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Abstract
Knowledge Graphs (KGs) have improved structured knowledge representation by encoding real-world entities and
their relationships, enabling multi-hop reasoning for answering complex queries. However, state-of-the-art deep
learning models applied to KGs lack interpretability, creating a challenge in understanding their decision-making
processes. This paper presents an idea to integrate Explainable AI (XAI) techniques with knowledge graph
embeddings to enhance transparency in link prediction models. We employ SHAP (SHapley Additive exPlanations),
a game-theoretic approach, to quantify the influence of individual entities in predictions. Furthermore, we
introduce an explanation-driven training framework that aligns model predictions with the underlying KG
structure. By incorporating an explainability-aware loss function, our approach may provide high-quality link
predictions and human-understandable explanations. This research contributes to developing more transparent
AI systems, fostering trust in real-world applications where interpretability is crucial.
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1. Introduction

Natural Language Processing (NLP) is a sub-domain of Artificial Intelligence that deals with encoding
world knowledge that is often expressed in Natural Languages like English, French, Hindi, etc., into a
vector representation that can be processed by the models. Adequate representation is essential to enable
the model to respond appropriately to the queries of the human users. The advent of deep models that
base their prediction on the transformation of the sequences into semanticity preserving vector spaces
has enhanced their capabilities in processing natural language human queries. Google introduced an
intermediate representation called Knowledge Graph (KG) [1] that structured the semantic information
available in the web. The graph has a set of real-world entities that are the nodes, and the relationships
between these entities are encoded in its directed edges. This gave a novel perspective to processing
natural language queries through a multi-hop traversal on the knowledge graph to extract related triples
of the form (head entity, relationship, tail entity) that enables the model to respond to natural language
queries. For instance, a query "Where is the captain of the Indian Cricket team born?" is successfully
retrieved following multiple hops, retrieving triples (𝑐, Captain, Indian Cricket Team), (𝑐, Birth Place, 𝑝).
The deep models that offer state-of-the-art performances bring in a novel problem of opacity, rendering
the working mechanism of these underlying models uninterpretable to the end users [2].

The need for interpretability is increasing following the mandates from legal frameworks [3] that
facilitate the user to know the rationale behind the decision of an AI model concerning the user. Eliciting
explanations is necessary to identify biases [4], thereby assessing the suitability of deploying an AI
model for real-world applications. Explanations can help spot the erroneous facts employed by the AI
model, thereby guiding ways to correct these errors [5, 6] to inculcate the right rationale into the model.

In this paper, we explore the integration of explainable AI (XAI) techniques with knowledge graphs,
addressing the need for transparency in link prediction models. Our approach leverages knowledge
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graph embeddings [7, 8, 9, 10], to learn structured representations of entities and relations. Additionally,
we incorporate SHAP (SHapley Additive exPlanations) [11], a game-theoretic method, to quantify the
influence of individual entities in the prediction process. By introducing explanation-driven training,
we enforce that our model efficiently leverages the underlying KG structure. The proposed framework
improves optimal traversal, thus exhibiting increased interpretability.

2. Related Work

Knowledge Graphs (KGs) provide structured semantic representations and are central to many AI
applications. Open KGs such as Freebase [12], DBpedia [13], and YAGO [14] have spurred research
on KG embeddings for link prediction. Early methods, including translational models and semantic
matching approaches such as tensor decomposition, project entities into vector spaces to infer missing
links [1]. Recent deep learning approaches, such as Graph Convolutional Networks (GCN) [15], Graph
Auto-Encoder Attention Networks, and Relational GCNs, integrate KG structure directly into end-to-
end models [1]. Despite state-of-the-art successes exhibited by the deep NLP models, their opacity
inhibiting the understanding of its rationale may prove detrimental if blindly employed in safety-critical
applications [16]. This calls for developing tools and techniques to open up these accurate black boxes
and investigate their working mechanisms.

Explainable AI (XAI) aim to demystify the black box models. These techniques can be broadly classified
into antehoc or explainable by design approaches and posthoc approaches. Antehoc techniques inculcate
the ability to explain the action a model takes from the design phase of the model. They are applied
when a model is yet to be constructed and faithfulness is of utmost concern [17]. On the other hand
posthoc techniques construct a simpler explainer that mimics the working mechanism of a black box
model leaving it undisturbed. When a model is already deployed, posthoc techniques [18] are usually the
desired mode of incorporating explanations into the model pipeline. There have been domain-specific
and model-specific [19] techniques that have been proposed to extract explanations from the deployed
models in a posthoc manner. Alternately XAI community has also proposed model-agnostic techniques
[11, 20] that can be leveraged for any data modality and models. These techniques have been applied to
various NLP tasks [2]. Transformer architectures [21] which leverage self attention mechanism, are
designed to handle long range dependencies. There have been attempts to leverage these attention
maps [22, 23] as an explanation to the model’s working mechanism, which may spark debates in the
research community [24] concerning their suitability to faithfully explain the black boxes.

An alternate way to incorporate explainability into the NLP models is to relate the rationale of
the black box model with the knowledge encoded in the knowledge graph representations. While
prominent works in the community [25, 26] explore the direction of leveraging and aligning NLP models
with known knowledge encoded in the knowledge graph, this paper calls for an idea to leverage XAI
techniques for tracing the path traversed by the model and reinforce the model to traverse optimal
paths in the knowledge graph while performing link prediction. Rossi et al. [27], whose intent is close
to ours, propose generating a local explanation by identifying necessary and sufficient entities that
determine the prediction. Our proposed approach relies on Shapley values [11] with a strong game
theoretic backing to globally rank the entities based on their influence in the prediction.

3. An Idea to Optimize Knowledge Graph Traversal using XAI

3.1. Knowledge Graph Representation

The knowledge graph (KG) is modeled as a labeled directed graph 𝐺 = (𝑉,𝐸), where 𝑉 represents
entities manifesting as nodes of the graph and 𝐸 represents relations manifesting as the directed edges
between the entites. The graph structure is used to learn node embeddings that capture semantic
relationships between entities. Typically, KGs are represented with triplets, (ℎ, 𝑟, 𝑡), where ℎ is the
head entity, 𝑡 is the tail entity, and 𝑟 is the relation between them.



3.2. Knowledge Graph Embedding Model

The proposal is flexible to accommodate any knowledge graph embedding models, such as ComplEx
[7], TransE [8], DistMult [9], or RotatE [10]. For learning the KG embeddings, a margin-based ranking
loss that refines the embeddings may be adopted, whose formulation is as follows:

ℒ𝑒𝑚𝑏 =
∑︁

(ℎ,𝑟,𝑡)∈𝒫

∑︁
(ℎ′,𝑟,𝑡′)∈𝒩

max(0, 𝑠(ℎ′, 𝑟, 𝑡′)− 𝑠(ℎ, 𝑟, 𝑡) + 𝜆) (1)

Here, 𝑠 is the score function given by the embedding model, 𝒫 is the set of positive triplets, 𝒩
denotes the set of negative triplets, and 𝜆 denotes the tolerable margin that controls separation between
the triplets of opposing polarity.

3.3. Link Prediction Model

A Graph Convolutional Network (GCN) [15] can be leveraged to predict the missing links in a KG
by processing the learned entity and relation embeddings as a composition of non-linear activations
applied on linearly combined features. This can be mathematically expressed as follows:

𝑥′ = 𝜎(𝑊1 ·𝐺𝐶𝑁𝐶𝑜𝑛𝑣(𝑥))

𝑥′′ = 𝑊2 ·𝐺𝐶𝑁𝐶𝑜𝑛𝑣(𝑥′)

where𝑊1 and𝑊2 are learnable weight matrices, and 𝜎 is a non-linear activation function. The refined
embeddings are projected onto the relation space (the projection is characterized by 𝑊3), followed by
the application of softmax function to predict the most likely relation type for a given entity pair:

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊3𝑥
′′)

A categorical cross-entropy loss may be applied to ensure alignment between predicted (𝑦) and
ground truth relation (𝑦) defined as:

ℒpred = −
∑︁

(ℎ,𝑟,𝑡)∈𝒫

|𝑅|∑︁
𝑗=1

𝑦𝑗 log(𝑦𝑗) (2)

where, |𝑅| is the total number of relation types, 𝑦𝑗 is the one-hot encoded ground truth relation, 𝑦𝑗
is the predicted probability for relation 𝑗.

3.4. Calculation of SHAP(𝑣)

The computation of SHAP values [11] in Game theory to quantify the importance of each player in a
game proceeds through simulations where a player is removed from the team (set) and the effective
score of the team (subset) with the deletion is used to estimate the contribution of that player to the
game. The translation of this phenomenon in the KG lingua is discussed in this section.

3.4.1. Model Input Representation

The SHAP explainer takes as input the node embeddings learned through the knowledge graph embed-
ding model, which effectively captures the semantic relationships between entities. For a given entity
pair (ℎ, 𝑡), the embeddings corresponding to the head entity ℎ and the tail entity 𝑡 are extracted. For
each entity pair (ℎ, 𝑡), we select a subgraph that captures the local structural context of the KG. This
subgraph is determined by extracting nodes within a predefined radius of both ℎ and 𝑡. In cases where
multiple shortest paths exist between ℎ and 𝑡, our approach will detail one of the following strategies:

• Aggregation: Compute SHAP values for each shortest path separately and then aggregate (e.g.,
via averaging) the contributions.

• Selection: Use a heuristic (e.g., the path with the highest cumulative link prediction score) to
select the most representative path.



3.4.2. Perturbation-Based Feature Importance

SHAP employs a perturbation-based approach to determine feature importance by systematically
modifying input features, specifically the node embeddings, and analyzing their effect on the link
prediction model. This is achieved by masking or removing different subsets of nodes within the
selected subgraph to observe how these alterations influence the model’s predictions. The trained link
predictor is then used to recompute predictions for each perturbed version of the input, allowing for
the quantification of the contribution of individual nodes to the final prediction. This process helps in
understanding how different nodes in the knowledge graph influence the model’s decision-making.

3.4.3. Shapley Value Estimation

The SHAP framework approximates Shapley values, which quantify the contribution of each node to
the final link prediction decision. Let 𝑉 denote the set of all nodes in the knowledge graph, and let
𝑆 ⊆ 𝑉 ∖ {𝑣} represent a subset of nodes excluding node 𝑣. The contribution of each node 𝑣 to the link
prediction task is computed using the Shapley value formula:

𝑆𝐻𝐴𝑃 (𝑣) =
∑︁

𝑆⊆𝑉 ∖{𝑣}

|𝑆|!(|𝑉 | − |𝑆| − 1)!

|𝑉 |!
(𝑓(𝑉 )− 𝑓(𝑆))

where 𝑓(𝑆) denotes the link predictor’s score when only the nodes in subset 𝑆 are included, and
𝑓(𝑉 ) denotes the link predictor’s score when all the nodes are used. The term 𝑓(𝑉 )− 𝑓(𝑆) captures
the marginal impact of adding node 𝑣 to subset 𝑆. The weighting factor |𝑆|!(|𝑉 |−|𝑆|−1)!

|𝑉 |! ensures a fair
distribution of contributions across all possible subsets. By systematically evaluating the marginal
contribution of each node across different subsets, this method provides a robust measure of the
importance of individual nodes in influencing the link prediction outcomes.

Since computing exact Shapley values is computationally expensive [28], we approximate them
using Kernel SHAP or Deep SHAP, which efficiently estimates contributions using a smaller subset of
perturbations [29]. The Shapley values signifying the extent of influence of a node are normalized to
facilitate comparability across different entity pairs.

3.5. Explainability-Driven Training Framework

To leverage the explanations for iterative model improvement a score that assesses the explanations
(i.e. contribution scores of each node) with respect to a shortest path 𝑃 between head entity ℎ and tail
entity 𝑡 in the ground-truth KG is formulated as follows:

𝑆𝑒𝑥𝑝 =
1

|𝑃 |
∑︁
𝑣∈𝑃

𝑆𝐻𝐴𝑃 (𝑣) (3)

A lower score indicates poor alignment between predictions and the actual KG structure.

3.6. Loss Function

A composite loss function that balances classification accuracy, explainability, and embedding optimiza-
tion may be formulated as:

ℒ = 𝛼 · ℒ𝑒𝑚𝑏 + 𝛽 · ℒ𝑝𝑟𝑒𝑑 + 𝛾 · ℒ𝑒𝑥𝑝

where, ℒ𝑒𝑚𝑏 as formulated in equation 1 ensures learning high-quality KG embeddings, ℒ𝑝𝑟𝑒𝑑 is the
cross-entropy loss for relation prediction (softmax output) as formulated in equation 2, ℒ𝑒𝑥𝑝 = 1−𝑆𝑒𝑥𝑝

(formulated in equation 3) penalizes traversing sub-optimal paths, and 𝛼, 𝛽, and 𝛾 control the trade-off
between embedding optimization, accuracy, and interpretability .

By integrating explainability into the learning process, the model not only predicts links accurately
but also provides interpretable insights into its decisions. This approach ensures that the learned
embeddings and model predictions remain aligned with the intrinsic structure of the knowledge graph.



4. Summary

The paper reviews the scientific literature and identifies a symbiotic relationship between Knowledge
Graphs and Explainable AI research communities. A framework to incorporate explainability techniques
as a guiding mechanism towards steering the NLP model to faithfully traverse through optimal paths in
the knowledge graph is suggested. An illustration using commonly used knowledge graph embedding
and link prediction model with their corresponding mathematical formulations has been presented to
encourage the research community to investigate this incorporation. Modification of these techniques
with other state-of-the-art algorithms is an open arena that may yield novel insights.
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