
ODRE Policy Directory Service: A Trust-Based ODRL
Service for Decentralised and Policy-Aware Ecosystems
Lucía Martín-Núñez1,∗,†, Andrea Cimmino1,† and Raúl García-Castro1,†

1Universidad Politécnica de Madrid, Spain

Abstract
Policies are a critical component in decentralised data ecosystems, where ensuring secure and compliant data
usage is an ever-growing challenge. The W3C standard Open Digital Rights Language (ODRL) has been widely
adopted for expressing access and usage control policies by several initiatives, such as Data Spaces and Solid Pods.
However, ODRL has only promoted an ontology to express policies without any standardised recommendation
for policy management, discovery, or enforcement. Although several proposals outside the standard have been
presented to address these limitations, a complete solution to be deployed by decentralised initiatives like Data
Spaces or Solid remains unexplored. This article introduces the ODRE Policy Directory Service (ODRE-PDS),
a Web service that provides the features needed to rely on ODRL in practical scenarios and use cases. The
directory includes policy management features, discovery, policy enforcement mechanisms, and an architecture
that facilitates its integration with external trust-based systems. The directory has been used in two use cases:
a time-based policy scenario and an AI-driven facial recognition access control system. In addition, several
experiments on enforcement performance, scalability, and computational overhead advocate its usability by
decentralised ecosystems.

Keywords
Data usage control, ODRL Policies, ODRL Directory.

1. Introduction

Decentralised environments such as European Data Spaces, Solid Pods, Internet of Things (IoT), or
Knowledge Graphs increasingly require robust and adaptable mechanisms to manage access and usage
control of digital resources [1, 2, 3, 4, 5]. As data flow across organisational and national boundaries,
ensuring compliance with legal constraints becomes essential, particularly in light of regulations such as
the General Data Protection Regulation (GDPR) [2] and the Digital EU Artificial Intelligence Act [6]. The
W3C standardisation group Open Digital Rights Language (ODRL) has published as a recommendation a
semantic model [7], i.e., an ontology, to define access and usage control policies. However, ODRL focuses
on policy specification and lacks recommendations for other related policy tasks such as discovery or
enforcement mechanisms. As a result, there are no standard guidelines on how to operationalise or
implement these features within policy-aware service architectures.

Outside the standard, several proposals have been presented to rely on ODRL in real-world scenarios,
tackling problems such as policy specification, policy management, policy enforcement, or supporting
different scenarios; from known access control to usage control. However, up to the authors’ knowledge,
despite the numerous proposals, no existing proposal offers a comprehensive solution that combines
all these features, providing a general Web-service-orientated architecture suitable for decentralised
infrastructures.

In this article, the ODRE Policy Directory Service (ODRE-PDS) is introduced to address these limita-
tions. ODRE-PDS is a Web service designed with a modular architecture that supports the management,

ODRL and Beyond: Practical Applications and Challenges for Policy-base Access and Usage Control. OPAL 2025 Co-located with
the Extended Semantic Web Conference, Portorož, Slovenia · June 1 or 2, 2025.
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open lucia.martin.nunez@alumnos.upm.es (L. Martín-Núñez); andreajesus.cimmino@upm.es (A. Cimmino); r.garcia@upm.es
(R. García-Castro)
Orcid 0009-0001-4043-4167 (L. Martín-Núñez); 0000-0002-1823-4484 (A. Cimmino); 0000-0002-0421-452X (R. García-Castro)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:lucia.martin.nunez@alumnos.upm.es
mailto:andreajesus.cimmino@upm.es
mailto:r.garcia@upm.es
https://orcid.org/0009-0001-4043-4167
https://orcid.org/0000-0002-1823-4484
https://orcid.org/0000-0002-0421-452X
https://creativecommons.org/licenses/by/4.0/deed.en


Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

discovery, and enforcement of ODRL policies via a RESTful interface. The ODRE-PDS follows a design
that aligns with W3C standards, for instance, supporting different RDF serialisations and the SPARQL
protocol and queries. The ODRE-PDS follows an approach applied to other policy-related initiatives
where there is a service, or several components, providing the aforementioned features; like XACML [8].

The contributions of the ODRE-PDS address three limitations in current ODRL-based initiatives: (i)
it provides policy management capabilities and provides discovery features over stored policies; (ii)
it enables policy enforcement based on contextual information, including data stored in or retrieved
through ODRE-PDS; and (iii) it provides an out-of-the-box implementation ready to use in real-world
scenarios or infrastructures such as Solid Pods and European Data Spaces.
To showcase the ODRE-PDS integration in real-world scenarios, the article presents two use cases

derived from the European project AURORAL1 where the directory has been adopted and a Spanish
National Project. The first entails time-restricted access to public documents based on policies, and the
second relies on policies that grant access to documents based on biometric recognition for identity
verification. These scenarios demonstrate context-aware and auditable enforcement capabilities while
maintaining compatibility with the ODRL model. In addition, three experiments have been carried out
to test the ODRE-PDS performance, the results of which advocate the suitability of the directory to be
used in real-world use cases.
This rest of the paper is organised as follows: Section 2 surveys similar proposals in the literature,

then in Section 3 an implementation agnostic architecture is presented for the ODRE-PDS, and in
Section 4, a specific implementation is introduced. Section 6 presents the experiments carried out and,
finally, Section 7 states the conclusions of the article.

2. State of the Art

Enforcing policies, regardless of access or usage control, is a critical challenge for data-centric envi-
ronments and particularly decentralised ecosystems, such as the Internet of Things (IoT) [4, 5], Solid
Pods [2], and European Data Spaces [1]. In these contexts, data governance is increasingly based on
self-sovereign and federated approaches [9], where control must be preserved beyond initial access
decisions. This paradigm is known as usage control, which extends traditional access control by ensuring
that data consumers continue to respect policy constraints after access has been granted [10]. To enable
reliable and interoperable data sharing, policy initiatives must support different operations such as
policy specification, the enforcement of access and usage control.

This section analyses the capabilities of existing policy initiatives for management and enforcement
in decentralised privacy-sensitive systems. The analysis is structured around the following evaluation
dimensions: A) Policy specification: the type of model promoted by the different initiatives to express
the policies (e.g., an ontology or an XML schema); B) Policy management : the initiative promotes
an architecture, software or service oriented, to support policy management operations, i.e., CRUD
operations (create, read, update, or delete); C) Policy enforcement : the initiative promotes an architecture,
software or a service oriented, to evaluate policies taking into account the state of the world. The state
of the world (SoTW) refers to the external contextual information used to evaluate the policy, such
as time, identity, or environmental factors.; D) Access control: the initiative supports authorization
mechanisms that enforce explicit allow/deny decisions over resource access, typically based on the
identity of the requester and policy rules; E) Monitoring: the initiative promotes a software or service
that supports usage control, that is, the ability to observe and track policy compliance over time; F)
Operations interface: the type of interface exposed by the initiative to manage and evaluate policies.
This may include RESTful APIs, SPARQL endpoints, command-line tools, or web-based dashboards.
Table 1 shows the summary of the analysis performed in four well-known policy initiatives.

ODRL [7] is a W3C recommendation that provides a formal ontology to define access and usage
control policies through permissions, prohibitions, and obligations. It supports policy specification using
RDF and following the model of its ontology; which is aligned with Linked Data principles [3]. However,

1See https://auroral-project.eu/, Horizon 2020, Grant Agreement ID: 101016854.

2

https://auroral-project.eu/


Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

Feature ODRL[7] XACML[8] UCON[11] LegalRuleML[12]
A) Policy specification ontology schema conceptual model schema + ontology linking
B) Policy management 7 3 7 7

C) Policy enforcement 7 3 3 7

D) Access control 7 3 7 7

E) Monitoring 7 3 ∼ 7

F) Operations interface 7 3 7 7

Table 1
Comparison of selected policy languages.Note: 3 indicates full support for the feature; 7 indicates no support;
∼ denotes partial or conceptual support or limited interface support.

ODRL does not provide recommendations for policy enforcement, discovery, or policy management.
Furthermore, the ODRL initiative does not provide any means to adopt policies in practical scenarios
besides using them for descriptive purposes; the standard does not provide any service-based interface
or component-based architecture [13]. Nevertheless, recent efforts, such as the ODRL profile for
expressing consent in Solid environments [2] advocate its potential for granular policy specification
in decentralised systems. However, these efforts remain limited in their ability to offer executable or
integrated enforcement features.
XACML [8], developed by OASIS, defines both a policy language and a reference architecture for

access control, based on the interaction between Policy Decision Points (PDPs), Policy Enforcement
Points (PEPs) and Policy Action Point (PAP). It supports policy specification using XML and following a
particular XML schema and provides real-time access decisions via service-based interfaces. In addition,
XACML includes policy management operations or monitoring capabilities; however, it lacks support
for ontology-based semantics or dynamic usage control. The XACML standard is suited for static access
control scenarios in centralized environments.

Usage CONtrol (UCON) [11] is a conceptual model that allows to describe mutability of the attributes,
representing those that may change during access, and allows to describe continuity, which enables
policy evaluation before, during, and after access. It defines policies through a formal model and
supports enforcement mechanisms across the access lifecycle. UCON provides conceptual support for
monitoring, but lacks standardized implementations, semantic modeling, integration interfaces, and
policy management functionality. It is primarily used in academic or prototype contexts requiring
persistent and adaptive control [10].
LegalRuleML [12], also developed by OASIS, is an XML-based legal rule language designed to

represent legal logic, rights, and obligations. It enables the specification of normative rules through a
structured, formal model that supports advanced compliance reasoning. However, it does not support
policy enforcement, runtime monitoring, or policy management operations. LegalRuleML also lacks
support for access control (AC) mechanisms and does not provide service-level interfaces for integration
in operational systems. As such, it is primarily suited for offline legal analysis, documentation, and
regulatory alignment, rather than for executable policy enforcement.
As summarised in Table 1, none of the reviewed initiatives simultaneously supports semantic mod-

elling based on ontologies, policy enforcement at runtime, and integration with operational infras-
tructures. In particular, the absence of monitoring capabilities and dynamic adaptability restricts their
applicability in decentralized ecosystems where authorizations and contextual conditions evolve over
time.

2.1. ODRL-Based Enforcement Frameworks

Since this article focuses on ODRL-based proposals and ODRL lacks recommendations in addition to
the ontology, this subsection reviews recent frameworks and proposals that extend the W3C ODRL
2.2 specification with additional semantics or mechanisms not covered by the official standard. These
proposals rely on the semantics and vocabulary of ODRL, but differ in how they are used to manage,
discover, or enforce policies.

3



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

Because ODRL does not provide native support for policy execution [13], several initiatives have
emerged to bridge the gap between policy specification and enforcement. Table 2 presents a comparative
analysis of these proposals using the evaluation dimensions introduced earlier, including a new criterion
G) Types of constraints: that each framework supports during policy evaluation (e.g., static vs. dynamic).
This dimension highlights whether the frameworks rely solely on preconfigured values (static) or are
capable of processing runtime values provided as context before the enforcement by the system or a
third-party entity (dynamic).
ODRL Policy Modelling [14] explores how ODRL policies can be aligned with legal regulations,

focusing on formal compliance checking. The framework provides reasoning mechanisms over pol-
icy expressions to detect inconsistencies and evaluate whether they fulfill regulatory requirements.
However, it does not include any policy enforcement at runtime, monitoring, or API integration features.
DUC [15, 16] and IntentKeeper [17] are ODRL-based frameworks designed for specific application

domains: industrial IoT and federated learning, respectively. Both provide RESTful APIs that allow
external systems to interact with policy evaluation services at runtime, enabling practical policy
enforcement. They incorporate basic enforcement mechanisms over data access and transmission, but
do not include support for access control or runtime monitoring of policy compliance.
ODRL-PAP [18] is a policy administration component that enables the transformation of ODRL

policies into executable Rego rules for enforcement via the Open Policy Agent (OPA). Policies are
specified in ODRL and automatically compiled into enforcement-ready logic. The system provides a
REST API for the creation, retrieval, and deletion of policies, supporting external integration. However,
it does not include policy monitoring or support for explicit access control, as access decisions are
handled by OPA using logic-based policies rather than static subject-permission mappings. Enforcement
decisions are delegated to OPA, which evaluates runtime access conditions. While it lacks built-in
compliance checking, the separation between specification and execution makes ODRL-PAP suitable
for modular, interoperable environments.
The MOSAICrOWN Policy Engine [19] is an ODRL-based access control module developed in the

context of privacy-preserving data analytics. It evaluates access requests using ODRL policies that
define constraints over actions, purposes, data subjects, and contextual attributes. The engine supports
complex rule hierarchies and expressive conditions such as attribute visibility and duty-based obligations.
However, it does not support runtime policy management or monitoring, and it lacks integration with
AC mechanisms. Its architecture is tailored to the needs of the MOSAICrOWN framework, and no
general-purpose API is provided. Despite these limitations, it shows how ODRL can be effectively
applied to control access in federated data pipelines.

Interoperable Usage Control [20] proposes a usage control framework based on ODRL for the context
of European Data Spaces. It introduces support for dynamic constraints—such as temporal, contextual,
or purpose-based conditions—making policy enforcement more adaptive. However, the framework does
not provide integration APIs or monitoring capabilities, and its implementation is primarily conceptual
at this stage.

The OTT Copyright Management System [21] extends ODRL for the automated governance of digital
content rights in Over-the-Top (OTT) platforms. It supports policy specification using the ODRL 2.2
vocabulary to represent copyright transactions, ownership ratios, and usage permissions. The system
includes automatic policy enforcement via smart contracts that verify agreement thresholds before
executing copyright transfers. It incorporates mechanisms for policy management such as agreement
recording and verification. While it does not integrate AC, it ensures secure control using digital
signatures and zero-knowledge proofs. Monitoring is achieved through immutable blockchain logs that
capture usage events and transactions. Although it does not expose a REST API, it offers a functional
modular interface through Hyperledger Fabric components. It partially supports dynamic constraints
related to ownership and user signatures but does not include compliance checking mechanisms.

ODRE [22] constitutes a significant contribution to ODRL-based enforcement by embedding a formal
execution model directly within the policy structure. It supports evaluation of permissions, obligations,
and access control, and allows compliance checking with contextual constraints. However, ODRE is
code-based and lacks a service architecture or REST API, which limits its usage in a decentralized

4



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

environment. In addition, it does not provide policy management capabilities such as creation, update,
or deletion of policies, nor does it support external monitoring or trust integration.

The ODRE-PDS, proposed in this paper, builds upon ODRE and extends it with formal semantics [23],
third-party trust models, and dynamic contextual evaluation. It is the first framework to integrate AC
enforcement, monitoring, and REST APIs within a fully extensible ODRL-based system. Similar to
OWL-POLAR [24], which provides reasoning capabilities for policy enforcement, ODRL extensions aim
to bridge semantic representation and runtime validation.

Framework A) B) C) D) E) F) G)
ODRL Policy Modelling [25] ODRL 7 7 7 7 7 Static

DUC [15] ODRL Ontology 7 3 7 7 3 Static

IntentKeeper [17] ODRL Ontology 7 3 7 7 3 Dynamic

ODRL-PAP [18] ODRL (compiled to Rego) 3 3 7 7 3 Static

MOSAICrOWN Policy Engine [19] ODRL Ontology 7 3 7 7 7 Dynamic

Interoperable Usage Control [20] ODRL+Ext. (Dyn. Constraints) 7 3 7 3 7 Dynamic

OTT Copyright Management System [21] ODRL+Ext. (Copyright Terms) 3 3 7 3 ∼ ∼
ODRE [22] ODRL+Enf. Layer 7 3 3 7 7 Dynamic

ODRE-PDS (This work, 2025) ODRL+Ext. (Formal Semantics) 3 3 3 3 3 Dynamic

Table 2
Comparison of ODRL-based Policy Management Frameworks. Evaluation criteria: A) Policy Specifica-
tion; B) Policy Management; C) Policy Enforcement; D) Access Control; E) Monitoring; F) Interface; G)
Types of Constraints. Legend: 3= full support, 7= no support, ∼ = partial or implicit support.

2.2. Summary

While previous efforts have contributed important mechanisms—such as compliance checking [14],
REST APIs [15, 17], and enforcement logic [22]—none offers a complete, extensible solution that supports
real-time enforcement, access control and monitoring. ODRE-PDS addresses this gap by providing a
structured API that supports dynamic policy enforcement and is designed for integration with external
trust mechanisms—although trust validation is not yet implemented in the current version. This
approach helps transform ODRL from a purely descriptive language into an operational framework for
privacy policy management.

3. Proposed Approach

This section presents the architecture of the ODRE Policy Directory Service (ODRE-PDS), a modular
and extensible Web service for managing, discovering, and enforcing policies defined using the Open
Digital Rights Language (ODRL). ODRE-PDS is designed to be deployed in decentralised environments
where external components, such as authentication services, monitoring systems, or biometric verifiers,
can interact and exploit its features.
Figure 1 shows an overview of the ODRE-PDS architecture. The service consists of four main

components accessible through dedicated interfaces: the Management component, the Enforcement
component, the SPARQL component, and the Triplestore. These components are interconnected and
operate over the policies that are stored as a Knowledge Graph. All operations are available via a
RESTful interface, although the architecture can be easily adapted to support other transport protocols
besides HTTP.

The Management component handles the lifecycle of ODRL policies, including their creation, update,
retrieval, and deletion. Policies that are registered must comply with the ODRL 2.2 specification,
as they are validated both syntactically—e.g., ensuring correct Turtle syntax—and semantically, by
verifying that all RDF terms conform to the expected structure defined by the ODRL ontology and that

5



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

Figure 1: System architecture of the ODRE-PDS.

policy elements follow the vocabulary constraints (such as valid use of permissions, constraints, and
actions) before being stored in the triple store. Policies can be submitted in RDF serialised as Turtle
or JSON-LD 1.1; internally policies are stored in the Triplestore component using named graphs, due
to this approach, each policy is stored individually, easing queries while maintaining provenance and
traceability. The SPARQL component allows to perform queries for discovering or exploring policies
stored in the ODRE-PDS (e.g., finding policies defined by a particular assigner or to target a specific
asset).
Although it is not explicitly represented in the architectural diagram (Figure 1), the Evaluation

Engine plays a central role in the enforcement process. This logical component is responsible for
enforcing ODRL policies based on a state of the world that may include both internal and external
information relative to the ODRE-PDS. This separation allows the architecture to remain modular and
evaluation-agnostic, enabling the integration of alternative reasoning engines in future extensions.
When a request is received through the Enforcement API, relevant policies are first retrieved from

the Knowledge Graph. In the envisioned architecture, policy relevance is determined by matching the
target resource, the requested action, and, where applicable, contextual parameters derived from the
state of the world. This allows the system to dynamically select only the applicable policies for a given
access request.
Once the relevant policy is identified, contextual data—such as the current time, user identity, or

device location—is gathered and injected into the evaluation process. The Evaluation Engine then
assesses each rule defined in the policy individually, verifying whether its associated constraints—and,
where applicable, refinements—are satisfied given the current state of the world. A rule is considered
satisfied if all of its conditions hold. If one or more rules evaluate positively, the corresponding actions
specified in those rules are either taken or executed by the ODRE-PDS or those actions are delegated to
a third-party component or actor to be taken.
A key feature of the ODRE-PDS Enforcement API is its ability to operate in access control and

monitoring scenarios. In the former, when a third party intends to take an action over a resource
protected by a policy, the enforcement of that policy is triggered. The evaluation of the policy is
performed based on a set of data from the state of the world that does not change during the enforcement
process, such as a allow list for accessing a resource. In this case, the enforcement task finishes after

6



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

the evaluation, and the action is taken (either by the system or by a third party entity). In the latter
scenario, the enforcement keeps evaluating the policy during the time window in which the third party
keeps intending the action.
For example, let us assume that a document is protected by a policy. In an access control scenario,

the policy may allow reading the document if valid credentials are provided. During enforcement, the
credentials obtained from a third-party entity (i.e., the state of the world) are evaluated against those
specified in the policy. If they match, the policy is considered satisfied, and the document is delivered
as the result of the enforcement (i.e., the system executes the permitted action).
In a monitoring scenario, the policy may allow the document to be displayed only if an AI model

detects a face associated with a unique identifier that is authorized to access it. In this case, enforcement
requires continuous evaluation of the state of the world, which may change over time. If the AI-provided
identifier no longer matches the one allowed in the policy, the system stops displaying the document.
Note that the policy only performs the odrl:display action but it is not able to control if a practitioner is
reading the document.
The different aforementioned features make ODRE-PDS particularly suitable for decentralised ini-

tiatives. On the one hand, it supports access control and monitoring scenarios, making ODRE-PDS
suitable for a wide range of use cases. On the other hand, the decentralised nature of linked data (RDF)
allow different ODRE-PDS instances to be deployed working in conjunction. For instance, the discovery
based on SPARQL could be federated over multiple directories relying on the SERVICE statement of the
SPARQL queries.

4. Implementation

To showcase the feasibility of the proposed architecture of the ODRE-PDS service, a Python-based
implementation has been made publicly available in Git under an Apache 2.0 license2 . The implemented
service provides a RESTful interface built with FastAPI 3, allowing external applications to manage,
evaluate and enforce ODRL policies in real time. The transport protocol used is HTTP since it is a
W3C standard; however, the modular design allows future integrations with alternative communication
protocols, such as CoAP or MQTT.
The Management and SPARQL components are developed using the rdflib4 that handles different

serialisations of RDF. This library is used to translate policies from JSON-LD 1.1 to Turtle serialisation
or to perform SPARQL queries over a set of policies expressed in Turtle. Since the ODRL standard has
not yet published a JSON-LD 1.1 frame, having a policy in JSON-LD 1.1 which has to be translated to
Turtle and back to JSON-LD 1.1 obtaining the same identical policy as the original is complex and tricky;
requiring multiple potential ad-hoc adjustments. Due to this reason, the ODRE-PDS implementation
does not rely on a Triplestore but instead, this component stores directly the policies written in JSON-LD
1.1. Only when a SPARQL query is issued, the policies are translated to Turtle and the query performed.
In addition to not having the frame, this implementation choice is motivated by the fact that it is
expected to have more requests that need to retrieve policies rather than query requests; with this
implementation, response times are optimised in these cases.

Finally, the Enforcement Evaluator is implemented based on the ODRE enforcement framework [22],
in particular with the enforcement algorithm implemented in Python. This framework allows to enforce
a policy providing a state of the world modelled as a JSON set of values. The ODRE-PDS implementation
enhances the construction of the state of the world that can be used to enforce a policy by injecting
values provided in a request to the Enforcement API sent as parameters in the URL. Following this
approach, a policy can take into account the information that a requester may provide using URL
parameters.
The implemented Enforcement API raises the question of trust in the values provided in the URL

2https://github.com/ODRE-Framework/policy-directory-service
3https://fastapi.tiangolo.com/
4https://rdflib.readthedocs.io/en/stable/

7

https://github.com/ODRE-Framework/policy-directory-service
https://fastapi.tiangolo.com/
https://rdflib.readthedocs.io/en/stable/


Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

parameters that could be used to enforce policies. It would be interesting to implement a mechanism to
trust who provides such values. For instance, a token-based system like JWT could be used so only
authorized and authenticated entities could provide information to be taken into account. However, due
to the academic nature of the current implementation, and the fact that the authors aim at providing a
proof of concept for the components described, this feature will be further analysed and implemented
in the future. This trust becomes particularly relevant and crucial in use cases like the one based on AI
explained in the following subsections that relies on biometric recognition.
In order to facilitate its adoption and deployment in real-world scenarios, the ODRE-PDS imple-

mentation has been containerised. This simplifies its integration into cloud-based or on-premises
infrastructures. In addition, all REST endpoints are documented with Swagger (Open API specifica-
tion 5) to ensure that developers can integrate ODRE-PDS with other services with minimal effort,
delegating policy-related decisions to the directory while maintaining their existing infrastructures.

As a final remark, the ODRE-PDS implementation has been developed to support concurrent requests
through asynchronous processing, enabling horizontal scalability across distributed instances. State-
less policy evaluation ensures low response times and high availability under load. As a result, the
implementation presented validates the operational feasibility of the proposed architecture, offering a
suitable building block for decentralised initiatives.

5. Practical Use cases

This section introduces two real-world use cases derived from research projects. The former use case
belongs to the AURORAL European project, where the ODRE-PDS was used to access certain documents
under certain temporal restrictions. The latter use case belongs to the GUIA project6, where ODRE-PDS
is used to allow the reading of confidential documents using biometric-based access. The usage of
ODRE-PDS in these projects validates its adoption in real scenarios.
For the sake of privacy, the use cases described in the following subsections do not use the same

resources as those they protect in the projects. In addition, to showcase these use cases, public endpoints
have been enabled to see how they work. To this end, a public instance of the ODRE-PDS service has
been deployed 7. The Time-Restricted Access Policies use case can be accessed directly 8, whereas the
AI-Driven Access Control use case has been made available through a third-party service 9, which usage
is described in a video in the Zenodo repository10.

5.1. Time-Restricted Access Policies

This use case illustrates how ODRE-PDS protects the access to a specific document based on time,
ensuring that only requests within a valid time window are granted. The policy used in this scenario is
publicly available in the Zenodo repository under the file time base access policy.json.

In this use case, a user attempts to access the European Union’s Artificial Intelligence Act document.
The access condition is defined using an ODRL policy where a constraint restricts the read action to
requests made before 23:59:00 to 00:00:00 considering the time zone of the server where the service is
deployed (CEST). Note that this restriction has been set for the sake of simplicity and reviewers’ demo.
The policy is expressed using RDF in JSON-LD format and stored in the directory, where it can be
retrieved and evaluated using the RESTful interface exposed by the system. The constraint is encoded
using the left operand time:time, a custom extension aligned with the ODRL ontology and published

5https://swagger.io/specification/
6See https://github.com/guia-project, Madrid Government Multiannual Agreement 2023-2026, Emerging PhD researchers,
M230020126A-AJCA

7https://odrldirectory.linkeddata.es/docs
8https://odrldirectory.linkeddata.es/api/policy/evaluate/5000
9https://aifacerecognition.linkeddata.es/
10https://doi.org/10.5281/zenodo.15106825

8

https://swagger.io/specification/
https://github.com/guia-project
https://odrldirectory.linkeddata.es/docs
https://odrldirectory.linkeddata.es/api/policy/evaluate/5000
https://aifacerecognition.linkeddata.es/
https://doi.org/10.5281/zenodo.15106825


Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

by Cimmino et al. [22], and the evaluation is performed using the current system time computed at
runtime.

When a user wants to access the document, such user must make a request to the ODRE-PDS service,
in particular, a request to the Enforcement API. Then, the ODRE-PDS directory tries to find the relevant
policy for such request based on the policy identifier; if no policy is found, the directory provides an
empty response. Otherwise, the system updates its representation of the state of the world extracting
potential URL parameters and formatting them accordingly. In this case, the current time is taken from
the system and no parameters are extracted nor provided by the URL.
The retrieved policy and the state of the world are then passed to the ODRE framework, which

evaluates the time constraint using its internal logic to process ODRL constraints. If the current time is
before the allowed limit, the condition is satisfied, and the ODRE framework proceeds to retrieve the
requested document from the storage layer (Document Store). The document is then returned to the
user, completing the access control flow. In case the condition is not satisfied, the system returns an
empty response with a denied access status.

This aforementioned workflow is illustrated by Figure 2, which depicts the sequence of interactions
between the user, the ODRE-PDS, and the document store. The diagram outlines the enforcement flow,
showing how policy retrieval, evaluation, and document retrieval are orchestrated.

Figure 2: Sequence diagram of the time-restricted access control process.

5.2. AI-Driven Access Control

This use case illustrates how ODRE-PDS protects the access to a specific document based on AI-driven
authentication mechanisms, such as facial recognition. This use case demonstrates how access to a
restricted document is granted only to users who have been authenticated via a pre-trained AI model.
By combining identity verification with policy enforcement, the system ensures that only authorised
individuals can retrieve and consume a specific document. The policy used in this use case and a

9



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

video showcasing it are publicly available in the Zenodo repository under the file named IA base access
policy.json.
An external system named the AI Service operates by performing facial recognition and linking

its outputs to ODRL policies. When a user wants to read a document in the AI Service, this system
captures and processes their facial features, generating a unique Universally Unique Identifier (UUID).
The service then makes a request to the Enforcement API providing the UUID as a parameter in the
URL. The ODRE-PDS receives the request and tries to determine whether a relevant policy exists or not.
In the case it exists, the ODRE-PDS enforces the policy using ODRE and passing the UUID provided in
the request as part of the state of the world. In the case the enforcement is positive, the ODRE-PDS
provides to the AI Service the protected document. Take into consideration that the policy definition
explicitly links permitted UUIDs with access conditions, ensuring that only pre-registered individuals
can retrieve the document.
Note that the AI Service performs continuous recognition and, therefore, the ODRE-PDS is contin-

uously enforcing the relevant policies. In the moment the AI Service stops providing a valid UUID
the ODRE-PDS stops providing the document. As a result, the AI service can no longer display the
document to the user. Note that revoking the document can only be achieved by stopping displaying
it and having mechanism in the AI service to prevent copying or leak anyhow the document. The
enforcement process of this use case follows the sequence diagram shown in Figure 3.

Figure 3: Sequence diagram of the AI-based access control process. 10)

The AI-driven access control provides several advantages over traditional access mechanisms. By
relying on facial recognition and ODRL policies, it eliminates the need for password-based authenti-
cation, reducing the potential security risks associated with credential leakage. However, it entails a

10



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

technological challenge since it requires continuous enforcing of the relevant policies.
As a final remark, this use case shows how the ODRE-PDS is an out of the box solution for many

complex scenarios. Since the policy enforcement logic is decoupled from the authentication mechanism,
organizations can integrate different AI-based verification services without modifying the enforcement
pipeline. This flexibility makes the ODRE-PDS well-suited for privacy-sensitive environments where
identity validation must be performed in compliance with strict regulatory standards.

6. Evaluation

This section presents the evaluation performed for the ODRE-PDS implementation, which focuses on
analysing its efficiency and scalability. The evaluation has been carried out by performing the following
experiments: (i) policy enforcement performance, (ii) system scalability under concurrent requests, and
(iii) overhead introduced by ODRE-PDS in comparison to the ODRE framework. All experiments were
performed using the deployed ODRE-PDS and the pyodre11 implementation of ODRE.

6.1. Policy Enforcement Performance

To evaluate the efficiency of the Enforcement API, multiple access requests were executed using three
policies. The first policy, taken from the ODRL standard12, encodes a restriction to access a resource
based on date and time, the second policy used is the one from the Time-Restricted Access Policies use
case, and the third policy is the one used in the AI-Driven Access Control use case; the second and third
policies can be found in the Zenodo repository.
In this experiment, for each policy, 30 requests were made and their response times were recorded.

Then, all these values were averaged using the arithmetic mean. Figure 4 shows the results of the
experiment. It can be seen that the response time increases proportionally depending on how the
directory and the enforcement component evaluate them. While date-based policies are processed
quickly, the rest introduce additional latency. In any case, the results show that ODRE-PDS is able to
fulfil the requests in less than a second for the three policies.

6.2. Scalability and Concurrency Analysis

To evaluate the scalability of the Enforcement API in this experiment, concurrent requests to such API
are simulated using 10, 50, and 100 parallel requests and recording their response time. These requests
enforce the policy containing the date-time constraint.
Figure 5 shows the results obtained in this experiment. It can be observed that the average latency

grows linearly with the number of concurrent requests. This behaviour, and the way it grows, indicates
that ODRE-PDS can be deployed in multi-user environments with increasing load, while maintaining
reasonable response times under stress.

6.3. Overhead Comparison with ODRE

To evaluate the overhead introduced by the REST-based infrastructure of ODRE-PDS, in this experiment,
the response times to enforce the same policy (with a simple date-time constraint) using the pyodre
engine and the Enforcement API of ODRE-PDS.
In this experiment, the policy was enforced 30 times using both API and pyodre and the time they

required to finish recorded. Then, all these values were averaged using the arithmetic mean. Figure 6
shows the results of this experiment. It can be observed that ODRE-PDS introduces additional latency
(0.0617 s on average versus 0.0335 s pyodre), the overhead remains acceptable for real-time scenarios.
Most of the added latency comes from request processing and serialisation overhead.

11https://github.com/ODRE-Framework/odre-python
12https://www.w3.org/TR/odrl-model#constraint-rule

11

https://github.com/ODRE-Framework/odre-python
https://www.w3.org/TR/odrl-model#constraint-rule


Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

Figure 4: Results of the Policy Enforcement Performance experiment.

Figure 5: Results of the Scalability and Concurrency Analysis experiment.

7. Conclusions

This article has presented the ODRE Policy Directory Service (ODRE-PDS), a novel Web-based ar-
chitecture designed to address current limitations of ODRL when adopted in practical scenarios or
decentralised initiatives. The ODRE-PDS provides three main features related to policies, namely:
management, discovery, and enforcement. Furthermore, the article presents an implementation of this

12



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

Figure 6: Results of the Overhead Comparison with ODRE experiment.

proposal coded in Python and publicly available.
Beyond providing operational implementation, ODRE-PDS moves ODRL a step closer to being fully

usable in real-world systems, extending its scope from policy specification to practical enforcement,
real-time evaluation, and service integration. In this sense, ODRE-PDS transforms ODRL from a purely
descriptive language into a functional framework capable of supporting decentralised, privacy-aware
ecosystems. Its modular and flexible design makes it easier to plug into real-world systems, helping
bridge the gap between what is written in policies and what is actually enforced.
In order to evaluate the ODRE-PDS implementation in terms of performance and scalability, the

article presents three experiments. The results advocate that the ODRE-PDS implementation is a
suitable out-of-the-box solution in real world scenarios. However, some limitations should be taken
into account, namely: the lack of trust mechanisms to verify the information provided by third-party
entities for policy enforcement, i.e., those provided via URL parameters. This limitation is especially
relevant in scenarios involving enforcement based on attributes provided by decentralised systems,
where malicious or unverified input may compromise the enforcement decision. In addition, the system
currently lacks built-in compliance logging mechanisms to support auditable traceability. Finally, The
current validation mechanisms and SPARQL interface could both be improved to align with more
characteristics of SPARQL 1.1. In the future, the authors aim to address the previous limitations. In
addition, the authors plan to explore the integration of ODRE-PDS into cross-domain infrastructures.

Acknowledgements

This work has been partially supported by: the Madrid Government (Comunidad de Madrid-Spain)
under the Multiannual Agreement 2023-2026 with UPM in Line A, Emerging PhD researchers through
the project GUIA (M230020126A-AJCA); the European Union’s Horizon 2020 Research and Innovation
Programme of the European Union through the AURORAL project (101016854); and the Next Generation
EU through the STICS project (09I02-03-V01).

13



Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

8. Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT, Grammarly in order to: Grammar
and spelling check, Paraphrase and reword. After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility for the publication’s content.

References

[1] I. D. S. Association, Technical Agreements, in: IDSA Rulebook, 2024. URL:
https://docs.internationaldataspaces.org/ids-knowledgebase/idsa-rulebook/idsa-rulebook/
4_technical_agreements.

[2] B. Esteves, H. J. Pandit, V. Rodríguez-Doncel, ODRL Profile for Expressing Consent through
Granular Access Control Policies in Solid, in: IEEE European Symposium on Security and Privacy
Workshops, EuroS&P 2021, Vienna, Austria, September 6-10, 2021, IEEE, 2021, pp. 298–306. URL:
https://doi.org/10.1109/EuroSPW54576.2021.00038.

[3] S. Steyskal, A. Polleres, Defining expressive access policies for linked data using the ODRL
ontology 2.0, in: H. Sack, A. Filipowska, J. Lehmann, S. Hellmann (Eds.), Proceedings of the 10th
International Conference on Semantic Systems, SEMANTiCS 2014, Leipzig, Germany, September
4-5, 2014, ACM, 2014, pp. 20–23. URL: https://doi.org/10.1145/2660517.2660530.

[4] Z. Maamar, A. Benna, H. Kechaoui, ODRL-Based Provisioning of Thing Artifacts for IoT Applica-
tions, in: H. Kaindl, M. Mannion, L. A. Maciaszek (Eds.), Proceedings of the 19th International Con-
ference on Evaluation of Novel Approaches to Software Engineering, ENASE 2024, Angers, France,
April 28-29, 2024, SCITEPRESS, 2024, pp. 168–178. URL: https://doi.org/10.5220/0012718600003687.

[5] R. Cimmino, Andrea and Cano-Benito, Juan and García Castro, The AURORAL Privacy Approach
for Smart Communities Based on ODRL, in: International Summit on the Global Internet of Things
and Edge Computing, Springer, 2024, pp. 89–100.

[6] D. Golpayegani, B. Esteves, H. J. Pandit, D. Lewis, AIUP: an ODRL Profile for Expressing AI
Use Policies to Support the EU AI Act, in: D. Garijo, A. L. Gentile, A. Kurteva, A. Mannocci,
F. Osborne, S. Vahdati (Eds.), Joint Proceedings of Posters, Demos, Workshops, and Tutorials
of the 20th International Conference on Semantic Systems co-located with 20th International
Conference on Semantic Systems (SEMANTiCS 2024), Amsterdam, The Netherlands, September
17-19, 2024, volume 3759 of CEURWorkshop Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.
org/Vol-3759/paper17.pdf.

[7] Monegraph, Renato Iannella and Villata, Serena, ODRL Information Model 2.2, in: W3C Recom-
mendation, 2018.

[8] O. Standard, eXtensible Access Control Markup Language (XACML) Version 3.0, A:(22 January
2013). URl: http://docs. oasis-open. org/xacml/3.0/xacml-3.0-core-spec-os-en. html (2013).

[9] R. Falcão, A. Hosseinzadeh, Towards a Decentralized Data Privacy Protocol for Self-Sovereignty
in the Digital World, in: J. Araújo, J. L. de la Vara, N. Condori-Fernández, J. Bruel, M. Y. Santos,
S. Assar, K. D. Moor, M. Gharib, T. Li, J. P. Barros, I. S. Brito, I. Machado, D. Karagiannis, T. P.
Sales, C. Salinesi (Eds.), Joint Proceedings of RCIS 2024 Workshops and Research Projects Track co-
located with the 18th International Conferecence on Research Challenges in Information Science
(RCIS 2024), Guimarães, Portugal, May 14-17, 2024, volume 3674 of CEUR Workshop Proceedings,
CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3674/ASPIRING-paper1.pdf.

[10] I. Akaichi, S. Kirrane, A comprehensive review of usage control frameworks, Comput. Sci. Rev. 56
(2025) 100698. URL: https://doi.org/10.1016/j.cosrev.2024.100698.

[11] J. Park, R. S. Sandhu, The UCONABC usage control model, ACM Trans. Inf. Syst. Secur. 7 (2004)
128–174. URL: https://doi.org/10.1145/984334.984339.

[12] M. Palmirani, G. Governatori, T. Athan, H. Boley, A. Paschke, A. Wyner, LegalRuleML Core Spec-
ification Version 1.0, 2021. URL: https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/

14

https://docs.internationaldataspaces.org/ids-knowledgebase/idsa-rulebook/idsa-rulebook/4_technical_agreements
https://docs.internationaldataspaces.org/ids-knowledgebase/idsa-rulebook/idsa-rulebook/4_technical_agreements
https://doi.org/10.1109/EuroSPW54576.2021.00038
https://doi.org/10.1145/2660517.2660530
https://doi.org/10.5220/0012718600003687
https://ceur-ws.org/Vol-3759/paper17.pdf
https://ceur-ws.org/Vol-3759/paper17.pdf
https://ceur-ws.org/Vol-3674/ASPIRING-paper1.pdf
https://doi.org/10.1016/j.cosrev.2024.100698
https://doi.org/10.1145/984334.984339
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html


Lucía Martín-Núñez et al. CEUR Workshop Proceedings 1–15

v1.0/os/legalruleml-core-spec-v1.0-os.html, latest stage: https://docs.oasis-open.org/legalruleml/
legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.html.

[13] A. Cimmino, J. Cano-Benito, R. García-Castro, Practical challenges of ODRL and potential courses
of action, in: Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, G. Houben (Eds.), Companion
Proceedings of the ACMWeb Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4
May 2023, ACM, 2023, pp. 1428–1431. URL: https://doi.org/10.1145/3543873.3587628.

[14] M. D. Vos, S. Kirrane, J. A. Padget, K. Satoh, ODRL Policy Modelling and Compliance Checking,
in: P. Fodor, M. Montali, D. Calvanese, D. Roman (Eds.), Rules and Reasoning - Third International
Joint Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings, volume
11784 of Lecture Notes in Computer Science, Springer, 2019, pp. 36–51. URL: https://doi.org/10.1007/
978-3-030-31095-0_3.

[15] A. Munoz-Arcentales, S. López-Pernas, A. Pozo, Álvaro Alonso, J. Salvachúa, G. Huecas, An
Architecture for Providing Data Usage and Access Control in Data Sharing Ecosystems, Procedia
Computer Science 160 (2019) 590–597. URL: https://www.sciencedirect.com/science/article/pii/
S1877050919317429, the 10th International Conference on Emerging Ubiquitous Systems and
Pervasive Networks (EUSPN-2019) / The 9th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare (ICTH-2019) / Affiliated
Workshops.

[16] A. Munoz-Arcentales, S. López-Pernas, A. Pozo, Á. Alonso, J. Salvachúa, G. Huecas, Data Usage
and Access Control in Industrial Data Spaces: Implementation Using FIWARE. Sustainability 12, 9
(2020), 38–85, 2020.

[17] F. Cirillo, B. Cheng, R. Porcellana, M. Russo, G. Solmaz, H. Sakamoto, S. P. Romano, IntentKeeper:
Intent-oriented Data Usage Control for Federated Data Analytics, in: 2020 IEEE 45th Conference
on Local Computer Networks (LCN), 2020, pp. 204–215. doi:10.1109/LCN48667.2020.9314823.

[18] S. Wiesner, ODRL-PAP: Policy Administration Point to handle ODRL policies, https://github.com/
wistefan/odrl-pap, 2021.

[19] A. O’Mahony, A. Barnett, M. Globin, Using automotive property graph-based data models in a
knowledge graph, 2021. URL: https://api.semanticscholar.org/CorpusID:250165724.

[20] I. Akaichi, W. Slabbinck, J. A. Rojas, C. V. Gheluwe, G. Bozzi, P. Colpaert, R. Verborgh, S. Kirrane,
Interoperable and Continuous Usage Control Enforcement in Dataspaces, in: J. Theissen-Lipp,
P. Colpaert, S. K. Sowe, E. Curry, S. Decker (Eds.), Proceedings of the Second International
Workshop on Semantics in Dataspaces (SDS 2024) co-located with the 21st Extended Semantic
Web Conference (ESWC 2024), Hersonissos, Greece, May 26, 2024, volume 3705 of CEUR Workshop
Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3705/paper10.pdf.

[21] W. Son, S. Kwon, S. Oh, J.-H. Lee, Automated Over-the-Top Service Copyright Distribution
Management System Using the Open Digital Rights Language, Electronics 13 (2024). URL: https:
//www.mdpi.com/2079-9292/13/2/336.

[22] Andrea Cimmino and Juan Cano-Benito and Raúl García-Castro, Open Digital Rights Enforcement
framework (ODRE): From descriptive to enforceable policies, Computers & Security 150 (2025)
104282. doi:https://doi.org/10.1016/j.cose.2024.104282.

[23] N. Fornara, V. Rodríguez-Doncel, B. Esteves, S. Steyskal, B. W. Smith, ODRL Formal Semantics,
Draft Community Group Report, 2025. URL: https://w3c.github.io/odrl/formal-semantics/.

[24] M. Sensoy, T. J. Norman, W. W. Vasconcelos, K. P. Sycara, OWL-POLAR: A framework for
semantic policy representation and reasoning, J. Web Semant. 12 (2012) 148–160. URL: https:
//doi.org/10.1016/j.websem.2011.11.005.

[25] M. D. Vos, S. Kirrane, J. A. Padget, K. Satoh, ODRL policy modelling and compliance checking, in:
P. Fodor, M. Montali, D. Calvanese, D. Roman (Eds.), Rules and Reasoning - Third International
Joint Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings, volume
11784 of Lecture Notes in Computer Science, Springer, 2019, pp. 36–51. URL: https://doi.org/10.1007/
978-3-030-31095-0_3.

15

https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.html
https://doi.org/10.1145/3543873.3587628
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-030-31095-0_3
https://www.sciencedirect.com/science/article/pii/S1877050919317429
https://www.sciencedirect.com/science/article/pii/S1877050919317429
http://dx.doi.org/10.1109/LCN48667.2020.9314823
https://github.com/wistefan/odrl-pap
https://github.com/wistefan/odrl-pap
https://api.semanticscholar.org/CorpusID:250165724
https://ceur-ws.org/Vol-3705/paper10.pdf
https://www.mdpi.com/2079-9292/13/2/336
https://www.mdpi.com/2079-9292/13/2/336
http://dx.doi.org/https://doi.org/10.1016/j.cose.2024.104282
https://w3c.github.io/odrl/formal-semantics/
https://doi.org/10.1016/j.websem.2011.11.005
https://doi.org/10.1016/j.websem.2011.11.005
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-030-31095-0_3

	1 Introduction
	2 State of the Art
	2.1 ODRL-Based Enforcement Frameworks
	2.2 Summary

	3 Proposed Approach
	4 Implementation
	5 Practical Use cases
	5.1 Time-Restricted Access Policies
	5.2 AI-Driven Access Control

	6 Evaluation
	6.1 Policy Enforcement Performance
	6.2 Scalability and Concurrency Analysis
	6.3 Overhead Comparison with ODRE

	7 Conclusions
	8 Declaration on Generative AI

