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Abstract
The concept of Multi-Domain Operations (MDOs) has gained increasing recognition within both civilian and
military strategic discourse, highlighting the necessity of integrating capabilities across multiple domains to
achieve synergistic negative effects. So, the vehicles’ attack surface is in expansion in unprecedented ways due to
the integration of them in Smart City systems, exposing critical continental-scale networks that are essential for
governmental and military operations. Vehicles can be perfect victims of attacks linked to future complex MDOs
with the ultimate goal of affecting people-related effect dimension’s. However, Multi-Surface Threats (MSTs)
impacting several In-Vehicle systems simultaneously cannot be ruled out. One of these MDTs i.e. Adversarial
Machine Learning (AML) can target In-Vehicle Machine Learning (ML) based security systems like Intrusion
Detection Systems (IDSs) and networks for Traffic Sign Recognition Systems (TSRSs) simultaneously. So, the
primary goal of this work is to investigate the potential relevance of specific hyperparameters associated with
Decision Tree (DT)-based ensemble models on which the Supervised ML Intrusion Detection System (IDS) is made
up for the CAN Bus Frame Detection task. These hyperparameters are evaluated in terms of their capacity to
function as inherent defensive mechanisms (or deterrents) against a Black-Box AML attack i.e. the Zeroth Order
Optimization (ZOO), particularly when conceptualized as the "Cyber" component within MDOs. The targeted
IDS models represent Technology Transfer (TT) state-of-the-art approaches including Random Forests (RF) based
on bagging trees, Gradient Boosting (GB) and Extreme Gradient Boosting (XGB). The number of bagging trees
in RF and the number of boosting rounds in GB affect the time required to perform the attack. In contrast, the
same parameters for the XGB does not exhibit the same influence. Thus, identifying optimal configurations for
these parameters may serve as a concrete example of Trustworthy AI practice particularly useful to defeat Single
Surface Threats (SSTs) as a part of MSTs in Multi-Domain (M-D) scenarios. The ultimate goal of this work is to
contribute to proper education regarding the responsible development of AI/ML-based systems by industries and
academies (civilian/military public/private) by evaluating the positive impact of the examinated values.
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1. Introduction

Multi-Domain Operations (MDOs) represent the contemporary paradigm in military strategy, aiming to
generate synergistic effects through the integration of capabilities across multiple operational domains
(i.e. Space, Air, Land, Sea and Cyber). This concept entails the execution of coordinated actions within
diverse environments, assets, tools and methodologies, with the strategic objective of countering
adversarial strengths and asymmetries [1, 2]. Such operations are structured to impose simultaneous
operational and tactical challenges on opponents by leveraging a well-calibrated force posture and the
coherent integration of resources across physical and informational environments. These actions are
spatially and temporally distributed, while simultaneously creating complex multifaceted dilemmas for
the adversary [3]. From the defence point-of-view, Multi-Domain Task Forces (MDTFs) are useful to
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integrate defence resources across physical and informational environment.
A fundamental tenet of MDOs lies in the integration of synchronized kinetic and cyber capabilities

across various operational domains, with the objective of imposing ”multiple dilemmas” on adversaries
[4]. The main problems from the defensive point-of-view are inadequate synchronization mechanisms
(across various domains). To overcome these limitations, the Cyber Social Security (CSS) framework
has been proposed as a means of enabling the effective incorporation of cyber defence operations
within Multi-Domain (MD) strategic architectures, giving rise to the CSS-MDO framework, designed for
defense-oriented applications [5, 6]. The horizontal axis delineates the five active warfare domains, each
capable of employing tailored tools, methodologies, and procedures that correspond to the Detection-
Response-Prevention cycle (represented on the vertical axis). By defining these vertical operational
tiers (in which the MDTFs can fall), the model provides a basis for managing cyber impacts in civilian
contexts involving attacks aimed at the cognitive dimension of individuals [7].

A particular asset involving Cyber and Land domains in future MDOs is the Smart City. Specific
vulnerable assets in the “dense network” of a Smart City’s asset are Connected and Autonomous Vehicles
(CAVs) [8] originating the concept of the Internet of Vehicles (IoV). These are the core of the future
evolution of shared mobility (as well as the evolution of electric mobility) useful to optimising any
sustainable travel [9]. In this great climate of innovation, the attack surface exploitable by malicious
actors will take forms difficult for any "cyber social" blue team to understand. For example, it would be
very easy for any attacker (more or less skilled) to attack Controller Area Network (CAN) protocol-
based In-Vehicles Networks (IVNs) [10] related to civilian-use vehicles by exploiting a set of activities
(including military ones) conducted through different domains to perceive, understand, and orchestrate
"dilemmas" [11]. Certainly, Artificial Intelligence (AI) and Machine Learning (ML) are powerful tools
that could prevent these attacks ultimatly targetting the psychological and physical well-being of
passengers [12]. Some of these approaches can be ML-based Intrusion Detection Systems (IDSs) [13] but
Traffic Sign Recognition Systems (TSRS) too. Adversarial Machine Learning (AML) is considered one of
the most AI/ML systems’ threats [14, 15], especially in Multi-Domain Threats (MDTs) scenario. In the
context of evasion-based attacks, attackers can craft input data at testing (or deployment) time [16],
modifying features such as pixels in an image or values in a CAN bus frame in an imperceptible way to
humans, yet causes the targeted model to predict incorrect classifications [17, 18]. The Black-Box setting
of these is regarded as both the most realistic and the most accessible from the attacker’s perspective,
as it does not require any prior access to the internal details of the victim system [14, 19]. However,
ispriating to the concept of MDTs (in which the attacker acts on multiple domain assets even at the
same time), it is reasonable to imagine threats related to impacting attacks on different surfaces of
the same asset during MDOs. This concept can be coined as Multi-Surface Treats (MSTs), recognized
as (possible) parts of MDTs. Current literature on the application or conceptualization of Black-Box
attacks within the CAN bus frame detection task remains limited and in an early stage of development
(even in MSTs and MDTs scenarios).

Therefore, this paper presents an empirical investigation into the role of specific hyperparameters
associated with Decision Tree (DT)-based ensemble models i.e. Random Forest (RF), Gradient Boosting
(GB), and Extreme Gradient Boosting (XGB) used as the core of supervised ML-based IDS in the context
of CAN Bus Frame Detection task. It is assumed that the IDS is installed onboard the vehicle and it is
subjected to a Black-Box Adversarial Machine Learning (AML) attack i.e. the Zeroth Order Optimization
(ZOO) (in a pure evasive Black-Box setting). This type of attack is conceptualized as a Single-Surface
Threat (SST) seen as a part of a complex MST, falling into the Cyber component of a complex MDO. The
core of the analysis lies in evaluating how variations in selected hyperparameters affect the time required
to generate adversarial examples for each targeted ML model. Experimental findings indicate that the
number of bagging trees in RF and the number of boosting rounds in GB models have a significant
impact on the time needed for the attack. Conversely, the same does not hold for the boosting rounds
in XGB. These hyperparameters, in the cases of RF and GB, can thus be interpreted as intrinsic defense
or deterrence mechanisms against the ZOO attack. Appropriately tuning these hyperparameters may
exemplify a trustworthy AI-by-design approach for In-Vehicle ML systems’ robustness [20, 16]. In
particular, the work underscores the relevance of robustness [21] and security [22] properties in the



design and deployment of ML models within adversarial environments [23]. Moreover, the secondary
goal of this work is to qualitatively identify the positive impact resulting from educating MDTFs about
the best practices programming (i.e. appropriate values for the previously mentioned hyperparameters)
related to ZOO countermeasures (in a pure Black-Box scenario) on the "Detection", "Response" and
"Prevention" axes of the CSS-MDO framework useful to defeat MDTs and MSTs in future cyber social
scenarios [5, 24]. The central aim of this work is to improve a multidimensional national deterrence
strategy [7].

In summary, the research questions (RQs) are:

• RQ1: "Can the hyperparameters realted to the number of bagging trees in Random Forest (RF),
the number of boosting rounds in Gradient Boosting (GB), and the number of boosting rounds in
Extreme Gradient Boosting (XGB) affect the time needed to generate ZOO adversarial examples,
when applied to supervised ML-based Intrusion Detection Systems (IDS) in the context of the
CAN Bus Frame Detection Task (in a Black-Box attack scenario)?"

• RQ2: "Is it possible to qualitatively quantify the (positive) impact of these values on the "Detection",
"Response" and "Prevention" axes of the CSS in MDOs framework (for educational purpouse)?"

2. Methodology

This phase addresses all the RQs. In order to answer to RQ1, considering the possibility of MSTs (i.e.
impacting several In-Vehicle systems simultaneously), an example of that could be a simultaneous threat
on the In-Vehicles networks protected by an IDS for CAN bus frame detection and on the network
enabling the TSRS. Figure 1 describe the current attack scenario. Regarding the first SST i.e. the CAN
based, it is reasonable to think that an ideal scenario for any Vehicle-SOC involves deploying a ML-based
IDS that maximizes the time required by an adversary to generate adversarial examples. Based on this
premise, certain hyperparameters of ensemble-based ML models, specifically those pertaining to RF,
GB, and XGB may serve as intrinsic defense mechanisms by influencing the computational cost of
adversarial example generation. This strategy aims to enhance organizational resilience by increasing
the adversarial effort necessary to breach the system. The methodological approach adopted in this
analysis entails, for each ML model (RF, GB, and XGB), the measurement of the time (in seconds) required
to generate 92,270 adversarial examples for incrementally varied hyperparameter values. These include
the number of bagging trees in RF, and the number of boosting rounds in GB and XGB, respectively.
Each observation is captured following approximately five minutes of computation.

In order to answer to RQ2, considering the critical nature of the scenario that surrounds this research
work, an impact (positive) analysis realted to the MDTF education (acting along the CSS-MDO framework
vertical axes) about the best programming practices that improve the resilience of ML models to Black-
Box attacks is an important milestone to underline the right importance of these. The actual qualitative
analysis is based on the Land and Cyber domains. This analysis comes from an high-level qualitative
risk assessment related to this SST. This second analysis is adopted considering multiple hypothetical
negative consequences: the potential to incite a climate of terror through anomalous vehicle behavior
and the cognitive disruption of civilian and military operators, the reputational demage to the national
infrastructure and institutions [25], and the inherently risk-averse perspective guiding the human
evaluator point-of-view. Accordingly, this RQ seeks to underscore this critical need for future research.

3. Conclusion & Future Work

MDOs integrate capabilities across all the active warfare domains to attack victims through synchro-
nized cross-domain impacts. Smart Cities and especially CAVs represent critical assets in this scenario,
vulnerable to cyberattacks based on Black-Box AML. The target of these can be the ML-based IDS for
CAN-based IVNs security. These attacks pose significant risks within MDTs and especially MSTs sce-
narios (considering other In-Vehicle user-assistance systems). Despite growing concerns, the literature



Figure 1: MST under exam

on Black-Box AML targeting CAN frame detection remains limited and underdeveloped (even in a M-D
scenario). Therefore, this paper has the goal of explore the possible influence of some hyperparameters
related to DT-based state-of-the-art Ensemble models (i.e. RF, GB, XGB) underlying an IDS, victim of
the ZOO attack (in a purely Black-Box scenario) seen as a MST, on the time needed to the generation
of adversarial examples is evaluated (RQ1) in the MDTs scenario. In addition, the impact of such on
the CSS framework for MDOs is qualitatively evaluated (RQ2). Some future directions are: assess the
impact of this attack also on a TSRS in a MDTs componing future MDOs.
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