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Abstract
Cyber Threat Intelligence (CTI) has always played a pivotal role in proactive cybersecurity. However, with the
emergence of Large Language Models (LLMs), generating and disseminating false or misleading CTI has never
been easier. Existing research has found that fabricated CTIs could successfully evade cybersecurity professionals,
but there is a notable gap in detecting fabricated CTIs. This paper addresses how LLM-based approaches can serve
as a powerful tool for validating the authenticity of reported threats. We propose a framework for evaluating
text-based intelligence through a structured ranking of sources, automated keyword extraction, and a final AI-
based analysis that yields a probability score to identify potential misinformation. Our evaluation using 150 CTI
reports (authentic, LLM-generated, and hybrid) demonstrates strong classification performance with an overall
F1-score of 0.88, achieving particularly high accuracy for completely fabricated reports while identifying partially
manipulated content with moderate success. Beyond technical validation, VeraCTI serves as an educational
platform for cybersecurity practitioners through its transparent, step-by-step analysis process, which can be
deployed in Security Operations Centres (SOCs) to simultaneously enhance threat verification capabilities and
develop analysts’ critical assessment skills. By operating on the principle that ”all information is false until
proven”, VeraCTI addresses a critical gap in current CTI validation approaches and demonstrates how AI systems
can be leveraged responsibly to counter AI-generated misinformation.
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1. Introduction

Cyber Threat Intelligence (CTI) plays an increasingly pivotal role in modern cybersecurity, providing the
necessary foresight for organisations to anticipate, identify, and mitigate sophisticated cyber threats [1].
An effective CTI is crucial for guiding proactive defence measures, including timely incident response,
informed patch management, and heightened vulnerability awareness. However, the landscape is
complicated by the dual-edged nature of emerging Artificial Intelligence (AI) technologies, particularly
Large Language Models (LLMs) [1]. Although LLMs offer unprecedented capabilities for processing
and analysing large volumes of unstructured data inherent in CTI [2, 3], they also introduce significant
risks.

The core problem this paper addresses is the capability of LLMs to generate convincing, yet potentially
fabricated or misleading CTI [4, 5]. Malicious actors can leverage the same generative power that
aids defenders to create and disseminate fabricated CTI at scale, designed to poison datasets, mislead
security analysts, and obfuscate genuine threats [6]. This potential for AI-driven misinformation poses
a substantial challenge, as ingesting unreliable CTI can lead to misallocated resources, flawed security
postures, and ultimately successful breaches. The inherent uncertainty sometimes present in CTI
descriptions further complicates matters, making it difficult even for advanced models to interpret
intent accurately [7]. In addition, the generation and spread of fabricated CTI undermine the trust
necessary for effective intelligence sharing and collaborative defence.

This challenge necessitates robust validation mechanisms capable of discerning authentic intelligence
from LLM-generated fabrications. While traditional methods of CTI validation often rely on structured
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Indicators of Compromise (IoCs) and cross-referencing with established repositories, they struggle
with the nuance and volume of unstructured, text-based intelligence, especially when its authenticity
is questionable from the start [8]. A significant gap exists in the literature regarding robust, scalable
methods for validating the content of text-based CTI, particularly in the face of potential LLM-driven
disinformation campaigns. Existing approaches primarily focus on source reputation or structured data
consistency, leaving unstructured textual claims largely unverified [5, 9, 10]. Our work aims to address
this gap by proposing a framework that leverages LLMs themselves, guided by structured analysis and
external corroboration, to assess the probability of falsehood in text-based CTI reports.

In this paper, we propose that LLMs themselves, when guided appropriately, can be instrumental in
validating CTI. By leveraging their advanced natural language understanding and reasoning capabilities,
LLMs can assist practitioners in assessing the credibility of threat reports, identifying inconsistencies,
and flagging potential misinformation. This requires a structured approach. Simply asking an LLM
whether a report is "true" is insufficient. Our work introduces VeraCTI (the name stems from a
combination of two words, veracity and CTI), a framework, an educational tool, and a methodology
designed to systematically evaluate text-based CTI. It employs a methodology incorporating source
reliability ranking, targeted keyword extraction for semantic analysis, and an LLM-based reasoning
component to produce a probabilistic score indicating the likelihood of a report being fallacious or
trustworthy. This approach assumes "all information is false until proven," promoting a critical mindset
essential in the current threat landscape.

Addressing the challenge of fabricated CTI also requires an educational dimension. Cybersecurity
practitioners, from novices to experienced analysts, must be trained to critically evaluate AI-driven
intelligence, understand the limitations of LLMs, and effectively utilise validation tools [11]. VeraCTI is
thus designed partly as an educational resource, helping users understand the factors contributing to
CTI credibility and fostering best practices for cross-checking AI-generated insights against verified
sources. By providing a quantifiable measure of trust and highlighting potential red flags, our framework
empowers security teams to make more informed decisions, integrate LLM capabilities responsibly,
and ultimately strengthen their defensive position against both conventional and AI-amplified cyber
threats.

The remainder of this paper is organised as follows. Section 2 reviews the existing work on LLMs in
CTI and on validation approaches. Section 3 details the proposed VeraCTI framework for LLM-driven
verification of CTI. Section 4 describes the implementation details. Section 5 presents preliminary
results of the testing and evaluation. In Section 6, we discuss the way this tool can be integrated in
education and organisations. Finally, Section 7 concludes the paper and outlines avenues for future
research.

2. Related Work

The integration of AI, particularly LLMs, into cybersecurity represents a rapidly evolving research
frontier [1, 11]. LLMs, with their advanced natural language understanding and generation capabilities,
are increasingly being explored for various defensive and offensive cybersecurity applications [4, 8].
This section reviews the relevant literature, focusing specifically on the application of LLMs to CTI tasks
and highlighting the emerging challenge of validating AI-generated or potentially falsified intelligence.

2.1. LLMs in Cyber Threat Intelligence Processing

CTI is fundamental to proactive cybersecurity, involving the collection, analysis, and dissemination
of information about cyber threats [12]. Traditionally, processing CTI, often found in unstructured
reports, blogs, and security advisories, has been a labour-intensive task for human analysts [13]. Recent
advances demonstrate the significant potential of LLMs to automate and enhance various stages of the
CTI lifecycle.

Several studies have focused on leveraging LLMs for extracting structured information from unstruc-
tured CTI sources. For instance, LLMs have been employed to identify and extract Tactics, Techniques,



and Procedures (TTPs) and other cyber-related entities [3, 14, 2]. Systems like LLM-Tikg [15] and
the framework proposed by Zhang et al. [16] utilise LLMs to automatically construct Cybersecurity
Knowledge Graphs (CKGs) from CTI reports, facilitating better organisation and querying of threat
data [10, 13]. Other works, like aCTIon [14] and LLMCloudHunter [2], demonstrate the use of LLMs
(often GPT-3.5 or GPT-4[? ] variants) with zero-shot or few-shot prompting and specific pipelines to
distil and structure information from diverse Open Source Intelligence (OSINT) sources.

Domain-specific models like SecureBERT [17] and CySecBERT [18] have also been developed to
better handle the specific vocabulary and context of cybersecurity texts. Approaches like LOCALINTEL
combine retrieval mechanisms (similar to Retrieval-Augmented Generation (RAG)) with LLMs to
generate contextualised, organisation-specific CTI [19]. The CYLENS system further exemplifies this
trend, acting as an LLM-powered CTI copilot integrating knowledge from numerous threat reports [20].
These studies generally focus on generating or structuring CTI rather than verifying its authenticity.

2.2. The Challenge of Misinformation and Fake CTI

While the ability of LLMs to process and generate CTI offers significant advantages, it concurrently
introduces a critical vulnerability: the potential for generating and disseminating fake or misleading
intelligence [21]. Malicious actors can exploit the same generative capabilities to craft convincing but
false threat reports, aiming to poison datasets used for training AI-based defence systems or to mislead
human analysts and automated tools [6]. This constitutes a sophisticated form of data poisoning attack
tailored to the CTI ecosystem [22].

The generation of fake CTI using fine-tuned transformer models like GPT-2 has already been demon-
strated, with studies showing that such fabricated intel can be highly convincing, even to experienced
cybersecurity professionals [6]. The work by Yu and Li specifically focuses on methods for generating
fake CTI using models such as GPT-Neo [23]. The inherent plausibility of LLM-generated text makes
manual verification difficult and time-consuming, deepening the existing challenge of information
overload in CTI [12]. Furthermore, the propagation of fake CTI through OSINT channels can undermine
the credibility of legitimate sources and disrupt collaborative defence efforts.

2.3. Validation and Credibility Assessment in CTI

Given the risks associated with fake CTI, validating the authenticity and credibility of intelligence is
paramount. Traditional CTI quality assessment has often focused on the reputation or trustworthiness
of the source [24], or on the consistency of structured data [9]. However, assessing the veracity of the
content itself, particularly unstructured text-based claims, remains an open challenge, especially with
the potential for sophisticated AI-generated fakes.

Existing work on CTI credibility often relies on metadata or simple examining. For example, Tundis
et al. [24] proposed a feature-driven method to assess OSINT source relevance on Twitter but did not
focus on content veracity. Yang et al. [9] developed a CTI quality assessment method considering feed
trustworthiness and content availability metrics (like timeliness, completeness) but did not specifically
address deliberate falsification or AI-generated misinformation. While frameworks like KGV [10]
integrate LLMs and Knowledge Graphs (KGs) for credibility assessment, their primary mechanism
involves fact-checking extracted claims against a KG built from paragraphs, which may not be sufficient
against LLM-generated narratives lacking direct counter-evidence in the graph. While the landscape of
LLMs in cybersecurity is reviewed [11], specific methods for validating CTI content veracity are needed.
The AI4CYBER framework, mentioned in [5], touches upon trustworthiness services but primarily in
the context of ensuring the reliability of its own AI-components, rather than validating external CTI
content.



3. Design

3.1. Overall System Architecture

VeraCTI is structured as a modular, event-driven pipeline that processes diverse inputs (text, files,
URLs), enriches them with external threat intelligence, and generates a quantitative assessment of
the likelihood that the provided CTI is misleading or potentially inaccurate (rather than purely false).
Figure 1 provides an overview of the entire pipeline, beginning with front-end collection and culminating
in a comprehensive threat intelligence report.

The architecture is divided into three main layers:

• First, the data ingestion layer receives raw CTI from various sources and ensures input quality.
• Second, the analysis and correlation layer employs natural language processing (NLP) for key-

phrase extraction, identifying potential IoCs and Common Vulnerabilities and Exposures (CVEs),
and correlating the claims with external threat feeds.

• Third, the aggregation and reporting layer computes a final probability score, indicating the
rationale behind that score, and generates a user-friendly, structured report.

Internally, VeraCTI uses a combination of synchronous and asynchronous pipelines. Certain tasks,
such as normalising textual data, must be performed in a strictly ordered manner. Other operations,
such as IoC enrichment from external APIs, can run in parallel, improving efficiency when dealing
with multiple indicators. Each module is designed to be stateless: after receiving normalised inputs and
performing its assigned task, it outputs well-defined data structures to the subsequent module.
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Figure 1: High-level system architecture and data flow for the VeraCTI CTI Analysis System.

3.2. Data Ingestion Layer

VeraCTI enforces a rigorous input validation process to ensure that any data entering the system is
both properly formatted and has passed an initial credibility check. For textual submissions, VeraCTI
imposes token limits that keep LLM-driven analysis computationally feasible. Files, most commonly
PDFs, are parsed using extraction libraries (pdfminer.six)[? ] to convert them into plain text. If the
parser detects incomplete or corrupted content, the system flags the submission for additional scrutiny.



URLs undergo a separate validation process wherein VeraCTI queries domain-reputation services
such as urlscan.io[? ]. If the domain is assessed as malicious or high-risk, the system includes this
low-trust signal in subsequent correlation tasks. VeraCTI then fetches the HTML content of the URL,
stripping it to text via BeautifulSoup[? ], and incorporating relevant metadata such as HTTP response
codes. Through each of these methods, the data ingestion layer produces a coherent block of text
accompanied by metadata (including source reputation, domain trust scores, and file integrity checks)
for downstream analysis.

3.3. Analysis and Correlation Layer

Key Phrase Extraction Once data is validated and the text is normalised, VeraCTI applies NLP
techniques to identify key concepts within the report. This involves an LLM or a transformer-based
pipeline that scans for domain names, threat actor handles, and references to known vulnerabilities or
malicious campaigns. By extracting not only direct IoCs but also contextual entities (e.g. mention of
a campaign name or a technique like "credential stuffing"), the system builds a richer picture of the
underlying intelligence.

Semantic Query for Related Sources VeraCTI performs a semantic query of external articles or
threat feeds that might corroborate or contradict the extracted key phrases. This step helps the system
compare the CTI content against existing records, increasing confidence in valid claims and reducing
the risk of overlooked inconsistencies.

IoC & CVE Extraction and Enrichment After key phrase extraction, the system specifically
focuses on identifying Indicators of Compromise (IoCs) such as IP addresses, URLs, file hashes, and CVE
identifiers. VeraCTI re-fangs obfuscated addresses (e.g. hxxp:// to http://), ensuring the extracted
IoCs are in a standard format. It then queries external threat intelligence feeds, including VirusTotal[? ]
or AbuseIPDB[? ], to gather reputation data and historical activity. If the text claims an IP address is part
of a widespread phishing campaign and VirusTotal corroborates it with multiple malicious detections,
VeraCTI increases its confidence in that portion of the intelligence.

Conversely, if external databases record an IoC as benign or do not recognise it at all, the system
raises a flag indicating a possible inconsistency. Multiple signals from distinct sources reinforce or
dispute the authenticity of the reported IoC. In this way, VeraCTI combines textual coherence with
real-world data about previously observed malicious or benign activity, lending a structured perspective
to each piece of intelligence provided.

3.4. Aggregation and Reporting Layer

VeraCTI concludes its analysis by computing a probability score that represents the likelihood a CTI
report is misleading, partially false, or entirely fabricated. Each factor—including source credibility,
IoC reputation, external corroboration, and text consistency—contributes to this final score through a
weighted scheme. The weighting can be adapted to suit specific organisational needs, such as prioritising
the trust signals from certain authoritative repositories.

The system outputs these results in a structured JSON object, providing both a numeric estimate
(e.g. 0–100% fallaciousness probability) and an explanatory breakdown. This transparency benefits
both automated workflows, which can quickly parse numeric thresholds, and human analysts, who
can review the salient points leading to VeraCTI’s classification. By separating the final score from the
evidence, the system also facilitates educational use, illustrating exactly which elements are suspicious
or well-supported.

4. Implementation

An automated pipeline is implemented within the VeraCTI application to analyse CTI inputs, assess
their potential fallaciousness, and generate a comprehensive analysis report. The system processes



CTI provided via direct text entry, file upload, or URL submission, employing a multi-stage approach
involving AI-driven analysis, external data enrichment, and structured reporting.

Leave it to VeraCTI
VeraCTI is an AI agent that helps detect fabricated or misleading cyber threat

intelligence. It doesn't just think, it delivers results. Veraciti excels at analyzing and
verifying cyber threats, keeping your systems secure while you rest.
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Text File URL
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Paste your threat intelligence text here...

"
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that helps detect fake cyber threat intelligence.
© 2025 Veraciti AI

Company

Feedback

Contact us

Resources
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Figure 2: VeraCTI’s landing page, where users can submit text, files, or URLs for CTI analysis.

4.1. Input Ingestion and Pre-processing

The pipeline initiates by receiving CTI through one of the designated frontend channels. Pre-processing
steps normalise the input for consistent analysis:

Text Input: User-submitted raw text (up to a practical limit, e.g. ~65,000 tokens, with a maximum of
1 million tokens) is directly relayed to the primary text analysis engine. No significant pre-processing
occurs at this stage beyond basic validation in the API route.

File Input: The file is validated and temporarily saved, using a UUIDv4-based filename. The script
then uses the pdfminer.six library’s extract_text() function to retrieve the full text content. Error
handling is present for file I/O and extraction issues. The temporary file is deleted in a finally block
within the API route after processing completes or fails.

URL Input: Basic validation (for instance, requiring the scheme be http:// or https://) occurs
first. The script then orchestrates source credibility check and content extraction. In source credibility
check, the connector module’s url_scan_details() function queries the urlscan.io API for domain
reputation, scan results, and potential malicious verdicts. This provides an initial trust assessment of the
source URL itself. In content extraction the connector’s extract_text_from_url() function
fetches the URL’s HTML content using requests[? ] and parses the main textual body via BeautifulSoup,
stripping HTML tags to provide clean text for analysis. Timeout and connection error handling are
included.

4.2. AI-Driven Content Analysis and Corroboration

With the CTI text extracted, a sequence of approximately 4–5 distinct Declarative Self-improving
Python DSPy [? ] agents perform deeper analysis. These agents leverage an LLM configured within
the programme (e.g., Gemini[? ], temperature=1.0, max_tokens=65536, cache=true), utilising
dspy.ChainOfThought() for reasoning.

Key Phrase Identification: The CategoriesKeywords() agent identifies and extracts up to 10
core thematic sentences or key phrases from the input CTI text. It uses the KeywordCategories Pydantic
model for structured output ({"extracted_categories": ["sentence1", ...]}).

External Corroboration: The extracted key phrases serve as queries for the connector’s
search_web_for_related() function. This function (leveraging the configured dedicated search
API) seeks external articles or reports online that could corroborate or contradict the input CTI. It
returns a list of relevant URLs.



Relevance Evaluation: For each relevant external URL found, its content is extracted (similar to
URL input processing). The RelevanceCheck() agent then compares the original CTI text against the
external article’s content. It outputs a structured dictionary (Result Pydantic model) detailing matches
in IoCs/CVEs, contextual text similarity, reasoning for the match, and an overall relevance score (e.g.,
on a 1–10 scale).

4.3. IoC and CVE: Extraction and Enrichment

Extraction: The IOCExtraction() agent parses the input CTI text, specifically targeting IoC
patterns. It aims to extract only indicators deemed relevant within the threat intelligence context,
avoiding generic examples. Output uses the Extract_IoCs Pydantic model ({"ip_addresses": [...],
"urls": [...], ...}). Defanged indicators (e.g., hxxp:// or 1.1.1[.]1) are re-fanged by the agent based
on instructions.

Enrichment: The extracted IoCs are systematically queried against multiple external Threat Intelli-
gence platforms using the Connector and API keys configured. Approximately five external services
are potentially queried per relevant IoC type:

• IPs: VirusTotal (Reputation, Votes, WHOIS), AbuseIPDB (Confidence Score, History).
• Domains: VirusTotal (Reputation, Votes, WHOIS).
• URLs: VirusTotal (Submission for Scan, Analysis Stats).
• Hashes (SHA256, MD5, SHA1): Hybrid Analysis[? ] (Verdict, Threat Score, Associated Reports).
• CVEs: National Vulnerability Database[? ] (Common Vulnerability Scoring System (CVSS) Score,

Description, References).

Each query returns structured data about the indicator’s reputation, known associations, and analysis
results from the respective platform. Error handling for API requests (timeouts, connection errors,
HTTP errors) is implemented.

4.4. Synthesised Reporting and Fallaciousness Assessment

The culmination of the pipeline involves aggregating all findings and generating a final assessment:
Data Aggregation: All intermediate results—initial source credibility checks (for URLs), web corrob-

oration findings (relevance scores, summaries), and detailed IoC enrichment data—are collected.
Structured Report Generation: The Threat Intel Report() agent receives this aggregated data

and synthesises the diverse inputs into a single, structured JSON output conforming to the pre-defined
scheme. It populates fields for metadata, executive summary, source analysis, content corroboration,
detailed enrichment analysis per IoC type, and crucially, the fallacious probability assessment.

Fallacious Probability Assessment: A dedicated section in the final report represents the system’s
core judgement on the likelihood of the input CTI being misleading or fake. Conceptually, it follows:

Fallacious Probability ≈ 𝑓
(︁
𝛼 · SourceCredibility + 𝛽 · ContentCorroboration

+ 𝛾 · IoC Validity + 𝛿 · InternalConsistency
)︁

(1)

where the function 𝑓 maps these weighted factors to a final probability score (e.g., “Low,” “Medium,”
“High,” or 0–100) and explanatory reasoning, based on the following variables.

• SourceCredibility: Derived from urlscan.io results and domain reputation (0.0–1.0).
• ContentCorroboration: Based on the number and relevance scores (e.g., avg. score 1–10) of external

matching articles found.
• IoC Validity: Reflects the proportion and severity of IoCs flagged as malicious by enrichment

services (e.g., VirusTotal malicious votes > 5, AbuseIPDB score > 75).
• InternalConsistency: Assessed by the LLM for logical coherence within the CTI text itself.
• 𝛼, 𝛽, 𝛾, 𝛿: Weighting factors implicitly determined by the LLM based on the specified instructions.



5. Testing and Evaluation

5.1. Dataset

To evaluate VeraCTI’s effectiveness, we constructed a balanced dataset comprising three distinct
categories of CTI reports:

Authentic CTI (n=50): We collected genuine threat intelligence reports from authoritative sources
including official Computer Emergency Response Team (CERT) advisories, vendor security bulletins,
and established threat intelligence platforms. These reports were manually verified to ensure accuracy
and relevance.

LLM-Generated Synthetic CTI (n=50): Using both GPT-4 and Gemini-Pro models, we generated
fabricated threat intelligence reports. These were crafted with varying levels of sophistication, from
simple fabrications to complex reports incorporating legitimate IoCs in misleading contexts. We used
prompts designed to create plausible but false narratives about non-existent threats, vulnerability
exploitation, or threat actor campaigns.

Hybrid CTI (n=50): We created partially modified authentic reports by manually altering key details
while maintaining overall structure and context. Modifications included replacing legitimate IoCs with
benign ones, exaggerating severity levels, or introducing inconsistencies in technical details while
preserving the narrative flow of genuine reports.

Each dataset entry was anonymised and assigned a unique identifier to eliminate bias during evalu-
ation. The distribution of content types (text-only, file, URL) was maintained consistently across all
three categories to ensure evaluation fairness.

5.2. Evaluation

In this paper, we focus on the evaluation of classification accuracy by precision, recall and F1-Score.
Precision measures how many of the items labelled as a certain class are truly in that class. Formally, it
is the ratio of correctly predicted positive observations to the total predicted positive observations:

Precision =
True Positives

True Positives + False Positives
(2)

In the context of this evaluation, True Positives can be defined as CTI reports correctly classified as
either factual or fallacious, while False Positives are reports that have been incorrectly classified (e.g.,
a fabricated report misclassified as factual). The precision value thus represents the reliability of the
classifications made by VeraCTI.

Recall is defined as the proportion of items that truly belong to a class and are correctly identified:

Recall =
True Positives

True Positives + False Negatives
(3)

False Negatives are represented by reports that have not been correctly identified by the system
(e.g., a fallacious report not flagged as such). The recall value therefore indicates the comprehensiveness
of the system in identifying all instances of a particular class.

The F1-score is calculated as the harmonic mean of precision and recall:

F1-Score = 2× Precision × Recall
Precision + Recall

(4)

It balances precision and recall into a single number, especially useful when both metrics need to be
weighed equally. If precision and recall differ significantly, the F1-score provides a combined measure
that diminishes the effect of extremely high precision or recall alone. It’s especially insightful in cases
where a single metric is needed to convey the overall effectiveness of the model.



Table 1
Classification performance metrics for VeraCTI across different CTI categories.

CTI Category Precision Recall F1-Score
Authentic CTI 0.92 0.88 0.90
LLM-Generated CTI 0.94 0.96 0.95
Hybrid CTI 0.81 0.78 0.79
Overall 0.89 0.87 0.88

5.3. Results and Analysis

Table 1 reports precision, recall, and F1-score across three categories of CTI reports, Authentic, LLM-
Generated, and Hybrid, and then an overall performance average. For Authentic CTI, the precision is
0.92, therefore of the CTI reports VeraCTI labelled “Authentic,” 92% are actually authentic. The recall
is 0.88, meaning of all truly authentic CTI reports, 88% are correctly identified. The F1-Score is 0.90,
which reflects high precision and recall, indicating robust performance in detecting legitimate CTI
content. For LLM-Generated CTI, the precision is 0.94 and recall is 0.96, leading to an F1-score of 0.95.
This near-perfect performance indicates VeraCTI is highly accurate at detecting completely fabricated
CTI produced by language models. For Hybrid CTI, precision is 0.81 and recall is 0.78, resulting in an
F1-score of 0.79. Hybrid CTI (partially real content with subtle modifications) is more challenging to
classify, which is reflected in the comparatively lower F1-score.

VeraCTI’s overall precision, recall, and F1-score hover around 0.89, 0.87, and 0.88, respectively. This
underscores that the system reliably identifies both fully authentic and fully fabricated reports, and
performs moderately well, though not perfectly, on partially manipulated (hybrid) reports.

Examining the misclassifications revealed several patterns. The first is false positives in the authentic
CTI Category. Legitimate reports misclassified as false often contained unusual technical details or
emerging threats not yet widely documented in external sources, limiting corroboration opportunities.
Additionally, reports with minimal IoCs or primarily qualitative intelligence were more likely to be
incorrectly flagged, highlighting a potential bias toward IoC-rich intelligence. The second is false
negatives in the synthetic CTI category. LLM-generated reports that successfully incorporated verifiable
facts and referenced legitimate incidents were occasionally misclassified as authentic, particularly when
they maintained internal consistency and avoided verifiable but false claims. The last is the challenges
in classifying the hybrid category CTI. The system showed notable difficulty with hybrid reports that
preserved most of the original content while subtly altering key technical details or conclusions. This
suggests that partial modifications are particularly effective at evading detection, which aligns with
findings in related domains such as fake news detection [1].

6. Educational Integration

Beyond improving defensive capabilities in real-world cybersecurity settings, VeraCTI also serves
as an educational platform (see Figure 2 and Figure 3). Universities and training programmes can
incorporate VeraCTI into hands-on labs, where students learn how to validate and interpret threat reports
generated by LLMs. By examining step-by-step probability scoring, novices gain an appreciation for
the complexities of CTI credibility assessment, including the significance of IoC corroboration, domain
reputation, and internal consistency. Because the tool’s reasoning engine presents clear explanations
for each flagged inconsistency or match, instructors can use these outputs to highlight best practices in
threat hunting and intelligence sharing.

In operational settings, Security Operations Centres (SOCs) can integrate VeraCTI into their threat
intelligence workflows as a validation layer for incoming CTI. This serves both to verify threats
and train analysts through clear explanations of the verification process. SOC teams can tailor the
system by adjusting confidence thresholds and adding specialised data feeds relevant to their security
concerns. This practical deployment helps develop analysts’ critical thinking skills while strengthening



organisational defences against emerging threats. Moreover, VeraCTI can be configured for automated
scanning of incoming threat feeds, reducing analyst workload and accelerating response times for
validated threats. Organisations also benefit from reduced operational costs by minimising time spent
investigating false positives, while the standardised validation methodology improves communication
between incident response, threat hunting, and executive teams who rely on consistent CTI evaluation
criteria.

Back to Analysis

Investigative Summary
Fallacious Probability Detection Analysis - CVE-2023-50164 Apache Struts 2 RCE • 2025-04-10 14:42:24

Fallacious Probability: Very Low Confidence: 95%

Executive Summary

This report assesses the fallacious probability of threat intelligence regarding CVE-2023-50164, a critical remote code execution (RCE) vulnerability in Apache Struts 2. The analysis indicates
a very low probability of the intelligence being fallacious due to strong corroboration from reputable sources and consistent technical details.

Overall Conclusion

The threat intelligence regarding CVE-2023-50164 is highly likely to be accurate and should be treated as a legitimate threat.

Fallacious Probability Assessment
Analysis of how likely the threat intelligence is to be false or misleading

Source Assessment

The sources are reputable cybersecurity websites and vulnerability databases.

Content Assessment

The content is strongly corroborated by multiple independent sources.

Technical Details Assessment

The technical details are consistent with a known vulnerability (CVE-2023-50164).

Motivation Assessment

There is no apparent motivation to fabricate this threat intelligence.

Reasoning

Given the high degree of corroboration from reputable sources, the consistency of technical details with known vulnerabilities, and the lack of any apparent motivation to fabricate the
information, the overall probability of this threat intelligence being fallacious is extremely low. The threat intelligence is almost certainly legitimate. The reasoning behind the high confidence
is as follows: 1. **Strong Corroboration:** Multiple reputable sources (Apache, Sonatype, Help Net Security, Openwall, Cybersecurity Dive) independently confirm the existence and nature
of the CVE-2023-50164 vulnerability. 2. **Consistent Technical Details:** All sources provide consistent descriptions of the vulnerability as related to file upload logic, path traversal, and
potential RCE in Apache Struts 2. 3. **CVE Enrichment:** The automated CVE enrichment process confirms the validity of CVE-2023-50164, its severity (CRITICAL), and provides links to
authoritative references. 4. **Active Exploitation Reports:** Several sources mention active exploitation attempts of the vulnerability, further validating its reality and potential impact. 5. **No
Apparent Motive for Fabrication:** There is no indication that the information is being spread with malicious intent, disinformation, or any other agenda. 6. **Source Reputation:** The
sources used are well-established and respected within the cybersecurity community. 7. **Specific Vulnerability Details:** The reports reference specific details such as affected software
versions and mitigation recommendations, which contribute to a higher degree of confidence in the intelligence.

Source Credibility Analysis
Evaluation of the sources reliability

Source URL

Multiple (see corroborating sources)

Source Domain

Multiple (apache.org, sonatype.com, helpnetsecurity.com, openwall.com,
cybersecuritydive.com)

Source Reputation

High - Reputable cybersecurity websites and vulnerability databases

Hosting Infrastructure

Not applicable

Conclusion

The sources used for corroboration are highly credible.

Content Corroboration Analysis
Verification of the intelligence through other sources

Core Intelligence Summary

A critical RCE vulnerability (CVE-2023-50164) exists in Apache Struts 2 related to file upload logic and path traversal.

Corroborating Sources

Apache Struts 2 Wiki (Official Documentation)
https://cwiki.apache.org/confluence/display/WW/S2-067

Match score: 9/10

Describes a file upload logic flaw leading to path traversal and RCE (similar to the described vulnerability, although referring to S2-067).

Sonatype Blog (Security Blog)
https://www.sonatype.com/blog/cve-2024-53677-a-critical-file-upload-vulnerability-in-apache-struts2

Match score: 9/10

Explicitly discusses 'critical file-upload vulnerability in Apache Struts2', related to CVE-2024-53677 and building upon similar flaws in CVE-2023-50164.

Help Net Security (Cybersecurity News)
https://www.helpnetsecurity.com/2023/12/08/cve-2023-50164/

Match score: 10/10

Mentions CVE-2023-50164 as a critical RCE vulnerability in Apache Struts 2.

Help Net Security (Cybersecurity News)
https://www.helpnetsecurity.com/2023/12/14/poc-exploit-cve-2023-50164/

Match score: 10/10

Confirms active exploitation attempts of CVE-2023-50164.

Openwall (Mailing List)
https://www.openwall.com/lists/oss-security/2023/12/07/1

Match score: 10/10

Details CVE-2023-50164 and its impact on Apache Struts 2.

Cybersecurity Dive (Cybersecurity News)
https://www.cybersecuritydive.com/news/active-exploitation-apache-struts-2-flaw/736199/

Match score: 9/10

Reports active exploitation of a critical Apache Struts 2 flaw.

Conclusion

The threat intelligence is strongly corroborated by multiple independent and reputable sources.

CVE Analysis

CVEs Identified

CVE-2023-50164

Conclusion

The CVE enrichment confirms the existence and details of CVE-2023-50164.

Veraciti
Veraciti, derived from 'veracity' meaning truth, is an AI agent
that helps detect fake cyber threat intelligence.
© 2025 Veraciti AI
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Feedback

Contact us

Resources

Privacy policy
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Figure 3: VeraCTI’s results page, displaying the confidence score for fallaciousness, source credibility insights,
and detailed corroboration analysis for a given CTI report.

7. Conclusion and Future Work

This paper proposed VeraCTI, a framework designed to evaluate the authenticity of CTI reports,
especially in light of AI-generated misinformation. By integrating source credibility checks, LLM-based
semantic analysis, IoC enrichment, and probability scoring, VeraCTI systematically determines whether
a given CTI report is likely to be deceptive or aligned with corroborated intelligence.

From an educational standpoint, VeraCTI offers transparent, step-by-step insights, enabling students,
researchers, and security professionals to understand both the benefits and limitations of AI-based CTI
validation. Future development will explore domain-specific fine-tuning of the LLMs involved, real-time
integration with additional threat intelligence feeds, and further refinements to the probability-scoring
methodology. Through these enhancements, we hope to solidify VeraCTI’s role as both a powerful
validation engine and an educational companion in the constantly evolving field of cybersecurity.
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