (P. A. Bonatti); nicoletta.fornara@usi.ch (N. Fornara); andreas.harth@fau.de (A. Harth)
� 0000-0003-1436-5660 (P. A. Bonatti); 0000-0003-1692-880X (N. Fornara); 0000-0002-0702-510X (A. Harth)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://digital-strategy.ec.europa.eu/en/policies/data-spaces

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pab@unina.it
mailto:nicoletta.fornara@usi.ch
mailto:andreas.harth@fau.de
https://orcid.org/0000-0003-1436-5660
https://orcid.org/0000-0003-1692-880X
https://orcid.org/0000-0002-0702-510X
https://creativecommons.org/licenses/by/4.0/deed.en
https://digital-strategy.ec.europa.eu/en/policies/data-spaces

that implement the computational tasks on policies have to yield coherent results (e.g., access control
shall behave like explanations, and access control decisions should not be invalidated during auditing).
Unfortunately, so far, ODRL’s semantics has been specified in natural language and is ambiguous in
several respects, as will be pointed out later. Consequently, the above natural desiderata cannot be met.

The W3C ODRL Community Group is aware of the lack of a formal semantics for ODRL and has
published a draft report on ODRL semantics [6]. Other papers in the literature have highlighted and
discussed this problem. One is [7], where formal semantics of ODRL 2.1 policy expressions is proposed,
with a focus on the consideration of explicit and implicit dependencies between actions. Another is [8],
where an extension of the syntax of ODRL for expressing conditional obligations is proposed together
with an operational semantics of such an extension based on production rules. In [9] the problem of
verifying the compliance of business processes with regulatory obligations is addressed by proposing
an ODRL profile and presenting a translation of ODRL policies into Answer Set Programming for
compliance verification purposes.

In this paper, we propose a declarative semantics for ODRL 2.2. We start by covering a subset of
the language that includes only ODRL’s main features (permissions, prohibitions, obligations, duties,
refinements and constraints). This exercise naturally reveals "gray areas" in ODRL’s informal semantics,
as well as lack of expressiveness; both will be pointed out during the formalization. We are going
to formalize ODRL’s semantics in a declarative, model-theoretic style, because such an approach is
implementation-independent and – more importantly – independent from the computational tasks
(that is, policy use), while procedural approaches are intrinsically tied to specific tasks. Declarative
semantics can be used as a universal reference point to prove that all procedural solutions to any of the
computational tasks conform to the same meaning of the policy. Thus, declarative semantics is the key
to achieving the coherent behavior across all the different policy-related computational tasks that we
are advocating. We are going to illustrate and justify our declarative semantics by means of standard
examples that can be found in ODRL’s specification documents.

The paper is structured as follows. Section 2 presents some examples of ODRL policies. Section 3
defines a formal declarative semantics for ODRL’s main constructs, and points out several issues
affecting the informal semantics. Section 4 illustrates the declarative semantics by formalizing the
examples of Section 2. Section 5 illustrates how the declarative semantics provides correctness criteria
for the implementation of policy-related computational tasks. Section 6 is devoted to conclusions.

2. Examples of Policies

In this section we illustrate several examples of ODRL policies. Let us start with the involved parties.
Consider two people, Alice and Bob, and the organization ACME. Their URIs are /party#Alice,
/party#Bob, and /party#ACME, respectively.

Now moving on to the digital resources, called assets in ODRL terminology.. ACME runs a web server
at http://acme.example.org/. The web server hosts a document /doc.html and a music library
at /music/. The music library contains individual songs, e.g., /music/1999.mp3. In addition, there
is a photo album at /photoAlbum.

Finally, we represent the actions that parties can perform on assets. The actions we consider are
listed in order of appearance and with the comments from the ODRL vocabulary2:

• odrl:print, i.e., “To create a tangible and permanent rendition of an Asset.”
• odrl:play, i.e., “To create a sequential and transient rendition of an Asset.”
• odrl:compensate, i.e., “To compensate by transfer of some amount of value, if defined, for

using or selling the Asset.”
• odrl:archive, i.e., “To store the Asset (in a non-transient form).”

All of these actions are special cases of odrl:use, i.e., “actions that involve general usage by parties”.
None of them is odrl:transfer, i.e., “actions that involve in the transfer of ownership to third parties”.
2https://www.w3.org/ns/odrl/2/

http://acme.example.org/
/doc.html
/music/1999.mp3
http://www.w3.org/ns/odrl/2/print
http://www.w3.org/ns/odrl/2/play
http://www.w3.org/ns/odrl/2/compensate
http://www.w3.org/ns/odrl/2/archive
http://www.w3.org/ns/odrl/2/use
http://www.w3.org/ns/odrl/2/transfer
https://www.w3.org/ns/odrl/2/

2.1. Permissions Without Duty

Suppose that ACME allows everyone to print /doc.html in 300 dpi, but only before the year 2018. In
ODRL terms, the policy specifies a permission rule for the class of printing actions, where the action
is refined with the constraint stating that the resolution should be less than or equal to 300 dpi. The
permission is further constrained, that is, the permission is only granted for actions exercised before
2018-01-01. Figure 1 shows the policy /policy/13-14#p (similar to Examples 13 and 14 in [4]) in a
Turtle serialization.

@prefix odrl: <http://www.w3.org/ns/odrl/2/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

</policy/13-14#p> a odrl:Policy ;
odrl:permission [

a odrl:Rule , odrl:Permission ;
odrl:assigner </party#ACME> ;
odrl:target </doc.html> ;
odrl:action [

a odrl:Action ;
rdf:value odrl:print ;
odrl:refinement [

a odrl:Constraint ;
odrl:leftOperand odrl:resolution ;
odrl:operator odrl:lteq ;
odrl:rightOperand 300 ;
odrl:unit "dpi"

]
] ;
odrl:constraint [

a odrl:Constraint ;
odrl:leftOperand odrl:dateTime ;
odrl:operator odrl:lt ;
odrl:rightOperand "2018-01-01"^^xsd:date

]
] .

Figure 1: Permission with a temporal constraint to perform a odrl:print action with refinement.

Clearly, the following action should be permitted by the policy:
Action 1: Alice prints /doc.html with 300 dpi on 2017-12-31T14:35:27+01:00.

2.2. Permission With Duties

Next, consider a policy in which ACME allows Bob to play the target asset /music/1999.mp3, but
only in combination with a compensation of EUR 5.00. In ODRL terminology, the policy contains
a permission rule for the play action class with a duty of the compensate action class refined by a
constraint. Figure 2 shows the policy /policy/22#p (similar to Example 22 in [4]).

The combination of the following two actions should comply with the policy:
Action 2: Bob compensates EUR 5.00 at datetime 2024-12-31T14:33:42+01:00.
Action 3: Bob plays the song /music/1999.mp3 at datetime 2024-12-31T14:35:27+01:00.

2.3. Prohibition

Finally consider a policy in which ACME prohibits Bob from archiving the target asset /photoAlbum
before the year 2024. In ODRL terms, the policy consists of a prohibition rule with a constraint that the

/doc.html
/music/1999.mp3

@prefix odrl: <http://www.w3.org/ns/odrl/2/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

</policy/22#p> a odrl:Policy ;
odrl:permission [

a odrl:Rule , odrl:Permission ;
odrl:assigner </party#ACME> ;
odrl:assignee </party#Bob> ;
odrl:target </music/1999.mp3> ;
odrl:action odrl:play ;
odrl:duty [

a odrl:Duty ;
odrl:action [

a odrl:Action ;
rdf:value odrl:compensate ;
odrl:refinement [

a odrl:Constraint ;
odrl:leftOperand odrl:payAmount ;
odrl:operator odrl:eq ;
odrl:rightOperand 5.00 ;
odrl:unit "Euro"

]
]

]
] .

Figure 2: Permission to exercise odrl:play constrained by a duty to odrl:compensate.

datetime has to be equal to the year 2024. See Figure 3 for the policy /policy/19#p (similar to the
example in Section 5.1 [6]).

@prefix odrl: <http://www.w3.org/ns/odrl/2/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

</policy/19#p> a odrl:Policy ;
odrl:prohibition [

a odrl:Rule , odrl:Prohibition ;
odrl:assignee </party#Bob> ;
odrl:assigner </party#ACME> ;
odrl:target </photoAlbum> ;
odrl:action odrl:archive ;
odrl:constraint [

a odrl:Constraint ;
odrl:leftOperand odrl:dateTime ;
odrl:operator odrl:lt ;
odrl:rightOperand "2024-01-01"^^xsd:date

]
] .

Figure 3: Prohibition for Bob to perform odrl:archive on /photoAlbum before 2024.

Accordingly, the following action does not comply with the policy:
Action 4: Bob archives /photoAlbum on 2023-06-18.

3. Formalization

In order to propose the following formalization of the semantics of ODRL 2.2 we considered the
specification written in Natual Language available in the ODRL Information Model 2.2 [4] and in the
ODRL Vocabulary & Expression 2.2 [5].

3.1. Entities and Datatypes

We assume 𝑚 domains Δ1, . . . ,Δ𝑚, each of which contains real-world entities of a particular class
or data type used in the ODRL policy (like assets, parties, numbers, dates, etc.). Note that 𝑚 may be
larger than the number of classes and data types mentioned in ODRL’s information model and core
vocabulary, because an ODRL profile may add further entity types to the core ones. In the following,
the domains of assets, actions, and parties will be denoted by Δas, Δac, and Δpa, respectively.

Note that both assets and parties may be either collections (i.e. sets) or individual objects. In order to
simplify technical definitions in the rest of the paper, we introduce a function "set " that transforms all
assets and parties into sets, for uniformity. Formally,

set(𝑥) =

{︂
𝑥 if 𝑥 is a set
{𝑥} otherwise.

For each domain Δ𝑖 ̸= Δac, there exists a corresponding set of identifiers I𝑖 that represent the
elements of Δ𝑖 according to the serialization(s) prescribed by ODRL’s (profile) specification. For
example, if Δ𝑖 is the set of all integers, then I𝑖 is the set of expressions that represent integers, such
as {"@value": "1200", "@type": "xsd:integer"}. Two or more expressions may denote
the same element, like "2002-05-30T09:30:10Z" and "2002-05-30T08:30:10-01:00", which
represent the same date and time using different time zones. We assume that the sets I𝑖 are mutually
disjoint. Moreover, let

I =

𝑚⋃︁
𝑖=1

I𝑖 and Δ =

𝑚⋃︁
𝑖=1

Δ𝑖 .

The meaning of identifiers is specified by a denotation function

𝛿 : I → Δ ,

such that for each 𝑖 ∈ [1,𝑚], and for all 𝑐 ∈ I𝑖, 𝛿(𝑐) ∈ Δ𝑖 . For example, if

𝑐 = ”http://acme.example.org/music/1999.mp3”,

then 𝛿(𝑐) denotes the actual (physical) mp3 file located at 𝑐.
The domain Δac of action instances is structured in a slightly different way. The action terms ("use",

"transfer", "play", etc.) denote classes of action instances, that is, for each action term 𝑎,

𝛿(𝑎) ⊆ Δac ,

and whenever ODRL’s core ontology or a profile ontology contain the expression 𝑎 odrl:includedIn 𝑏,
then 𝛿(𝑎) ⊆ 𝛿(𝑏). For example 𝛿(”odrl : print”) ⊆ 𝛿(”odrl : use”).

Furthermore, two meta-functions party and obj associate each action instance 𝑎 ∈ Δac with the set
of actors that exercise it, and the set of assets involved. Formally, for all 𝑎 ∈ Δac,

party(𝑎) ⊆ Δpa and obj(𝑎) ⊆ Δas .

op 𝛿(op)
eq =
gt

⋃︀𝑚
𝑖=1

(︀
>𝑖

)︀
gteq

⋃︀𝑚
𝑖=1

(︀
≥𝑖

)︀
lt

⋃︀𝑚
𝑖=1

(︀
<𝑖

)︀
lteq

⋃︀𝑚
𝑖=1

(︀
≤𝑖

)︀
neq ̸=

op 𝛿(op)
isA ∈
hasPart ∋
isPartOf ∈
isAllOf =
isAnyOf ∈
isNoneOf /∈

Table 1
Semantics of the core operators of ODRL

deliveryChannel Δac → {mobileNetwork, . . .}
industryContext Δac → {publishing,financialIndustry, . . .}
paymentAmount Δac → Q (rational numbers)
assetPercentage Δac → [0, 1]
purpose Δac → {education,nonCommercial,Marketing, . . .}
recipient Δac → Δpa

resolution Δac → N (natural numbers)
size Δas → N
version Δas → String

Table 2
Some nontemporal left operand types.

3.2. Constraint Operators

ODRL’s core operators (used in constraints and refinements) refer to totally ordered domains (such as
numbers, strings, dates) and collections, because parties and assets may be either individual entities or
sets thereof. Let us denote with ≤𝑖 the ordering associated with Δ𝑖 (if Δ𝑖 is not ordered, then ≤𝑖 is
the empty relation); then the semantics of ODRL’s operators is specified in Table 1, where >𝑖, ≥𝑖, and
<𝑖 are derived from ≤𝑖 in the usual way. By analogy with identifiers, we denote the meaning of an
operator 𝑜 with 𝛿(𝑜).

For example, 𝛿(eq) is the set of all pairs (𝑥, 𝑦) ∈ Δ×Δ such that 𝑥 = 𝑦; 𝛿(gt) is the set of all pairs
(𝑥, 𝑦) ∈ Δ×Δ such that, for some 𝑖 ∈ [1,𝑚], 𝑥 >𝑖 𝑦; 𝛿(isA) is the set of all pairs (𝑥, 𝑦) ∈ Δ×Δ such
that 𝑥 ∈ 𝑦.

The meaning of the logical operators or, xone, and is defined similarly, using the standard truth tables
of boolean connectives. For example, 𝛿(or) is the set of pairs {(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒), (𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒), (𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒)}.

Remark 1. ODRL supports also a logical operator andSequence, which prescribes the evaluation of its
arguments from left to right. Given that logical and is symmetric and that ODRL’s core constraints have
no side effects, it is hard to find any differences between and and andSequence. Currently there are no
examples on the intended use of the latter, so its formalization is deferred until a clearer specification of
its meaning will be available. □

3.3. Left Operands and World States

ODRL’s constraints and refinements contain a left operand that expresses the properties of assets,
parties, actions, and other ODRL entities, and possibly the properties of the environment. Table 2 lists
some of the core left operands and their type; most of them specify properties of actions and assets.

Property values may change. A state associates properties with their values at a particular point in
time and lists the events that occur at that time. Thus, states can be thought of as snapshots of the
world. ODRL also supports left operands that depend on a history of states, such as "count"; these
operands, which we call temporal left operands, will be discussed in a future paper.

Formally, let LOn = {ℓ1, . . . , ℓ𝑙} be the set of nontemporal left operands, let Δev be the domain
of events (we assume that actions are events, that is, Δac ⊆ Δev), and let Δdt be the domain of

date-and-time points. A state is a triple

𝑆 = ⟨𝑡𝑆 , 𝐸𝑆 , (·)𝑆⟩

where 𝑡𝑆 ∈ Δdt represents the current time, 𝐸𝑆 ⊆ Δev is the set of events that occur at that time, and
(·)𝑆 is an interpretation function that maps each nontemporal left operand ℓ𝑖 ∈ LOn on a function ℓ𝑆𝑖
of the appropriate type (cf. Table 2). Thus, the function (·)𝑆 specifies the values of all nontemporal
properties at time 𝑡𝑆 .

3.4. Constraints (Nontemporal)

Constraints (and refinements) are expressions like "leftOperand:ℓ𝑖 operator:𝑜𝑝 rightOperand:𝑐",
that we will abbreviate to ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩. Here we focus on nontemporal constraints, that is, ℓ𝑖 ∈ LOn.

We say that a domain element 𝑥 ∈ Δ satisfies a constraint ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ in a state 𝑆 – in symbols,
𝑆, 𝑥 |= ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ – iff

(ℓ𝑆𝑖 (𝑥), 𝛿(𝑐)) ∈ 𝛿(𝑜𝑝) .

Here ℓ𝑆𝑖 (𝑥) is the value of 𝑥’s property ℓ𝑖 in 𝑆, 𝛿(𝑐) is the value denoted by the right operand, and 𝛿(𝑜𝑝)
is the meaning of 𝑜𝑝.

Based on the above definition, the meaning of the logical constraints based on operators or, xone, and
is defined in the obvious way.

3.5. Compliance with Permission and Prohibition Rules Without Duties and
Remedies

A rule is characterized by:

• a type 𝜃 (such as "permission", "prohibition", "duty");
• an action class 𝛼 (such as "use", "transfer", "play", . . .);
• an optional "target" asset 𝑜𝑏 (for "object"), which is mandatory for permissions and prohibitions;
• an optional "assignee" party 𝑝 (for "party");
• other optional properties such as "assigner", "duty", "remedy", and "consequence".

Before delving into the definition of compliance, we need to introduce the notion of rule activation:

Definition 1. A rule 𝜌 is active on some action 𝑎 ∈ 𝐸𝑆 in some state 𝑆 iff one of the following
conditions holds:

• 𝜌 has no constraints (then 𝜌 is trivially active);
• if 𝜌 has a set of constraints ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 = 1, . . . , 𝑛), then 𝜌 is active on 𝑎 iff for all 𝑗 = 1, . . . , 𝑛,
𝑆, 𝑥𝑗 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩, where 𝑥𝑗 = 𝑎 if ℓ𝑖,𝑗 is an action property, and 𝑥𝑗 = 𝑜𝑏𝑗(𝑎) if ℓ𝑖,𝑗 is an
asset property.

In the rest of this subsection, we assume that the rule has no duties nor remedies. Duties and remedies
will be dealt with in the following subsections.

Definition 2. (Compliance with permissions) We say that 𝑎 complies with a permission 𝜋 (in a state
𝑆) iff all the following conditions hold:

1. 𝜋 is active on 𝑎 in 𝑆;
2. 𝑎 ∈ 𝛿(𝛼) (the action belongs to the permitted class);
3. if 𝜋’s action specification contains 𝑛 refinements ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 ∈ [1, 𝑛]), then for all such 𝑗,

𝑆, 𝑎 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (the action satisfies the refinements);
4. if the target 𝑜𝑏 is a collection, then obj(𝑎) ⊆ 𝛿(𝑜𝑏); otherwise obj(𝑎) = {𝛿(𝑜𝑏)} (all the assets

involved in 𝑎 are covered by the target of 𝜋);

5. if the target has refinements ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 ∈ [1, 𝑛]), then for all such 𝑗, and for all 𝑥 ∈ obj(𝑎),
𝑆, 𝑥 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (all the assets involved in 𝑎 satisfy the refinements);

6. if an assignee 𝑝 (for "peer") is specified in the permission, then party(𝑎) ⊆ set(𝛿(𝑝)) (the actors
who exercise the action are among the authorized assignees);

7. if the assignee has refinements ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 ∈ [1, 𝑛]), then for all such 𝑗 and for all𝑥 ∈ party(𝑎),
𝑆, 𝑥 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (all the actors that exercise 𝑎 satisfy the refinements).

Definition 3. (Compliance with prohibitions) If 𝜋 is a prohibition, we say that 𝑎 complies with 𝜋
(in 𝑆) iff at least one of the following conditions holds:

1. 𝜋 is not active on 𝑎 in 𝑆;
2. 𝑎 /∈ 𝛿(𝛼) (the action does not belong to the specified class);
3. 𝜋’s action specification contains a refinement ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ such that 𝑆, 𝑎 ̸|= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (the action

does not satisfy some refinement);
4. for all 𝑥 ∈ obj(𝑎), either 𝑥 /∈ set(𝛿(𝑜𝑏)), or there exists a target refinement ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ such

that 𝑆, 𝑥 ̸|= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (none of the assets involved in the action is covered by 𝜋’s target
specification);

5. 𝜋 specifies an assignee 𝑝, and for all 𝑥 ∈ party(𝑎), either 𝑥 /∈ set(𝛿(𝑝)), or there exists a target
refinement ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ such that 𝑆, 𝑥 ̸|= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (none of the parties that exercise the action
satisfy 𝜋’s assignee specification).

In other words, an action 𝑎 is prohibited by 𝜋 if 𝑎 matches 𝜋’s action specification, some of the assets
involved in the action matches 𝜋’s asset specification, and some of the parties that exercise the action
match 𝜋’s assignee specification.

3.6. Adding Time and Duties/Obligations

A duty is a rule with an action class 𝛼, an optional asset 𝑜𝑏, an optional assignee 𝑝, and an optional list
of constraints 𝜒1, . . . , 𝜒𝑘.

Definition 4. (Compliance with a duty) A state 𝑆 complies with (or, equivalently, fulfills) a duty 𝜔
with the above structure iff there exists an action 𝑎 ∈ 𝐸𝑆 , called fulfilling action for 𝜔, such that all of
the following conditions hold:

1. 𝜔 is active on 𝑎 in 𝑆 (the constraints of 𝜔 are satisfied);
2. 𝑎 ∈ 𝛿(𝛼) (the action has the required type);
3. if 𝜔’s action specification contains 𝑛 refinements ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 ∈ [1, 𝑛]), then for all such 𝑗,

𝑆, 𝑎 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (the action satisfies the refinements);
4. if a target 𝑜𝑏 is specified in 𝜔, then obj(𝑎) equals the set of all assets 𝑥 ∈ Δas such that (i)

𝑥 ∈ set(𝛿(𝑜𝑏)) and (ii) if the target has 𝑛 refinements ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 ∈ [1, 𝑛]), then for all such
𝑗, 𝑆, 𝑥 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (the assets involved in 𝑎 are exactly those specified in 𝜔 with "target" and
its refinements);

5. if an assignee 𝑝 is specified in 𝜔, then party(𝑎) equals the set of all parties 𝑥 ∈ Δpa such that (i)
𝑥 ∈ set(𝛿(𝑝)) and (ii) if the target has 𝑛 refinements ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (𝑗 ∈ [1, 𝑛]), then for all such 𝑗,
𝑆, 𝑥 |= ⟨ℓ𝑖,𝑗 , 𝑜𝑝𝑗 , 𝑐𝑗⟩ (the parties that exercise 𝑎 are exactly those specified in 𝜔 with "assignee"
and its refinements).

Remark 2. Different semantics for fulfillment are possible. In the above version, the action must be
exercised jointly by all the specified assignees (as in: the contract shall be approved by all assignees).
Alternatively, one might require that the action be exercised by any of the specified assignees (as in:
the payment shall be made by any of the assignees), or that each assignee should independently fulfil
the duty (e.g. all assignees shall register). Each of these three semantics is useful in different use cases.
Unfortunately, ODRL does not specify which of the above semantics is the intended one, and it is not
expressive enough to select the desired semantics, based on the use case. □

The duties of permission rules are obligations that must be fulfilled as a prerequisite before the
permission is exercised. Thus, some notion of time shall be introduced in the semantics.

Definition 5. A trace is a sequence of states 𝜏 = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑧⟩ such that 𝑡𝑆𝑖 < 𝑡𝑆𝑖+1 (𝑖 = 1, . . . , 𝑧),
that is, timestamps are increasing.

Definition 6. (Compliance with a permission with duties) Given a trace 𝜏 = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑧⟩, a
state 𝑆𝑖 (𝑖 ∈ [1, 𝑧]) and and action 𝑎 ∈ 𝐸𝑆𝑖 , we say that 𝑎 complies (in 𝜏 and 𝑆𝑖) with a permission 𝜋
with duties 𝜔1, . . . , 𝜔𝑑 iff the following two conditions hold:

1. 𝑎 complies with 𝜋 in 𝑆𝑖 as specified in the previous section for duty-less permissions;
2. for each duty 𝜔𝑖 (𝑖 ∈ [1, 𝑑]) there exists 𝑗 ∈ [1, 𝑖] such that 𝑆𝑗 fulfills 𝜔𝑖.

Remark 3. Different notions of compliance with permissions with duties are possible. In the above
version, a single duty fulfillment executed in one state 𝑆𝑗 suffices to permit any number of actions
𝑎1, . . . , 𝑎𝑘 exercised in states 𝑆𝑗+1, 𝑆𝑗+2, . . . , 𝑆𝑧 . This can be useful to say, for example, that after
registering to a web site (once and for all), a user may access all the contents of the web site. In other use
cases, one may need to say that each action execution requires a different fulfillment of the duty; this
would be useful to specify pay-per-view policies. ODRL is not expressive enough to distinguish these
two meanings – nor does it specify which of the two semantics should be adopted. □

Remark 4. The ODRL Information Model specification states that a duty is "an agreed Action that
MUST be exercised (as a pre-condition to be granted the Permission)" and that "the duty property asserts
a pre-condition between the Permission and the Duty". Accordingly, fulfillment has been formalized in
Def. 6 by requiring that the duty is fulfilled before exercising the permitted action (cf. the condition
𝑗 ∈ [1, 𝑖]). However, this notion of fulfillment cannot model duties that occur in the future, as in the
norm: "personal data can be collected but it must be deleted within one month". A possible alternative
interpretation of the specification is that the assignee(s) must agree to fulfill the duty before exercising
the permission (the duty may be fulfilled later); however, such agreement is not formalized in the
specification, therefore also this alternative interpretation needs clarifications. □

Remark 5. Sections 2.6.3 and 2.6.4 of ODRL’s Information Model state that "A duty [an obligation,
respectively] is fulfilled if all constraints are satisfied and if its action, with all refinements satisfied, has
been exercised". The above definitions formalize this statement. There exists, however, another way of
intending the role of constraints in duties; it could be stipulated that the duty is active – and its action
shall be exercised – only if the constraints are satisfied (otherwise, the duty can essentially be ignored).
Some of the examples in the ODRL Information Model are apparently using the latter meaning rather
than the specified semantics (cf. Example 22). □

3.7. Adding Remedies to Prohibitions

Prohibitions may have "remedies", which are duties that – if fulfilled after the prohibition has been
infringed – restore the prohibition state to "not infringed". In formal terms:

Definition 7. Given a trace 𝜏 = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑧⟩, a state 𝑆𝑖 (𝑖 ∈ [1, 𝑧]) and and action 𝑎 ∈ 𝐸𝑆𝑖 , we
say that 𝑎 complies (in 𝜏 and 𝑆𝑖) with a prohibition 𝜋 with remedies 𝜔1, . . . , 𝜔𝑑 iff at least one of the
following conditions hold:

1. 𝑎 complies with 𝜋 in 𝑆𝑖 as specified in the previous sections for remedy-less prohibitions;
2. for each remedy 𝜔𝑖 (𝑖 ∈ [1, 𝑑]) there exists 𝑗 ∈ [𝑖, 𝑧] such that 𝑆𝑗 fulfills 𝜔𝑖.

Note that if the prohibition is infringed at𝑆𝑖 and the remedies occurs later at some𝑆𝑗 with 𝑗 ∈ [𝑖+1, 𝑧],
then 𝑎 does not comply with 𝜋 in all the traces ⟨𝑆1, . . . , 𝑆𝑘⟩ with 𝑘 ∈ [𝑖, 𝑗 − 1], while 𝑎 does comply
with 𝜋 in all the traces ⟨𝑆1, . . . , 𝑆𝑘⟩ such that 𝑘 ∈ [𝑗, 𝑧]. In this way the formal semantics models the
scenarios where the prohibition is infringed for some time, until the remedy is fulfilled.

Remark 6. In the full specification, a duty 𝜔 that occurs in an obligation or permission rule may have
"consequences", that is, further duties that restore compliance if 𝜔 has not been fulfilled. The semantics
of consequences can be modelled by analogy with the semantics of remedies. The definition is easy and
left to the reader. □

3.8. Complying With a Policy

An ODRL policy Π may contain one or more rules (permissions, prohibitions, and duties, possibly of
different types) plus several properties for specifying namespaces and profiles, and a property "conflict"
with possible values "perm" (permissions have precedence), "prohibit" (prohibitions have precedence),
"invalid" (conflicts generate an error); the latter is the default value.3

Remark 7. ODRL cannot express gap resolution strategies, where "gap" means that an action is neither
permitted nor prohibited. There are at least two standard approaches to resolving policy gaps in data
security: the open and the closed default policies, that permit and deny the action, respectively. In
the absence of references to gap resolution in ODRL’s specification, here we will (temporarily) adopt
the most conservative approach, namely, the closed default policy. The reader may easily verify that
prohibitions still make sense when they partially overlap permissions, unless the conflict resolution
strategy is "perm"; in that case, prohibitions are irrelevant and useless. We recommend to extend ODRL
with a policy property that specifies the gap resolution strategy; it might be called "default", with values
"permit", "prohibit" and "invalid". □

Definition 8. Consider a policy Π with permissions 𝜋1, . . . , 𝜋𝑝, prohibitions 𝜌1, . . . , 𝜌𝑑, obligations
𝜔1, . . . , 𝜔𝑜, and conflict value 𝑠 (for "strategy"). For all traces 𝜏 = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑧⟩, we say that: 𝜏
complies with Π iff all of the following conditions hold:

1. for all obligations 𝜔𝑖 (𝑖 ∈ [1, 𝑜]) there exists a state 𝑆𝑗 in 𝜏 (𝑗 ∈ [1, 𝑧]) such that 𝑆𝑗 fulfills 𝜔𝑖 (i.e.
all obligations are fulfilled); in the following conditions, let 𝑎𝑖 denote a fulfilling action for 𝜔𝑖;

2. for all states 𝑆𝑗 in 𝜏 (𝑗 ∈ [1, 𝑧]) and all actions 𝑎 ∈ 𝐸𝑆𝑗 , at least one of the following two
conditions holds:

a) 𝑎 is either a fulfilling action 𝑎𝑖 for an obligation 𝜔𝑖 of Π, or a fulfilling action for the duty of
some permission 𝜋𝑖 that is active on some action 𝑎′ ∈ 𝐸𝑆𝑘 (𝑗 ≤ 𝑘 ≤ 𝑧);

b) there exists a permission 𝜋𝑖 such that 𝑎 complies (in 𝑆𝑗 and 𝜏) with 𝜋𝑖, and either 𝑠 ="perm"
or 𝑎 complies (in 𝑆𝑗 and 𝜏) with all the prohibitions 𝜌1, . . . , 𝜌𝑑.

In other words, a trace complies with Π if all the obligations are fulfilled, and all actions are either
required or permitted.4 Point 2b deals with the latter; the existence of an applicable permission is
enough if 𝑠 ="perm" (because in this case the permission overrides any infringed prohibition), while for
the other strategies 𝑠, 𝑎 shall comply with all prohibitions. To understand point 2a, first note a crucial
point:

Remark 8. The fulfilling actions of obligations and duties may have to be authorized, too, but they
may fall outside the scope of the policy Π, in general. For example, a content provider may state in
Π that an mp3 can be played only after fulfilling the duty of paying 2 euros online, and this action is
either permitted or denied by the policy Π′ of another company (the bank). This observation reveals a
set of open issues: ODRL provides no means to define the scope of a policy (i.e. which actions must
comply with which policy), nor whether there are actions that are not subject to any policy and may
be freely exercised. Moreover there is no guideline about the interplay of different policies, of which
the provider + bank example is just one particular instance; in more complex examples, Π and Π′ may
"overlap" and conflicts may have to be solved. □

3A policy may also contain properties that factorize the common features of its rules; however this is just an abbreviation and
does not require additional semantic definitions.

4According to the closed policy, an action is permitted only if there is an explicit permission rule, cf. Remark 7.

In order to deal with the above lack of specifications, in this first proposal we provide a temporary
solution by stipulating (through point 2a) that fulfilling actions are implicitly compliant with the policy
that requests those actions. Thus, in the above example, the 2 euros payment complies with the policy Π
of the content provider (which "requests" that action as a duty when the file is played), although it may
infringe the policy Π′ of the bank. A cleaner solution needs a notion of policy scope.

4. Explanation of Formalization Through Specific Policy Examples

In this section, the formalization presented in Section 3 is explained by using different examples of
policy types and action instances presented in Section 2.

4.1. Evaluation of Permissions Without Duties

We start by explaining the evaluation of a first type of policy, that is, a policy containing a permission
constrained by a constraint in which the class of actions governed is refined by another constraint,
for example, the policy /policy/13-14#p in Figure 1. The rule 𝜋1 in the /policy/13-14#p is
characterized by the following properties:

• the type of the rule, 𝜃 = odrl:Permission;
• the action class regulated by the rule, 𝛼 = odrl:print;
• the target asset of the rule, 𝑜𝑏 = /doc.html.

Moreover, the rule 𝜋1 is restricted by a constraint ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ where ℓ𝑖=odrl:dateTime, 𝑜𝑝=odrl:lt,
and 𝑐="2018-01-01".

In order to evaluate the permission 𝜋1, we have to consider an action and a state. Following the
formalization presented in Section 3.5, we start by evaluating the rule 𝜋1 on the action 𝑎1 (Action 1 in
Section 2.1) and the state 𝑆 = ⟨𝑡𝑆 , {𝑎1}, ·𝑆⟩ whose relevant properties are:

• type of 𝑎1 = odrl:print, that is, 𝑎1 belongs to 𝛿("odrl:print") (which is the set of instances
of odrl:print);

• actors = party(𝑎1) = {/party#Alice};
• assets = obj(𝑎1) = {/doc.html};
• odrl:dateTime𝑆(𝑎1) = 𝑡𝑆 = 2017-12-31T14:35:27+01:00;
• odrl:resolution𝑆(𝑎1) = 300.

First, it is necessary to check whether rule 𝜋1 is 𝑎𝑐𝑡𝑖𝑣𝑒 on action 𝑎1. This is done by evaluating
whether the action 𝑎1 satisfies the constraint ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ of 𝜋1. Indeed, it holds that

𝑆, 𝑎1 |= ⟨odrl:dateTime, odrl:lt, "2018-01-01"⟩

because the pair (odrl:dateTime𝑆(𝑎1)), 𝛿("2018-01-01")) evaluates to

(2017-12-31T14:35:27+01:00, 2018-01-01) ∈ 𝛿(odrl:lt) .

Therefore, we can conclude that 𝜋1 is 𝑎𝑐𝑡𝑖𝑣𝑒 on action 𝑎1.
Subsequently, it is necessary to evaluate whether the action 𝑎1 complies with the permission 𝜋1 by

checking all the following conditions:

1. 𝜋1 is active on 𝑎1 ∈ 𝐸𝑆 , as we have just shown;
2. 𝑎1 ∈ 𝛿(𝛼), holds, because the type of 𝑎1 equals the permitted type 𝛼 (equivalently, 𝑎1 is an

instance of odrl:print);
3. 𝑎1 satisfies the refinement: 𝑆, 𝑎1 |= ⟨odrl:resolution, odrl:lteq, 300⟩, i.e. it holds that

(odrl:resolution𝑆(𝑎1),300) = (300, 300) ∈ 𝛿(odrl:lteq);
4. obj(𝑎1) = set(𝛿(𝑜𝑏)) = {𝛿(𝑜𝑏)}, i.e. {/doc.html} = {/doc.html};

5. the other conditions need not be checked because the target has no refinements and the assignee
is not specified.

Given that all these conditions are satisfied, we can conclude that 𝑎1 complies with the permission
𝜋1 in state 𝑆 (that is, 𝑎1 is permitted by 𝜋1). Since 𝑎1 is the unique action in 𝑆 and complies with
the unique rule of policy /policy/13-14#p, which is a permission, the trace ⟨𝑆⟩ complies with
/policy/13-14#p, according to Def. 8.

4.2. Evaluation of Permissions With Duties

We continue by explaining the evaluation of a second type of policy, i.e. a policy containing a permission
that is constrained by a duty, like /policy/22#p in Figure 2. The permission rule 𝜌1 in /policy/22#p
is characterized by:

• the type of the rule, 𝜃1 = odrl:Permission;
• the action class regulated by the rule, 𝛼1 = odrl:play;
• the target asset of the rule, 𝑜𝑏1 = /music/1999.mp3;
• the assignee of the rule, 𝑝1 = /party#Bob.

The duty rule 𝜔1 in /policy/22#p is characterized by:

• the type of the rule, 𝜃2 = odrl:Duty;
• the action class regulated by the rule, 𝛼2 = odrl:compensate;

Moreover, the action of 𝜔1 is subject to the refinement ⟨odrl:payAmount,odrl:eq,5.00⟩.
Consider Action 2 (formalized by an instance 𝑎2) in which Bob compensates 5.00 EUR and Action 3

(formalized by 𝑎3) in which Bob plays the mp3 (in Section 2.2). Following the formalization presented
in Section 3.6, we shall evaluate the policy on a sequence of states ⟨𝑆1, 𝑆2⟩ where 𝑆1 complies with (i.e.
fulfills) the duty 𝜔1, while in 𝑆2 the permission 𝜌1 to play the mp3 file is exercised. Accordingly, let
us assume that in state 𝑆1 there is the action 𝑎2 ∈ 𝐸𝑆1 and 𝑡𝑆1 equals the time when 𝑎2 happens, i.e.
2017-12-31T14:35:27+01. The relevant properties of 𝑎2 are:

• type = odrl:compensate;
• actors = party(𝑎2) = {/party#Bob};
• odrl:dateTime𝑆1(𝑎2) = 𝑡𝑆1 = 2024-12-31T14:33:42+01:00;
• odrl:payAmount𝑆1(𝑎2) = 5.00.

𝑆1 complies with (fulfills) the duty 𝜔1 because all the following conditions hold:

1. 𝜔1 is active because it has no constraints;
2. 𝑎2 ∈ 𝛿(𝛼2), because the type of 𝑎2 equals the required type 𝛼2 = odrl:compensate;
3. 𝜔1’s action specification contains a refinement, and 𝑎2 satisfies the refinement because 𝑆, 𝑎2 |=

⟨odrl:payAmount, odrl:eq, 5.00⟩;
4. the target and the assignee of 𝜔1 are not specified.

Let us now check whether the permission 𝜌1 applies to an action 𝑎3 ∈ 𝐸𝑆2 , whose relevant properties
are:

• type = odrl:play;
• actors = party(𝑎3) = {/party#Bob};
• assets = obj(𝑎3) = {/music/1999.mp3};
• odrl:dateTime𝑆2(𝑎3) = 𝑡𝑆2 = 2024-12-31T14:35:27+01:00.

It is straightforward to demonstrate that 𝑎3 complies with 𝜌1 in 𝑆2. This can be done by checking
all the conditions for a duty-less permission as shown in the previous section. The second condition
that must be checked for permissions with duties, is whether 𝑆2 is preceded by a state 𝑆𝑗 that fulfills
the duty 𝜔1. As we have already pointed out, this second condition is satisfied with 𝑗 = 1. Now, if
𝑎2 and 𝑎3 are the only actions in ⟨𝑆1, 𝑆2⟩, then this trace complies with /policy/22#p because 𝑎2 is
permitted by clause 2a in Def. 8 while 𝑎3 is permitted by clause 2b.

4.3. Evaluation of Prohibitions

In this section we explain the evaluation of a third type of policy, i.e. a policy containing a prohibition
constrained by a constraint, e.g. the policy /policy/19#p in Figure 3. The rule 𝜋1 in /policy/19#p
is characterized by:

• the type of the rule, 𝜃 = odrl:Prohibition;
• the action class regulated by the rule, 𝛼 = odrl:archive;
• the target asset of the rule, 𝑜𝑏 = /photoAlbum;
• the assignee party of the rule, 𝑝 = /party#Bob.

Now we check whether the prohibition 𝜋1 forbids, in a state 𝑆, a given action 𝑎4 ∈ 𝐸𝑆 , which
corresponds to Action 4 (formalized by an instance 𝑎4) in Section 2.3. Following the formalization
presented in Section 3.5, the relevant properties of 𝑎4 are:

• type = odrl:archive;
• actors = party(𝑎4) = {/party#Bob};
• assets = obj(𝑎4) = {/photoAlbum};
• odrl:dateTime𝑆(𝑎4) = 2023-06-18.

Moreover, the rule 𝜋1 is restricted by a constraint ⟨ℓ𝑖, 𝑜𝑝, 𝑐⟩ where ℓ𝑖 = odrl:dateTime, 𝑜𝑝 =
odrl:lt, and 𝑐 = "2024-01-01".

First, it is necessary to check whether 𝜋1 is 𝑎𝑐𝑡𝑖𝑣𝑒 on 𝑎4 in 𝑆. This amounts to checking whether
𝑎4 satisfies the constraint of 𝜋1. This evaluation is similar to the evaluation in Section 4.1 and we can
conclude that 𝜋1 is 𝑎𝑐𝑡𝑖𝑣𝑒 on action 𝑎4.

Subsequently, it is necessary to evaluate if the action 𝑎4 complies with the prohibition 𝜋1 by checking
whether at least one of the following conditions holds:

1. 𝜋1 is not active on 𝑎4 in 𝑆; as we pointed out, this condition does not hold;
2. 𝑎4 ̸∈ 𝛿(𝛼); this does not hold either, because the type of 𝑎4 equals the prohibited type 𝛼;
3. some action refinement is violated; since there are no refinements, this condition does not hold;
4. it should be obj(𝑎4) ∩ set(𝛿(𝑜𝑏)) = ∅, since there are no target refinements; however the

intersection equals {/photoAlbum}, therefore, this condition does not hold;
5. similarly, none of the assignees should match the assignee specification of 𝜋1; since party(𝑎4) =

set(𝛿(𝑝)) = {/party#Bob}, this condition is not satisfied, either.

As none of the above conditions hold, we can say that 𝑎4 does not comply with the prohibition 𝜋1, that is,
Bob’s action infringes the prohibition. Accordingly, the trace ⟨𝑆⟩ does not comply with /policy/19#p
(cf. Def. 8).

5. Declarative Semantics as an Algorithm Correctness Criterion

Here we illustrate how declarative semantics can be used to assess the correctness of the algorithms
designed for specific computational tasks, and guarantee their mutual interoperability. First we provide
an abstract definition of the main classes of such algorithms. We define also what it means for these
algorithms to be correct, based on the declarative semantics (i.e., the notion of compliance defined in
the previous section).

Definition 9.

1. A monitoring mechanism MM is an algorithm that takes as input a trace 𝜏 (which models a system
log) and a policy Π and returns a boolean value (compliant/non compliant); MM is correct if it
returns true if and only if 𝜏 complies with Π;

2. an access control mechanism AC is an algorithm that takes a trace 𝜏 (which models the current
situation), a policy Π, and a request of an action 𝑎, represented as a state 𝑆 = ⟨𝑡𝑆 , {𝑎}, (·)𝑆⟩,5
and returns a boolean value; AC is correct if it returns true if and only if the trace 𝜏 · 𝑆 (the
concatenation of 𝜏 and 𝑆) complies with Π (that is, the execution of the action does not lead to a
violation of Π);

3. a policy comparison mechanism PC is an algorithm that takes two policies Π1 and Π2 and returns
a boolean value; PC is correct if it returns true if and only if all the traces 𝜏 that comply with Π1

comply also with Π2.6

As we claimed, it is now possible to guarantee that different algorithms behave in a coherent way,
based on a single, unambiguous meaning of the policies involved. For example, it follows immediately
from the above definitions that correct monitoring, access control and comparison mechanisms always
return mutually compatible results:

Proposition 1.

1. If a monitoring mechanism MM and an access control mechanism AC are correct, then for all traces
𝜏 and for all action requests 𝑆,

𝐴𝐶(𝜏,Π, 𝑆) = MM (𝜏 · 𝑆,Π)

(i.e. access control decisions are never invalidated during auditing);
2. if a monitoring mechanism MM and a policy comparison mechanism PC are correct, then for all

traces 𝜏 and all policies Π1 and Π2, the following facts hold:
a) for all traces 𝜏 , if 𝑃𝐶(Π1,Π2) = 𝑡𝑟𝑢𝑒 and MM (𝜏,Π1) = 𝑡𝑟𝑢𝑒, then MM (𝜏,Π2) = 𝑡𝑟𝑢𝑒

(when PC says that Π1 complies with Π2, if auditing is successful w.r.t. Π1, then it is successful
also w.r.t. Π2);

b) if 𝑃𝐶(Π1,Π2) ̸= 𝑡𝑟𝑢𝑒 then there exists a trace 𝜏 such that MM (𝜏,Π1) = 𝑡𝑟𝑢𝑒, and
MM (𝜏,Π2) = 𝑓𝑎𝑙𝑠𝑒 (when PC says that Π1 does not comply with Π2, there exists indeed a
trace 𝜏 such that auditing is successful only for Π1);

3. if an access control mechanism AC and a policy comparison mechanism PC are correct, then
the following fact holds: for all traces 𝜏 and all action requests 𝑆, if 𝑃𝐶(Π1,Π2) = 𝑡𝑟𝑢𝑒 and
𝐴𝐶(𝜏,Π1, 𝑆) = 𝑡𝑟𝑢𝑒, then 𝐴𝐶(𝜏,Π2, 𝑆) = 𝑡𝑟𝑢𝑒 (when PC says that Π1 complies with Π2, then
access is granted by Π1 only if it is granted also by Π2).

Note that one correctness proof for each algorithm suffices to guarantee that its behavior is mutually
compatible with that of all correct algorithms. Without a unique reference semantics, compatibility
could only be guaranteed by proving a result similar to one of the above three propositions for each
pair of algorithms.

6. Conclusion

We have provided a formalization of part of the ODRL 2.2 specification as provided by the ODRL
Information Model 2.2 [4] and in the ODRL Vocabulary & Expression 2.2 [5]. The formalization currently
covers permissions with duties, prohibitions with remedies, and obligations, including refinements
and constraints; consequences have been sketched. The formalization is currently not covering left
operands such as "count", that depend on traces; these constructs will be covered in an extended version
of this paper. Further, we have illustrated the behavior of the formalization through several examples

5Here 𝑡𝑆 represents the time of the request, while (·)𝑆 specifies the properties of 𝑎, of the involved assets and peers, and of
the environment.

6Thus, in informal terms, a correct PC returns true iff Π1 complies with Π2, or – equivalently – Π1 is stronger than Π2; a
third (equivalent) formulation is: Π1 is contained in Π2.

and pointed out several aspects that could benefit from language extensions, and from clarifications on
the official ODRL specification.

Besides extending the coverage of the formalization, future work could: propose improvements
of ODRL to overcome its current limitations; clarify the relationship between ODRL and existing
W3C recommendations (such as XML Schema Part 2: Datatypes Second Edition [10] and RDF 1.1
Semantics [11]); further investigate policy scope, and how permissions and prohibitions are combined
into policies; and extend the expressiveness of ODRL’s temporal constraints.

Acknowledgments
P. A. Bonatti acknowledges financial support from the PRIN 2022 project 2022LA8XBH-POLAR, and project
SERICS (PE00000014) under the NRRP MUR program funded by the EU-NGEU. A. Harth acknowledges support
from IGF project GRANERGIZE (FKZ 01IF23286N).

This work was conceived during the Dagstuhl Seminar 25051 “Trust and Accountability in Knowledge Graph-
Based AI for Self Determination”, which took place in January 2025.

Declaration on Generative AI
During the preparation of the paper, the authors used DeepL for grammar and spelling check, paraphrase, and
reword. The authors reviewed and edited the text and take full responsibility for the papers’s content.

References
[1] V. Rodríguez-Doncel, S. Villata, A. Gómez-Pérez, A dataset of RDF licenses, in: R. Hoekstra (Ed.), Le-

gal Knowledge and Information Systems - JURIX 2014, Krakow, Poland, 10-12 December 2014, volume
271 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2014, pp. 187–188. doi:10.3233/
978-1-61499-468-8-187.

[2] H. J. Pandit, B. Esteves, G. P. Krog, P. Ryan, D. Golpayegani, J. Flake, Data privacy vocabulary (DPV) - version
2.0, in: G. D. et al. (Ed.), The Semantic Web - ISWC 2024 - 23rd International Semantic Web Conference,
Baltimore, MD, USA, November 11-15, 2024, Proceedings, Part III, volume 15233 of Lecture Notes in Computer
Science, Springer, 2024, pp. 171–193. doi:10.1007/978-3-031-77847-6_10.

[3] B. Esteves, V. Rodríguez-Doncel, H. J. Pandit, N. Mondada, P. McBennett, Using the ODRL Profile for Access
Control for Solid Pod Resource Governance, in: P. G. et al. (Ed.), The Semantic Web: ESWC 2022 Satellite
Events - Hersonissos, Crete, Greece, May 29 - June 2, 2022, Proceedings, volume 13384 of Lecture Notes in
Computer Science, Springer, 2022, pp. 16–20. doi:10.1007/978-3-031-11609-4_3.

[4] R. Iannella, S. Villata, ODRL Information Model 2.2, Recommendation, W3C, 2018. https://www.w3.org/TR/
2018/REC-odrl-model-20180215/. Latest version available at https://www.w3.org/TR/odrl-model/.

[5] R. Iannella, M. Steidl, S. Myles, V. Rodríguez-Doncel, ODRL Vocabulary & Expression 2.2, Recommendation,
W3C, 2018. https://www.w3.org/TR/2018/REC-odrl-vocab-20180215/. Latest version available at https:
//www.w3.org/TR/odrl-vocab/.

[6] N. Fornara, V. Rodríguez-Doncel, B. Esteves, S. Steyskal, B. W. Smith, ODRL Formal Semantics, Draft
Community Group Report, W3C, 2025. https://w3c.github.io/odrl/formal-semantics/.

[7] S. Steyskal, A. Polleres, Towards formal semantics for ODRL policies, in: N. Bassiliades, G. Gottlob, F. Sadri,
A. Paschke, D. Roman (Eds.), Rule Technologies: Foundations, Tools, and Applications - 9th International
Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015, Proceedings, volume 9202 of Lecture Notes in
Computer Science, Springer, 2015, pp. 360–375. doi:10.1007/978-3-319-21542-6_23.

[8] N. Fornara, M. Colombetti, Operational semantics of an extension of ODRL able to express obligations, in:
F. Belardinelli, E. Argente (Eds.), Multi-Agent Systems and Agreement Technologies - EUMAS 2017, and AT
2017, Évry, France, December 14-15, 2017, Revised Selected Papers, volume 10767 of LNCS, Springer, 2017,
pp. 172–186. doi:10.1007/978-3-030-01713-2_13.

[9] M. D. Vos, S. Kirrane, J. A. Padget, K. Satoh, ODRL policy modelling and compliance checking, in: P. Fodor,
M. Montali, D. Calvanese, D. Roman (Eds.), Rules and Reasoning - Third International Joint Conference,
RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings, volume 11784 of Lecture Notes in
Computer Science, Springer, 2019, pp. 36–51. doi:10.1007/978-3-030-31095-0_3.

http://dx.doi.org/10.3233/978-1-61499-468-8-187
http://dx.doi.org/10.3233/978-1-61499-468-8-187
http://dx.doi.org/10.1007/978-3-031-77847-6_10
http://dx.doi.org/10.1007/978-3-031-11609-4_3
https://www.w3.org/TR/2018/REC-odrl-model-20180215/
https://www.w3.org/TR/2018/REC-odrl-model-20180215/
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/2018/REC-odrl-vocab-20180215/
https://www.w3.org/TR/odrl-vocab/
https://www.w3.org/TR/odrl-vocab/
https://w3c.github.io/odrl/formal-semantics/
http://dx.doi.org/10.1007/978-3-319-21542-6_23
http://dx.doi.org/10.1007/978-3-030-01713-2_13
http://dx.doi.org/10.1007/978-3-030-31095-0_3

[10] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes Second Edition, Recommendation, W3C, 2004.
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. Latest version available at https://www.w3.
org/TR/xmlschema-2/.

[11] P. Hayes, P. Patel-Schneider, RDF 1.1 Semantics, Recommendation, W3C, 2014. https://www.w3.org/TR/
2014/REC-rdf11-mt-20140225/. Latest version available at https://www.w3.org/TR/rdf11-mt/.

https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/rdf11-mt/

	1 Introduction
	2 Examples of Policies
	2.1 Permissions Without Duty
	2.2 Permission With Duties
	2.3 Prohibition

	3 Formalization
	3.1 Entities and Datatypes
	3.2 Constraint Operators
	3.3 Left Operands and World States
	3.4 Constraints (Nontemporal)
	3.5 Compliance with Permission and Prohibition Rules Without Duties and Remedies
	3.6 Adding Time and Duties/Obligations
	3.7 Adding Remedies to Prohibitions
	3.8 Complying With a Policy

	4 Explanation of Formalization Through Specific Policy Examples
	4.1 Evaluation of Permissions Without Duties
	4.2 Evaluation of Permissions With Duties
	4.3 Evaluation of Prohibitions

	5 Declarative Semantics as an Algorithm Correctness Criterion
	6 Conclusion

