
Uncovering and Exploring the Intersection of
Low-Code Development and Sustainability
Bernhard Schenkenfelder

Software Competence Center Hagenberg GmbH, Softwarepark 32a, 4232 Hagenberg, Austria

Abstract
Sustainability has become a cross-disciplinary research topic in the face of pressing, complex global challenges.
DIY (Do-It-Yourself) Software Development, End-User Development (EUD), and Low-Code Development (LCD)
are empowering non-programmers to design, develop, and maintain software. These paradigms use techniques
such as visual programming or natural language programming to abstract beyond text-based program code.
Beginning with a case study that draws a connection between DIY software development and sustainability
through digital transformation, this position paper examines some of the broader sustainability implications in
the areas of both DIY and software development in general, and argues whether or not they are applicable or
adaptable to LCD. The preliminary conclusion is that, despite some challenges, LCD can draw from both fields,
and that LCD can be used as a lever to promote sustainability.

Keywords
Low-Code Development (LCD), End-User Development (EUD), DIY (Do-It-Yourself) Software Development,
Sustainability

1. Introduction

In a recent case study on the digital transformation of the global energy company Shell, Carroll and
Maher [1] discuss the notion of DIY (Do-It-Yourself) Software Development1. They report a common
argument in the End-User Development (EUD) community: A massive global shortage of skilled
software developers, followed by giving business people more tools to increase their productivity
and the development of a shadow IT that introduces security risks. Citizen development mitigates
these concerns through ongoing IT support, but still hides the complexity of the program code while
empowering domain experts (citizen developers) to design, develop, and deploy software into production.
Guided by its mission to “empower every employee to digitize work processes to improve productivity,
increase agility, and create more value for customers,” Shell went through four phases to successfully
normalize the citizen development program: (i) Sensemaking for Shell’s citizen development program,
(ii) stakeholder participation to build momentum for the DIY program, (iii) collective action to embrace
and enact the DIY program, and (iv) evaluating progress to review the impact of the DIY program. Carroll
and Maher conclude the case study with seven recommendations and requirements for a successful
DIY software development program, including being highly user-centric, introducing an element of
fun, leveraging democratization, growing the DIY community, prioritizing necessary changes, and
empowering employees. Interestingly, in the context of DIY software development, they see the need to
upskill employees in different technologies and data, which at first glance is not consistent with other
reports that focus on lowering the barrier to entry into software development for non-programmers.
However, this argument is reasonable given that citizen developers (need to) learn and use new tools
once they are part of the DIY program.
Notably, in this case study, there is a link between sustainability and DIY software development. Shell
recognizes that digitization “will be key for decarbonizing the energy supply,” and that the company’s

Joint Proceedings of IS-EUD 2025: 10th International Symposium on End-User Development, 16-18 June 2025, Munich, Germany.
$ Bernhard.Schenkenfelder@scch.at (B. Schenkenfelder)
� https://www.scch.at/team/bernhard.schenkenfelder (B. Schenkenfelder)
� 0000-0001-5129-6268 (B. Schenkenfelder)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://www.shell.com/what-we-do/digitalisation/digitalisation-in-action/do-it-yourself-software-development-the-
power-is-in-your-hand.html, last accessed: 2025-04-01

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Bernhard.Schenkenfelder@scch.at
https://www.scch.at/team/bernhard.schenkenfelder
https://orcid.org/0000-0001-5129-6268
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.shell.com/what-we-do/digitalisation/digitalisation-in-action/do-it-yourself-software-development-the-power-is-in-your-hand.html
https://www.shell.com/what-we-do/digitalisation/digitalisation-in-action/do-it-yourself-software-development-the-power-is-in-your-hand.html


citizen development program plays an important role in digital transformation. This raises the
question of whether there are other implications between sustainability and DIY software
development (or EUD/LCD, see below), where to uncover them, and how to explore them.

In an attempt to explore the similarities and differences between End-User Development (EUD) and
Low-Code Development (LCD), Schenkenfelder et al. [2] point out that while there are–sometimes
subtle–differences in the scientific communities in which they are rooted, the user groups supported,
the techniques used, the scope of tools and infrastructure, and the application domains, these are
outweighed by similarities2 in that both approaches empower non-programmers to create their own
software using tools with a low barrier to entry.

The above descriptions confirm a certain similarity or overlap between the concepts of EUD, LCD,
and DIY software development. And since the term Low-Code is used in the industry-academia
collaborations in which the author is involved, he will also use it in the context of this paper, recognizing
that for practical work in such collaborations, both EUD, LCD, and DIY software development, either
alone or in combination, can help achieve the goal of empowering non-programmers.

This position paper aims to uncover and explore the intersection between LCD and sustainability by
reviewing relevant areas and how they relate to sustainability in general, and then to argue whether or
not these implications can be applied or adapted to LCD. The remainder of this paper is organized as
follows. Related areas and their implications are presented in Section 2 (DIY) and Section 3 (Software
Development). Section 4 discusses the results, namely whether and how these implications apply to
LCD, followed by conclusions and an outline of future work (Section 5). And since this position paper
is intended as a contribution to an interactive and engaging session to further elaborate on the topic,
some of the implications may require more imagination to follow, and others less.

2. DIY and Sustainability

The area of DIY in general is considered relevant because of the notion of DIY software development
described in Section 1. The idea is to uncover and explore sustainability implications from this area
that also apply to the more specific concept of DIY software development. The author is not a DIY
expert, nor does he have any knowledge of the relevant scientific communities, conferences, or journals.
An LLM prompt for the five most frequently cited conference papers or journal articles on DIY and
sustainability returned only a list of hypothetical references (see Appendix A.1). A search was finally
conducted on Google Scholar and ResearchGate, using the keywords DIY, do-it-yourself, sustainability,
and combinations thereof.

In 15 interviews with DIY practitioners, Salvia [4] seeks to explore how the product design profession
can have a positive environmental impact through DIY practices. Salvia describes DIY as a “window
of opportunity” for both sustainable consumption and production, especially in terms of saving and
extending the life of products through reuse, repair, repurposing, and reappropriation. Interestingly,
respondents were categorized as doers, adapters, makers, and creators, depending on their level of
interest and motivation. While the doers are primarily motivated by the need to solve problems, the
creators, on the other hand, are driven by their passion and desire to innovate. Even though DIY is
generally perceived as environmentally friendly, this could be undermined by the higher cost per item
or the potential for error compared to mass production. Salvia also recognizes the contribution of
designers in potentially expanding the range of DIY practitioners and classifies them along two axes:
Designers can play the role of a facilitator or collaborator, on a global or local scale.
Bafarasat and Oliveira [5] examine the role of DIY vs. SIY (Start-It-Yourself) urbanism for social
sustainability, which is part of sustainable development along with environmental and economic
sustainability. In this context, both DIY and SIY are bottom-up development paths, and in detail, DIY
2In the discussion following the presentation of the paper, the workshop participants suggested an even greater overlap
between End-User Programming (EUP) and LCD. According to Barricelli et al. [3], EUP is more narrowly defined than EUD
and is about empowering end users to write programs using special-purpose programming languages, including programming
by demonstration and visual programming. On the other hand, EUD also focuses on the adaptation of systems during their
actual use, thus covering the entire software life cycle.



refers to the fight of communities against poverty and poverty-generating mechanisms without the
permission and resources of public institutions, while SIY aims to create pressure on these institutions
after starting actions. They argue that both approaches have benefits and limitations, and propose two
different entities with checks and balances: The development entity meets the needs of the community,
and the organizing entity ensures that it serves the community and does not act as a business entity,
which requires a mature political culture.

In his review of the literature and actual developments, Hoftijzer [6] notes that DIY, which he sees as
a convergence of production and consumption, has been made possible by technological developments
that now empower end users to design and develop products. He emphasizes the positive nature of
user design as a sustainable contrast to the use and disposal of consumer products. However, Hoftijzer
also points out that the manufacturing technologies for unique user products are not yet mature in
terms of their use of natural resources and the potential abundance of product iterations.

De Waal and Smal [7] present DIY as a pathway to sustainability through the case study of a
Johannesburg-based clothing label. Their framework of DIY motivators is based on two main categories,
namely “Product and Service Evaluation” and “Identity Enhancement.” The first category, including
customization, diversity, and quality of a product as well as economic benefits, deals with the production
itself, while the second, including empowerment and fulfillment by creating, belonging to a community,
and uniqueness in identity, deals with the DIYers themselves, and how they enhance their identity.
Expanding on the idea of DIY, they propose a new approach called DI4Y2 (Doing-It-For-Yourself-And-
Others), which not only meets the needs of the individual, but also contributes to “the greater good of
the environment and all living beings,” further promoting sustainability.

3. Software Development and Sustainability

The literature reviewed in this section is part of an ongoing research initiative3 focused on how
software engineering practice addresses sustainability, with the goal of identifying influencing factors,
deficiencies, and best practices. These papers are considered relevant because LCD is a subset of
software development. This allows the author to speculate on whether or not some of the general ideas
are applicable or adaptable to LCD.

Paech et al. [8] recognize that sustainability is becoming an increasingly relevant aspect of software
development, but identifying sustainability effects during requirements engineering is still a challenging
task. In an exploratory study, they use Generative Pretrained Transformers (GPTs) to automatically
identify sustainability effects and conclude that GPT-4o is “capable of generating relevant sustainability
effects.” In addition, these effects can be generated in seconds, but at the cost of high power consump-
tion. These generated effects were found to be valid and plausible, hallucinations were not observed.
Limitations in the use of GPT-4o are its non-determinism and the inability to rank effects by relevance.

With the adoption of the Corporate Sustainability Reporting Directive (CSRD)4, the EU requires
companies to report on what they consider to be the risks and opportunities associated with social and
environmental issues, as well as the impact of their activities in these areas. Mazak-Huemer et al. [9]
present SustainScrum to systematically address sustainability throughout the development process.
Specifically, SustainScrum is a customized Scrum process that considers sustainability in the backlog,
user stories, and development phases, and provides quantitative sustainability indicators, including
a Sustainability Sprint KPI and a Sustainability Product KPI report. Interestingly, when evaluating
SustainScrum with open-source data, they found a number of challenges that need further attention.
While answering sustainability-related questions (SusAF, see below) is time-consuming in itself, it is
often necessary to train the development team to understand sustainability in the first place, including
EU regulations. Automating this sustainability assessment is another complex and laborious task.

3https://se.jku.at/sustainability-in-software-engineering/, last accessed: 2025-04-01
4https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-
reporting/corporate-sustainability-reporting_en, last accessed: 2025-04-01

https://se.jku.at/sustainability-in-software-engineering/
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en


Bambazek and Groher [10] report on the integration of the Sustainability Awareness Frame-
work (SusAF) into an undergraduate software engineering course and how the students were able to
identify sustainability effects. The SusAF is a guideline with questions to identify potential sustainability
effects with social, individual, environmental, economic, and technical dimensions. In addition, each
identified effect is categorized as immediate, enabling, or structural to indicate its magnitude. The
authors observed that all teams found potential sustainability effects, most of which were positive,
resulting in a variety of issues and illustrating the impact of software on an organization’s sustainability
goals. Bambazek and Groher also pointed out that the students did this without any prior theoretical or
practical knowledge of SusAF.

Groher and Weinreich [11] conducted an interview study with 10 software project team leaders
to understand how sustainability is perceived by practitioners. Specifically, the participants were
asked about their definition of sustainability in software development and its importance, potential
influencing factors, current problems, and measures to improve sustainability. They found that technical
and organizational sustainability issues are more important than economic ones, while environmental
aspects are not considered at all. They identified business goals, requirements, technologies, and people
as influencing factors. In terms of shortcomings such as lack of documentation and knowledge sharing,
the identified sustainability strategies are very general and difficult to distinguish from general quality
assurance measures.

4. Results and Discussion

Low-Code Development Platforms (LCDPs), which provide the tools to build software using the Low-
Code approach, offer a low barrier to entry for reuse and repair compared to traditional software
development, and therefore could be a great lever to extend the life of software while addressing
other aspects of sustainability. Categorizing Low-Code users by motivation and designing systems
accordingly to support a sustainable balance between problem-solving capabilities (doers) and facilitating
passion (creators) could be another way to promote sustainability [4].

The idea of DIY vs. SIY also applies to LCD [5]. LCD initiatives that do not evolve into shadow IT, but
continue to receive IT support, avoid long-term side effects that undermine their original purpose [1].
Only by carefully designing LCD initiatives can a sustainable path be found between IT involvement
(organizing entity) and end-user flexibility (development entity). And when you do, LCD can deliver on
its promises. DI4Y2 [7] is another small but significant extension to the DIY approach. LCD literature
is typically concerned with empowering individual non-programmers. By implementing the DI4Y2

approach, the (positive) sustainability effects could be multiplied by the number of users. Different users
may have different sustainability effects, using AI to create adaptive systems would further maximize
the sustainability effects by addressing users individually within the DI4Y2 approach.

Again, using AI to automate certain aspects of sustainability [8] requires careful consideration due to
its high power consumption. However, incorporating such an AI capability into the design of an LCDP
would only consume energy once, rather than several times when building software from scratch. On
the other hand, GPTs have remarkable capabilities that could also help improve sustainability. Whether
automated or manual, systematically addressing and capturing sustainability helps identify its effects
[9, 10, 11]. With regard to SustainScrum, it remains unclear whether this process model can be applied
directly to LCD or whether it needs to be adapted. However, applying a development process to LCD
may be contradictory in the first place, since Low-Code promises a shallow learning curve.

It is interesting to note that papers from both areas discuss the fact that sustainability can be associated
with certain pitfalls that undermine its original intention, such as higher cost per item [4, 6] or the
administrative burden it imposes [9]. Since the initial cost of building an LCDP is generally higher
than that of building custom software from scratch, careful consideration is required to ensure that the
platform is sustainable in the sense that many software instances will be derived from it.



5. Conclusions and Future Work

This position paper first reflects on a case study of DIY (Do-It-Yourself) software development and
how it relates to sustainability through digital transformation. The author then argues that DIY
software development, EUD and LCD have a large overlap. Having established this common ground,
the paper continues to uncover and explore whether there are other or more detailed sustainability
implications than digital transformation. This is done by examining the related fields of DIY and
software development in general and how they address sustainability. Finally, the author speculates on
whether or not these general ideas and approaches can be applied or adapted to LCD, finding that LCD
can draw from both fields and, more importantly, that LCD can be used to leverage sustainability.

Immediate future work aims to confirm these preliminary findings. First, by aligning the measures
found in the literature and the ideas presented above with the United Nations Sustainable Development
Goals, a more comprehensive and generalizable baseline could be established (see Appendix A.2, for
example). Then, a systematic extension of the literature reviewed would provide more insights and a
broader range of answers to the original question. Finally, an empirical validation of the claims made
with respect to the intersection of sustainability and LCD through their use in actual LCD projects
could strengthen the existing body of knowledge.

Acknowledgments

The research reported in this paper has been partly funded by the Federal Ministry for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry for Labour
and Economy (BMAW), and the State of Upper Austria in the frame of the SCCH competence center
INTEGRATE (FFG grant no. 892418) in the COMET - Competence Centers for Excellent Technologies
Programme managed by Austrian Research Promotion Agency FFG.

Declaration on Generative AI

During the preparation of this work, the author used DeepL Write and DeepL Translate in order to:
Text Translation, Improve writing style, and Grammar and spelling check. Further, the author used
Llama 3.3 70B (hosted in-house) in order to: Generate literature review (results discarded, see Appendix
A.1) and Drafting content (see Appendix A.2). After using these tools/services, the author reviewed and
edited the content as needed and takes full responsibility for the publication’s content.

References

[1] N. Carroll, M. Maher, How shell fueled digital transformation by establishing diy software
development, MIS Quarterly Executive (2023) 99–127. doi:10.17705/2msqe.00076.

[2] B. Schenkenfelder, U. Brandstätter, H. Kirchtag, M. Wimmer, Low-code development and end-user
development: (how) are they different?, in: D. Tetteroo, S. Feger, D. Fogli, A. Mørch, A. Piccinno,
M. U. Modén (Eds.), Proceedings of the First International Workshop on Participatory Design &
End-User Development - Building Bridges co-located with the International Nordic Conference on
Human-Computer Interaction (NordiCHI 2024), number 3778 in CEUR Workshop Proceedings,
Aachen, 2024. URL: https://ceur-ws.org/Vol-3778/short5.pdf.

[3] B. R. Barricelli, F. Cassano, D. Fogli, A. Piccinno, End-user development, end-user programming
and end-user software engineering: A systematic mapping study, Journal of Systems and Software
149 (2019) 101–137. doi:10.1016/j.jss.2018.11.041.

[4] G. Salvia, The satisfactory and (possibly) sustainable practice of do-it-yourself: the catalyst role of
design, J. of Design Research 14 (2016) 22. doi:10.1504/JDR.2016.074782.

[5] A. Ziafati Bafarasat, E. Oliveira, Social sustainability: Do-it-yourself urbanism, start-it-yourself
urbanism, Geoforum 141 (2023) 103726. doi:10.1016/j.geoforum.2023.103726.

http://dx.doi.org/10.17705/2msqe.00076
https://ceur-ws.org/Vol-3778/short5.pdf
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/10.1504/JDR.2016.074782
http://dx.doi.org/10.1016/j.geoforum.2023.103726


[6] J. Hoftijzer, Sustainability by do-it-yourself product design: User design opposing mass con-
sumption, in: P. Israsena, J. Tangsantikul, D. Durling (Eds.), Research: Uncertainty Con-
tradiction Value - DRS International Conference 2012, Bangkok, Thailand, 2012. URL: https:
//dl.designresearchsociety.org/drs-conference-papers/drs2012/researchpapers/52.

[7] D. De Waal, D. Smal, Re-thinking do-it-yourself: An ontological approach to sustainability
in fashion design praxis, DIY, Alternative Cultures & Society 2 (2024) 191–206. doi:10.1177/
27538702241238775.

[8] B. Paech, P. Kaiser, P. Bambazek, I. Groher, N. Seyff, Exploring generative pretrained transformers
to support sustainability effect identification - a research preview, in: A. Hess, A. Susi (Eds.),
Requirements Engineering: Foundation for Software Quality, Springer Nature Switzerland, Cham,
2025, pp. 226–234.

[9] A. Mazak-Huemer, M. Vierhauser, I. Groher, Sustainscrum: integrating sustainability assessment
in a tailored scrum process for computing quantitative sustainability indicators, Software and
Systems Modeling (2025). URL: https://link.springer.com/10.1007/s10270-025-01266-5. doi:10.
1007/s10270-025-01266-5.

[10] P. Bambazek, I. Groher, Integrating the sustainability awareness framework in undergraduate
software engineering education, in: D. Mendez, A. Moreira, J. Horkoff, T. Weyer, M. Daneva,
M. Unterkalmsteiner, S. Bühne, J. Hehn, B. Penzenstadler, N. Condori-Fernández, O. Dieste, R. Guiz-
zardi, K. M. Habibullah, A. Perini, A. Susi, S. Abualhaija, C. Arora, D. Dell’Anna, A. Ferrari,
S. Ghanavati, F. Dalpiaz, J. Steghöfer, A. Rachmann, J. Gulden, A. Müller, M. Beck, D. Birk-
meier, A. Herrmann, P. Mennig, K. Schneider (Eds.), Joint Proceedings of REFSQ-2024 Work-
shops, Doctoral Symposium, Posters & Tools Track, and Education and Training Track. Co-
located with REFSQ 2024, number 3672 in CEUR Workshop Proceedings, Aachen, 2024. URL:
https://ceur-ws.org/Vol-3672/EuT-paper1.pdf.

[11] I. Groher, R. Weinreich, An interview study on sustainability concerns in software development
projects, in: 2017 43rd Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), IEEE, Vienna, Austria, 2017, p. 350–358. URL: http://ieeexplore.ieee.org/document/
8051370/. doi:10.1109/SEAA.2017.70.

https://dl.designresearchsociety.org/drs-conference-papers/drs2012/researchpapers/52
https://dl.designresearchsociety.org/drs-conference-papers/drs2012/researchpapers/52
http://dx.doi.org/10.1177/27538702241238775
http://dx.doi.org/10.1177/27538702241238775
https://link.springer.com/10.1007/s10270-025-01266-5
http://dx.doi.org/10.1007/s10270-025-01266-5
http://dx.doi.org/10.1007/s10270-025-01266-5
https://ceur-ws.org/Vol-3672/EuT-paper1.pdf
http://ieeexplore.ieee.org/document/8051370/
http://ieeexplore.ieee.org/document/8051370/
http://dx.doi.org/10.1109/SEAA.2017.70


A. LLM Prompts and Responses on DIY and Sustainability

A.1. Literature Referernces

Figure 1: Llama 3.3 70B generates hypothetical examples of what a list of references on DIY and sustainability
could look like. The examples are not real, and DOIs are not valid.



A.2. Low-Code Development (LCD) and Sustainability Development Goals (SDGs)

Figure 2: The response generated by Llama 3.3 70B on the intersection of LCD and the SDGs.


	1 Introduction
	2 DIY and Sustainability
	3 Software Development and Sustainability
	4 Results and Discussion
	5 Conclusions and Future Work
	A LLM Prompts and Responses on DIY and Sustainability
	A.1 Literature Referernces
	A.2 Low-Code Development (LCD) and Sustainability Development Goals (SDGs)


