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Abstract
Temporal Knowledge Graph Completion (TKGC) uses the facts available in a TKG to make it less incomplete. State-
of-the-art Graph Neural Networks (GNNs) for TKGC are black boxes that provide results without explanations.
Existing explanation methods for static KGC are difficult to transfer to TKGC as they do not capture the temporal
properties and likely generate large explanation graphs.

As the chronological order of facts is relevant for TKGC, we infuse this characteristic into the explanation
subgraphs. In this work, we (i) propose a regulation method that incentivizes a chronological order in the
explanations and (ii) investigate the effect of the chronological regulation on the explanations of two state-of-the-
art TKGC models.

Our results show that in most scenarios, the chronological regulation can improve explanations of TKGCs.
For example, we observe an improvement of the fidelity characterization score by up to 2% and significant
improvements for small explanations.
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1. Introduction

A Temporal Knowledge Graph (TKG) captures knowledge about facts and their temporal dynamics in a
graph-structured form as a set of quadruples of (subject, relation, object, timestamp), like (Barack Obama,
Consult, Angela Merkel, 2014-05-01). Fig. 1a shows a visualization of a TKG.

TKGs are inherently incomplete due to various reasons. Temporal Knowledge Graph Comple-
tion (TKGC) attempts to complete a TKG by deriving missing information based on existing facts. A
typical TKGC query might be (Barack Obama, Criticize or denounce, ?, 2014-04-30). A TKGC model aims
to predict the missing subject or object by using the existing facts in the past, present, and future. The
missing information is visualized as the unknown node ? in Fig. 1a.

Various TKGC approaches have been developed recently [1, 2, 3] and Graph Neural Networks (GNNs)
are considered state-of-the-art. These GNN-based approaches often remain difficult or impossible for
humans to interpret. Explainable Artificial Intelligence (XAI) is a crucial aspect of ensuring the secure
and trustworthy integration of neural models [4], especially in critical infrastructures. Additionally,
explainability can help to develop more robust approaches by providing insights into model decision-
making processes, enabling the identification and mitigation of potential biases, errors, or vulnerabilities.

In this work, we focus on perturbation-based methods for explaining TKGC predictions, which
construct a subgraph of the input TKG by perturbing the input of the target model to identify the most
important input features for the model’s prediction. The subgraph then serves as an explanation for
a target model prediction. A possible explanation subgraph for our presented example about Barack
Obama is shown in Fig. 1b.
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Figure 1: (a) TKGC query (Barack Obama, Criticize or denounce, ?) with graph context that might be used by a
model, and (b) an explanation graph one could expect from an explainer model for the model’s prediction on this
query.

Most explanation methods only consider entities and relations and ignore the temporal information
or do not consider time-aware models in their evaluation. Since the temporal information of TKGs can
significantly influence the prediction of such a model, time should also be considered as part of the
explanation.

The goal of this work is to: i) establish a baseline for GNN-based TKGC explanations using non-
temporal GNN explainers; ii) propose a temporal regulation method that enables non-temporal explain-
ers to incorporate additional temporal information into their explanations. Inspired by the concept of
path-based explanations used for XAI of static KG approaches [5, 6], our regulation method encour-
ages a chronological order of the facts in the explanations; iii) investigate the effect of chronological
regulation on the explanations of two state-of-the-art TKGC models. We evaluate explanation quality
using common metrics and introduce a new metric better suited for graphs in the temporal setting than
existing metrics.

2. Foundations

2.1. Temporal Knowledge Graph Completion

A Knowledge Graph (KG) stores facts as triples (𝑠, 𝑟, 𝑜), where 𝑠 ∈ ℰ is called the subject, 𝑟 ∈ ℛ the
relation, and 𝑜 ∈ ℰ the object. ℰ and ℛ are finite sets of entity and relation identifiers, respectively.

A Temporal Knowledge Graph (TKG) is a KG extended by the temporal information about the facts.
Facts in a TKG are represented as quadruples (𝑠, 𝑟, 𝑜, 𝑡), with 𝑡 ∈ 𝒯 adding time information to the fact.
𝑡 is a specific point in time (e.g. 05-11-2014) from a finite set of timestamps 𝒯 .

Temporal Knowledge Graph Completion (TKGC) is about adding missing quadruples to a TKG.
TKGC models predict a missing entity of a given query 𝑞 = (𝑠𝑞, 𝑟𝑞, ?, 𝑡𝑞) or 𝑞 = (?, 𝑟𝑞, 𝑡𝑞, 𝑡𝑞), where
𝑠𝑞, 𝑡𝑞, ? ∈ ℰ , 𝑟𝑞 ∈ ℛ, and 𝑡𝑞 ∈ 𝒯 .

2.2. Graph Neural Networks for TKGC

Graph Neural Networks (GNNs) are a type of neural network designed to process graphs as input.
The core concept of a GNN is message-passing, first introduced by Gilmer et al. [7], which enables
the GNN to learn node embeddings that capture its features but also include information from the
neighborhood.

Given a node 𝑖, with its features x𝑖 and its incoming neighborhood 𝒩𝑖, message passing computes
updated node features x̂𝑖 as

x̂𝑖 = 𝜑

(︂
x𝑖, ⊕

𝑗∈𝒩𝑖

𝜓(x𝑖,x𝑗)

)︂
, (1)



where message function 𝜓 and update function 𝜑 are trainable functions and ⊕ denotes a nonparametric
operation such as sum, mean, or maximum [8].

In a GNN, this message passing scheme is typically repeated layerwise and can include edge features
e𝑗𝑖 for each edge connecting node 𝑗 and 𝑖. Two commonly used GNNs are the Graph Attention Networks
(GATs) and the Graph Convolution Networks (GCNs).

2.3. GNN Explainability

We focus on post-hoc explanations, which are generated for a target model ℳ. We utilize a perturbation-
based method that modifies the model’s input by masking to identify minimal subgraphs that explain
the model’s prediction.

One of the initial and well-known perturbation-based GNN explainer models for non-temporal KGs is
the GNNExplainer [9]. This model is designed to identify the subgraph and node features most relevant
to a GNN’s prediction, by applying a learnable mask 𝑀 ∈ [0, 1]|ℰ|×|ℛ|×|ℰ| to the graph’s adjacency
matrix 𝐴𝑐, to minimize the following cross-entropy objective:

min
𝑀

−
𝐶∑︁
𝑐=1

1[𝑦 = 𝑐] log𝑃ℳ(𝑌 = 𝑦|𝐺 = 𝐴𝑐 ⊙ 𝜎(𝑀)). (2)

Here, 1[𝑦 = 𝑐] is the indicator function for the target class 𝑦, 𝑃ℳ is the probability of target model ℳ
predicting 𝑦, and 𝜎(𝑀) maps the mask to a continuous range [0, 1]. The framework learns the mask 𝑀
to minimize the conditional entropy of the predictions when restricted to the masked subgraph. Sparse
explanations are encouraged through regularization terms, and additional thresholds can be applied to
refine the resulting subgraph, retaining only the most important edges and nodes.

3. Related Work

XAI aims to help humans understand the predictions of neural networks and other AI models, which
are normally considered black boxes. Given a target model ℳ, the goal of XAI is to provide a human-
understandable textual or visual explanation of ℳ’s predictions.

Perturbation-based instance-level explanation methods investigate the behavior of the target model’s
predictions on varying inputs to identify a subgraph relevant to the prediction, which then serves as an
explanation.

A perturbation-based instance-level explanation should reflect the model’s prediction, i. e., the
explanation graph should only contain information important for the prediction. Similarly, the result
should change if crucial information is removed from the input. At the same time, an explanation
should be sufficiently sparse to be interpretable by a human [10].

The GNNExplainer proposed by Ying et al. [9] is one of the most well-known and initial approaches
in explainability for GNNs.

Recently, path-based explanations for KGC have gained attention [5, 6]. Instead of subgraphs, they
generate a set of paths connecting the query entities, naturally capturing their connections. Such
explanations are expected to be better interpretable and more user-friendly.

While TKGC and XAI are well-researched subjects, there is still little literature on using XAI in
TKGC.

Some works combine TKGC and TKGC Explainability in a single model, also known as self-interpretable
models. Examples of self-interpretable models are xERTE [11] and T-GAP [2], which both construct a
subgraph using attention propagation during inference that can also serve as an explanation graph.
However, in this work, we are interested in model-agnostic explainers, i. e., explainers that can be used
for different target models ℳ without large modifications.

The perturbation-based explainer Temporal Motifs Explainer (TempME) proposed by Chen et al. [12]
identifies the most important recurring temporal patterns of connections in a TKG.
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Figure 2: Example of a simple chronological path for the fact (query and model prediction) that Willy visits
the doctor at 𝑡 = 2024-12-28. Before this, Charlie met Willy, who visited the doctor one day before Charly. This
could indicate that Willy was ill and infected Charly.

He et al. [13] extend an existing explainer to the temporal setting. First, the TKG is divided into
several non-temporal KGs, i. e., a sequence of KGs. Second, a non-temporal explainer is then used
to explain the instance on each static snapshot. Finally, a time-aware explanation is constructed by
combining the most dominant static explanations.

The existing TKGC explainers fail to incorporate the temporal aspect sufficiently, address the unique
challenges posed by the TKG graph characteristics, or tailor explanations to meet user requirements for
time-based interpretations.

4. Method

GNN approaches for TKGC learn how information evolves over time to predict new facts. Since the
temporal order of facts conveys information, models process the graph in chronological order rather than
random order to leverage the causal relationships and temporal dependencies [14, 15]. In consequence,
this should be captured in explanations, too. E. g., if we want to explain why a person visits a doctor, it
can be interesting to know what happened the days before or after. This can build up a temporal chain
of facts, see Fig. 2.

Inspired by how path-based explanations incorporate connections between query entities in the
explanations [5, 6], we propose chronological paths to infuse temporal properties into the explanation
of non-temporal explainers. We propose a chronological regulation that favours the temporal chain of
facts. To reinforce the effect, relations not being on such a path might be penalized.

4.1. Chronological Path

A chronological path is a path in a graph with chronologically ascending or descending timestamps
along its edges. For any two consecutive edges on a chronologically ascending path, the timestamp of
the second edge is greater than or equal to the timestamp of the first edge. Chronological descending is
defined analogously. Given a TKG𝐺 and the target models predicted entity 𝑜′ for query 𝑞 = (𝑠𝑞, 𝑟𝑞, ?, 𝑡𝑞)
with entity 𝑠𝑞 , relation 𝑟𝑞 and timestamp 𝑡𝑞 , we denote 𝑝(𝑠𝑞 ,𝑜′) as a chronological path from 𝑠𝑞 to 𝑜′.
The set of all chronological paths between 𝑠𝑞 and 𝑜′ is defined as

𝑃(𝑠𝑞 ,𝑜′) = {𝑝(𝑘)(𝑠𝑞 ,𝑜′)
| 𝑘 ≤ 𝐾max}, (3)

where 𝐾max is the maximal length of the chronological paths.
We set 𝐾max = 3 for all experiments as longer paths may be less relevant, and most TKG models

only consider a maximum of 3 hops around a query.

4.2. Chronological Regulation

Chronological regulation rewards edges on chronological paths between the query’s subject 𝑠𝑞 and the
target model’s predicted object 𝑜′ and might penalize edges that are not. We propose two methods to
implement chronological regulation.



Loss Regulation Given all chronological paths 𝑃(𝑠𝑞 ,𝑜′) from 𝑠𝑞 to the target model’s prediction 𝑜′,
chronological regulation can be applied to the edge mask 𝜎(𝑀) by defining a regulation loss that
measures the distance between 𝜎(𝑀) and the optimal edge mask regarding the chronological paths
𝑦
(loss_reg)
𝑛 ∈ [0, 1]. For each incoming edge 𝑖 in 𝑠𝑞 that connects the nodes 𝑠𝑞 and 𝑒𝑖 ∈ 𝒩𝑠𝑞 with the

relation 𝑟𝑖 at time 𝑡𝑖, we define the optimal edge mask regarding the chronological paths as

𝑦
(loss_reg)
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1− 𝛽 · log𝑒 (|𝑝|min)

log𝑒 (𝐾max)
, if (𝑠𝑞, 𝑟𝑖, 𝑒𝑖, 𝑡𝑖) ∈ 𝑝 ∈ 𝑃(𝑠𝑞 ,𝑜′),

0, otherwise

(4)

where 𝛽 ∈ [0, 1] is a hyperparameter that determines the logarithmic value decrease for edges on
chronological paths that exceed a length of 1 and |𝑝|min is the length of the shortest chronological path
between 𝑠𝑞 and 𝑜′. If 𝛽 = 0, 𝑦(loss_reg)

𝑖 is equal to 1 regardless of the length of the chronological path. If
𝛽 = 1, the decrease is maximum and 𝑦(loss_reg)

𝑖 is 0 for paths of length 𝐾𝑚𝑎𝑥. Note that we only reward
edges in the direct neighborhood of 𝑠𝑞 , if they lie on a chronological path. We expect that we can guide
the explanation in the direction of the chronological paths, and not regulate them individually.
Now we can define a loss ℓreg(𝜎(𝑀), 𝑦(loss_reg)) between 𝜎(𝑀) and 𝑦(loss_reg) which we can add to the
explainer loss. We choose the mean absolute error.

ℓreg(𝜎(𝑀), 𝑦(loss_reg)) = mean({𝑙1, ..., 𝑙𝑁}), 𝑙𝑛 = 𝛾 · |𝜎(𝑀)𝑛 − 𝑦(loss_reg)
𝑛 | (5)

We use a hyperparameter 𝛾, to scale the strength of the regulation.

Gradient Regulation The second regulation method directly applies the regulation to the gradients.
The chronological paths are used to create a function 𝑦(grad_reg)

𝑖 that rewards or penalizes the gradients
of the mask. This function is similar to the one used in Eq. 4, but with hyperparameter 𝛼 scaling the
maximum reward and penalty.

𝑦
(grad_reg)
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝛼

(︂
1− 𝛽 · log𝑒 (|𝑝|min)

log𝑒 (𝐾max)

)︂
, if (𝑠𝑞, 𝑟𝑖, 𝑒𝑖, 𝑡𝑖) ∈ 𝑝 ∈ 𝑃(𝑠𝑞 ,𝑜′),

−𝛼, otherwise

(6)

Let Θ𝑒 be the edge mask parameters and ∇ℓ(Θ𝑒) the computed gradients. To regulate the edge mask,
before doing gradient descent, the computed gradient is subtracted by 𝑦(grad_reg). This regulation
increases the gradient for edges on a chronological path and decreases it otherwise.

∇ℓ(Θ𝑒) = ∇ℓ(Θ𝑒)− 𝑦(grad_reg) (7)

Note that we do not need a scaling parameter 𝛾 as in the previous method since we can scale 𝑦(grad_reg)

directly with 𝛼.

5. Experiments

5.1. Datasets & Target Models

Commonly used real-world benchmark datasets for TKGC are subsets of ICEWS1 and WIKIDATA [16].
We utilize ICEWS14 and WIKIDATA11K [17].

ICEWS14 contains socio-political events. The entities are, for example, countries, institutions, or
persons; the relations are predicates like Consult or Make statement, and the timestamps are the dates
on which the event occurred [17].
1https://www.lockheedmartin.com/en-us/capabilities/research-labs/advanced-technology-labs/icews.html (last visit september
30, 2024)



WIKIDATA11K contains entities such as historical figures, places, and artifacts, connected by relations
like Was born in or Founded. The characteristics of both datasets can be found in App. A Tab. 2.

In this work, we use two state-of-the-art TKGC models for predictions. TARGCN [1] aggregates a subset
of the temporal neighborhood with a single GCN layer to compute the time-dependent representation
of an entity. T-GAP [2] utilizes multiple GNN layers and attention-based subgraph sampling to account
for distant nodes, which increases the representativeness of predictions due to increased information
flow. A detailed description of both target models can be found in appendix C. We then explain these
target models using the GNNExplainer.

5.2. Metrics for Graph Neural Network Explainers

Following [18], we evaluate our explanations using Fidelity, charact, and Sparsity, as well as with our
proposed SparseFid, which combines fidelity and sparsity.

Fidelity [19] measures the faithfulness of an explanation to the target model. This means the model’s
prediction should change if important entities or relations are removed from the explanation graph (fid+).
However, if unimportant entities or relations are removed, the prediction should remain the same (fid−).

𝑓𝑖𝑑+ = 1− 1

|𝑄|
∑︁
𝑞∈𝑄

1(𝑦
𝐺𝐶∖𝑆
𝑞 = 𝑦𝑞), 𝑓𝑖𝑑− = 1− 1

|𝑄|
∑︁
𝑞∈𝑄

1(𝑦𝐺𝑆
𝑞 = 𝑦𝑞) (8)

If fid− is close to 0, the provided explanation is sufficient, and if fid+ is close to 1, the explanation is
necessary. An explanation should be sufficient and necessary. A metric to combine fid+ and fid− is the
charact score [19].

𝑐ℎ𝑎𝑟𝑎𝑐𝑡 =
𝑤+ + 𝑤−

𝑤+

fid+
+ 𝑤−

1−fid−

, with 𝑤+ + 𝑤− = 1 (9)

We give equal weight to fid+ and fid−.
Sparsity is also an important property of explanation graphs to provide human-understandable

explanations as TKGs often have a high avg. node degree and high information density due to the
additional temporal information compared to static KGs. We define the sparsity of an explanation
subgraph 𝐺𝑆𝑖 as

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
1

𝑁

𝑁∑︁
𝑖=0

(︂
1− 𝑙𝑜𝑔(|𝐺𝑆𝑖

|+ 1)

𝑙𝑜𝑔(|𝐺𝐶𝑖
|+ 1)

)︂
, (10)

where |𝐺𝑆𝑖 | denotes the number of edges in the explanation subgraph and |𝐺𝐶𝑖 | the number of edges
in the computation graph. Note that we are taking the 𝑙𝑜𝑔 of the number of edges because we want to
focus on explanations that are as small as possible. Reducing an already small explanation has a greater
effect on the sparsity than reducing a large explanation.

Sparse-Fidelity Finally, we propose a new combined metric based on the charact score and sparsity.
As with the charact score, we calculate the harmonic mean between charact and sparsity.

𝑆𝑝𝑎𝑟𝑠𝑒𝐹 𝑖𝑑 =
𝑤𝑐 + 𝑤𝑠

𝑤𝑐

charact +
𝑤𝑠

sparsity
, with 𝑤𝑐 + 𝑤𝑠 = 1 (11)

With 𝑤𝑐 = 𝑤𝑠 = 0.5 we give equal weight to charact and sparsity.

5.3. Baseline

We use the GNNExplainer without temporal edge mask regularization as the baseline to compare the
proposed temporal regulation methods. Although the GNNExplainer was originally developed for
static KGs only, it can be adapted to the temporal setting by extending the edge mask to the temporal



Table 1
Results of the GNNExplainer without and with regulation.

ICEWS14 WIKIDATA11K

Model Mask Type fid
+

fid
−

ch
ar
ac
t

sp
ar
sit
y

Sp
ar
seF
id

Th
res
ho
ld

fid
+

fid
−

ch
ar
ac
t

sp
ar
sit
y

Sp
ar
seF
id

Th
res
ho
ld

threshold 100

TARGCN
No Regulation 0.7987 0.0006 0.8878 0.6615 0.7582 100 0.8798 0.0003 0.9359 0.7335 0.8224 100
Loss-Regulation 0.8311 0.0004 0.9076 0.6615 0.7653 100 0.8974 0.0004 0.9458 0.7335 0.8262 100
Gradient-Regulation 0.8286 0.0010 0.9058 0.6615 0.7647 100 0.8808 0.0004 0.9364 0.7335 0.8226 100

T-GAP
No Regulation 0.7282 0.0393 0.8285 0.6122 0.7041 100 0.7285 0.0366 0.8297 0.6283 0.7151 100
Loss-Regulation 0.7283 0.0391 0.8286 0.6122 0.7042 100 0.7285 0.0366 0.8296 0.6283 0.7150 100
Gradient-Regulation 0.7334 0.0369 0.8327 0.6122 0.7056 100 0.7311 0.0328 0.8327 0.6283 0.7162 100

optimal threshold (according to SparseFid)

TARGCN
No Regulation 0.7989 0.0235 0.8788 0.7140 0.7879 40 0.8832 0.0261 0.9263 0.7530 0.8307 30
Loss-Regulation 0.8073 0.0117 0.8887 0.7004 0.7834 50 0.8966 0.0635 0.9161 0.7697 0.8365 20
Gradient-Regulation 0.8091 0.0157 0.8881 0.7004 0.7832 50 0.8774 0.0570 0.9090 0.7697 0.8335 20

T-GAP
No Regulation 0.7154 0.0438 0.8184 0.6210 0.7062 90 0.7077 0.0703 0.8037 0.6566 0.7227 70
Loss-Regulation 0.7152 0.0437 0.8183 0.6210 0.7061 90 0.7077 0.0703 0.8036 0.6566 0.7227 70
Gradient-Regulation 0.7014 0.0456 0.8086 0.6308 0.7087 80 0.6865 0.1072 0.7762 0.6831 0.7267 50

adjacency matrix. The use of this inflated mask 𝑀 ∈ [0, 1]|ℰ|×|ℛ|×|ℰ|×|𝒯 | allows the GNNExplainer to
indirectly model the temporal information with the edge mask since each relation between two entities
can be considered independently at all possible times. This is indirect because the timestamp is not
masked independently of the edge type, and the temporal information might also be utilized in other
model components not affected by the edge mask. A description of how the edge mask can be applied
to the target models TARGCN and T-GAP can be found in App. C.

6. Results

This chapter provides the evaluation results of the GNNExplainer w. and w/o. temporal regulation
on TKGC. We apply the GNNExplainer to the two target models TARGCN and T-GAP. Details about
the hyperparameter-tuning can be found in App. B. Tab. 1 shows an overview of the results using the
edge mask and the proposed edge mask regulation methods loss and gradient regulation. We report all
metrics with a threshold of 100 edges for each mask.2

We observe that the explanations for the predictions of the target model TARGCN achieve notably
better scores compared to those for T-GAP. Using the target model TARGCN, the proposed regulation
methods can outperform the edge mask, with loss regulation providing the best results. In contrast, the
best results for the target model T-GAP are obtained with gradient regulation, while loss regulation
cannot improve upon the baseline. Since the sparsity of the explanations remains constant at a fixed
threshold for the edge mask, we observe the same values with and without regulation.

Case Study: Impact of Chronological Regulation on Edge Mask Evolution: We investigate the
evolution of masks on one randomly selected ICEWS14 quadruple to see how the regulation methods
influence edge mask learning.

The mask history using TARGCN as the target model can be seen in Fig. 3. We highlighted two edges
for better visualization: one on a chronological path (black) and one that is not (red). When using loss
regulation, an initial increase in the mask value can be observed for the edge not on a chronological path,
followed by a steep decrease after about 60 epochs. The explainer seems to have found a minimum for
the loss after a few epochs. An instant decrease of the edge mask for edges not lying on a chronological
path can be observed using the gradient regulation. Since this method does not minimize a loss, the
influence of the regulation is immediately apparent, which generally seems to lead to a more precise
separation of important and unimportant edges. Please note that this behavior does not apply to all

2The source code and target model checkpoints for our experiments are publicly available at
https://anonymous.4open.science/r/ExplainableTKGC-1908/

https://anonymous.4open.science/r/ExplainableTKGC-1908/
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Figure 3: Comparison of the edge mask evolution with TARGCN as target model with and without regulation
for a random sample from ICEWS14.
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Figure 4: Performance of edge mask with and without regulation of TARGCN on ICEWS14 at different thresholds.
The dotted lines show the edge mask performance without regulation. The vertical blue line shows the threshold
that optimizes SparseFid.

edges on a non-chronological path. If we look at the same sample with the target model T-GAP, which
can be found in App. D Fig. 5, we see that using the threshold has already removed all edges that the
explainer considers unimportant. It can be seen that, compared to the target model TARGCN, the
loss regulation seems not to influence the edge weights. For the gradient regulation, some edges are
influenced.

Edge Masks Across Different Thresholds: The previous results show explanations with an edge
mask threshold of 100. However, since we are not only interested in the fidelity of the explanation but
also in achieving a high degree of sparsity, we have also evaluated low thresholds for the masks. The
lower part of Tab. 1 reports the results of the GNNExplainer for both target models using the edge mask
with and without the two regulations with the best threshold regarding the SparseFid score. We observe
that the best threshold for all methods is below 100. For the target model TARGCN on the ICEWS14
dataset, the edge mask can achieve the highest SparseFid score. On the WIKIDATA11K dataset, loss
regulation is still the best method. Gradient regulation also remains the best method for the target
model T-GAP.

In the following, we look at the results for the target models i) TARGCN and ii) T-GAP in detail.

i) TARGCN The comparison of loss and gradient regulation to the baseline on the ICEWS14 dataset
in Fig. 4 shows a similar trend of the scores depending on the threshold. However, the baseline can
provide better results for lower thresholds. This is also indicated by the smaller optimal threshold of
the baseline compared to the regulation methods. Loss and gradient regulation can only improve the
baseline with thresholds of 50 or higher. Gradient regulation, in particular, struggles with high fidelity
for very small thresholds.



The results on the WIKIDATA11K dataset show a significant improvement of the baseline for small
thresholds using loss and gradient regulation, as can be observed in Fig. 6a in the appendix. This results
in the optimal threshold being improved from 30 to 20 for both regulation methods. The charact score
of the loss regulation is superior to the baseline for every threshold. Thus, the charact score of the
loss regulation at a threshold of 30 is already above the baseline score with the maximum threshold of
100. Gradient regulation, on the other hand, can outperform the baseline for small thresholds. Above a
threshold of 40, the improvements are minimal.

ii) T-GAP Since the results of the GNNExplainer for the target model T-GAP using the loss regulation
for different thresholds show no difference to the baseline performance, we only report the results of
the edge and node mask and the gradient regulation.

We report the results of T-GAP in the appendix in Fig. 6. In comparison to the baseline, the gradient
regulation can only achieve very small improvements for a threshold of 100 on ICEWS14, as can be
seen in Tab. 1. However, if we look at smaller explanations in Fig. 6b, we see an improvement in the
charact score when using the gradient regulation. For a threshold of 30 to 60, a noticeable improvement
can be observed compared to the baseline. The optimal threshold can be decreased to 80 using gradient
regulation.

A very similar behavior can be found in the results on the WIKIDATA11K dataset in Fig. 6c. The
optimal threshold for the edge mask without regulation is 70 but can be reduced to 50 using gradient
regulation.

7. Discussion

Our results show improvements through temporal regulation for all models on all datasets in most
scenarios. Often, we observe improvements through both regulation methods, or at least through one
of them.

With an edge mask threshold of 100, the GNNExplainer can obtain the best charact score through loss
regulation for TARGCN and gradient regulation for T-GAP. While the GNNExplainer for TARGCN can
achieve an improvement with the gradient regulation compared to the edge mask without regulation,
the loss regulation for T-GAP had no noticeable influence on the quality of the explanations according
to the metrics used.

The explainer uses a significantly smaller edge mask for TARGCN than for T-GAP, which may be
easier to optimize. This is because message passing is only performed for a sampled temporal 1-hop
neighborhood of the subject node in this model. Since TARGCN limits this neighborhood to a maximum
of 100 edges, the edge mask includes, at most, 100 parameters to optimize. In contrast, with T-GAP,
message passing is performed for each edge in the graph, which means that the number of parameters
in the edge mask is significantly larger than with TARGCN. This might cause the loss regulation to
have only a small impact on explanations of T-GAP’s predictions.

We can observe that the explanation quality seems to depend highly on the target model to be
explained. Tab. 1 shows that TARGCN explanations are considerably better than explanations for
T-GAP. This might be caused by i) the larger neighborhood context of T-GAP and the resulting complex
inference of T-GAP compared to TARGCN ; ii) a difference in the TKGC prediction quality as TARGCN
performs better than T-GAP on both datasets,3 which makes explanations more difficult.

Furthermore, the optimal size of the edge mask seems to depend heavily on the underlying dataset
and target model. The explainer consistently achieves a smaller optimal explanation threshold for
TARGCN than for T-GAP. One reason could be that T-GAP considers the 3-hop neighborhood around
the query node for its prediction, while TARGCN only considers the direct neighborhood. Therefore,
T-GAP generally requires more edges to provide a reliable prediction than TARGCN. This is further

3With the original source code, we reproduced the original experiments and achieved TKGC scores close the ones publications
with the models. TARGCN: 0.606 MRR on ICEWS14, 0.715 MRR on WIKIDATA11K; T-GAP: 0.56 MRR on ICEWS14, 0.663
MRR on WIKIDATA11K.



supported by the observation of the charact score curve in relation to the threshold shown in Fig. 4 and
Fig. 6b in the appendix.

We evaluated the models following common methods and standards in XKGC and introduced a new
metric to better reflect the explanations’ size. A human evaluation to verify a model’s capabilities in real-
world scenarios is not common in XKGC tue to open challenges, especially with TKGs, as i) the standard
KGC benchmark datasets require human experts in the respective domains, ii) no commonly accepted
dataset for X(T)KGC exists, iii) existing state-of-the-art TKGC models require large subgraphs to make
TKGC predictions. Even though our chronological regulation can reduce the size of explanations, a
human evaluation still poses significant challenges and would be an interesting topic for future work.

8. Conclustion

In this work, we address the explainability of GNN-based TKGC models. We implement a baseline for
GNN-based TKGC explanations using non-temporal GNN explainers and report the explanation quality
according to established metrics. Furthermore, we proposed a regulation method that incentivizes a
chronological order in the explanations to improve explanations over TKCs. We see this in improved
explainability scores in most scenarios across models and datasets, e. g., with fidelity characterization
scores increased by up to 2% compared to the baselines. We observe that the regulation methods can
reduce the size of the explanation graph while maintaining the same explanation quality according to
explainability metrics in most scenarios.
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A. Dataset Statistics

Tab. 2 shows the dataset characteristics of the datasets used in our experiments.

Table 2
Training set graph characteristics of ICEWS14 and WIKIDATA11K.

Stats ICEWS14 WIKIDATA11K

Number of Nodes 7,128 11,153
Number of Edges 90,730 150,079
Number of Relations 230 181
Number of Timestamps 365 328
Graph Density 1 1.79 1.21
Maximum Node Degree 6,083 586
Average Node Degree 25.46 26.91
Longest of All Shortest Paths 11 7
Shortest of All Shortest Paths 1 1
Average Shortest Path Length 4.11 1.20

1 density multiplied by 1000

B. Hyper-parameter Search

The proposed chronological regulation methods add new hyperparameters to the GNNExplainer.
For all other parameters added for the chronological regulation, we use grid-search hyperparameter

tuning with the parameters reported in Tab. 3 on 1000 samples for TARGCN and 500 for T-GAP. Note that
it is also possible to optimize the hyperparameters for each sample individually since the GNNExplainer
has to be trained separately for each sample by default. The best hyperparameters are determined by
the charact score. However, as this can be artificially inflated with a very large explanation, we limit
the explanation size to 100 edges. Except for the number of training epochs (200 for TARGCN and 100
for T-GAP), we do not change any default hyperparameters of the GNNExplainer.

C. TKGC Models

Time-aware Relational Graph Convolutional Network (TARGCN) [1] is based on a single
GCN layer to aggregate graph neighborhood information. For every query 𝑞 = (𝑠𝑞, 𝑟𝑞, ?, 𝑡𝑞), the model
samples the temporal neighborhood �̄� (𝑠𝑞, 𝑡𝑞) ⊆ 𝒩 (𝑠𝑞, 𝑡𝑞) of the query node 𝑠𝑞 at time 𝑡𝑞 . Then, a
GCN layer is used to aggregate information of �̄� (𝑠𝑞, 𝑡𝑞) to encode the time-aware representation of
entity 𝑠𝑞 at time 𝑡𝑞 , by combining time-invariant representations of relation 𝑟, entity 𝑒 and implicit
time difference information from the subset of all temporal neighbors.

h(𝑠𝑞 ,𝑡𝑞) =
1

|�̄� (𝑠𝑞 ,𝑡𝑞)|
∑︁

(𝑒,𝑡)∈�̄� (𝑠𝑞,𝑡𝑞)

W(h(𝑒,𝑡)||h𝑟), (12)

where h𝑟 denotes the time-invariant embedding of relation 𝑟 and h(𝑒,𝑡) the time-aware entity embedding
h(𝑒,𝑡) for (𝑒, 𝑡) ∈ �̄� (𝑠𝑞 ,𝑡𝑞).

For each possible candidate object 𝑜′, a simplified time-aware representation is compared to 𝑠𝑞 using
DistMult decoding [20].

To apply the edge mask to TARGCN, we need to adjust Eq. 12 as follows:

h(𝑠𝑞 ,𝑡𝑞) =
1

|�̄� (𝑠𝑞 ,𝑡𝑞)|
∑︁

(𝑒,𝑡)∈�̄� (𝑠𝑞,𝑡𝑞)

W((h(𝑒,𝑡)||h𝑟)⊙ 𝜎(𝑀)(𝑒,𝑡)), (13)



where 𝜎(𝑀)(𝑒,𝑡) is the sigmoid applied edge mask parameter for the edge connecting 𝑒 with 𝑠𝑞 at time
𝑡. 𝑀 masks a feature that is based on the time-aware entity embedding and the time-invariable relation
embedding 𝑟.

Temporal GNN with Attention Propagation (T-GAP) [2], another state-of-the-art TKGC model,
considers distant nodes for encoding through multiple GNN layers. This allows the model to capture a
richer context and potentially increase representativeness due to the increased information flow. T-GAP
iteratively samples a subgraph based on node and edge attention values. Starting from a single node,
each iteration adds nodes and edges based on their attention values to the subgraph. To complete
the query, the node within the subgraph with the highest attention is predicted. T-GAP performs
message-passing initially for each edge of the graph, as well as for all edges of the sampled subgraph in
each iteration. While the weights vary across different layers and may also depend on the timestamp,
the following message-passing scheme can always be found:

m𝑖𝑗 = W(h𝑖 + p𝑖𝑗 + 𝜏|Δ𝑡𝑖𝑗 |), (14)

where h𝑖 denotes the node features, p𝑖𝑗 the relation embedding, and 𝜏|Δ𝑡𝑖𝑗 | a temporal displacement
embedding.

The implementation of the edge mask in T-GAP is similar to TARGCN. The message passing from
Eq. 14 is modified as follows:

m𝑖𝑗 = W
(︁
(h𝑖 + p𝑖𝑗 + 𝜏|Δ𝑡𝑖𝑗 |)⊙ 𝜎(𝑀)𝑖𝑗

)︁
, (15)

where the edge mask 𝑀 is multiplied with each of the messages between node 𝑖 and node 𝑗.

D. Further results

Fig. 6 shows the performance of the explainer with and without regulation at different thresholds.

0 50 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 M
as

k

No Regulation

0 50 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 M
as

k

Loss-Regulation

0 50 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 M
as

k

Gradient-Regulation
on chr. path not on chr. path

Figure 5: Comparison of the edge mask history of the GNNExplainer with T-GAP as target model with and
without regulation for a random sample from ICEWS14.

E. Computing Resource

We ran the experiments on our GPU cluster with Nvidia A40 GPUs (older GPUs with less VRAM,
e. g., Nvidia Tesla cards, are sufficient, too). For both target model training and the hyperparameter
tuning, we used approx. 450h GPU hours. Note that our approach does not substantially increase
the computation time of the existing GNNExplainer. We evaluated our approaches on existing TKGC
datasets for comparability. These datasets were not developed for XAI and, therefore, contain large test
sets that cause the runtime of our experiments. Furthermore, the large computation times are related to
the target model T-GAP and are thus independent of our proposed approach.
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Figure 6: Scores achieved with and without regulation at different thresholds. The dotted lines show the edge
mask performance without regulation. The vertical blue line shows the threshold that optimizes SparseFid.

Table 3
GNNExplainer hyperparameter search space for target models TARGCN and T-GAP.

Hyperparameter Search Space Best Result

TARGCN T-GAP
ICEWS14 WIKIDATA11K ICEWS14 WIKIDATA11K

alpha1(𝛼) {0.05, 0.1, 0.2, 0.4, 0.8} 0.8 0.4 0.05 0.8
beta1(𝛽) {0.0, 0.33, 0.66, 1.0} 0.0 0.66 1.0 1.0

gamma2(𝛾) {0.05, 0.1, 0.2, 0.4, 0.8} 0.8 0.2 (0.8) (0.8)
beta2(𝛽) {0.0, 0.33, 0.66, 1.0} 0.33 0.0 (0.0) (0.0)

epochs 200 100
samples 1000 500

1 gradient-regulation only
2 loss-regulation only
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