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Abstract
In 2012, the United Nations set 17 Sustainable Development Goals (SDGs) to build a better future by 2030,
but monitoring progress is challenging due to data complexity. Recent Large Language Models (LLMs) have
significantly improved Natural Language Processing tasks, including text classification. This study evaluates
only open-weight LLMs for single-label, multi-class SDG text classification, comparing Zero-Shot, Few-Shot, and
Fine-Tuning approaches. Our goal is to determine whether smaller, resource-efficient models, optimized through
prompt engineering, can obtain competitive results on a challenging dataset. Using a benchmark dataset from the
Open SDG initiative, our findings show that with effective prompt engineering, small models can significantly
achieve competitive performance.
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1. Introduction

The Sustainable Development Goals (SDGs) consist of 17 interlinked global objectives established at the
2012 United Nations Conference on Sustainable Development in Rio de Janeiro, serving as a “blueprint
to achieve a better and more sustainable future for all”1 and aimed for achievement by 2030 [1, 2].
These goals underpin the 2030 Agenda for Sustainable Development, endorsed unanimously by all
United Nations (UN) Member States. Monitoring SDG progress is challenging2 due to the vast and
complex data involved [3, 4, 5]. Manual methods are no longer sufficient; automated text classification
has become essential for extracting and categorizing relevant information from reports, news, social
media, scientific articles and official documents [6, 7, 8, 9]. Such models enable real-time monitoring,
rapid crisis response, and support data-driven decision-making. Recent advances in Large Language
Models (LLMs) have transformed Natural Language Processing (NLP) by delivering state-of-the-art
performance in text classification, sentiment analysis, and language understanding [10, 11, 12]. In this
context, understanding whether the latest LLMs can support toward identifying SDGs is crucial.

In this work, we conduct a comparative study of several proprietary and open-weight LLMs ap-
plied to a single-label, multi-class SDG text classification task. Our primary aim is to assess whether
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smaller models, optimized via prompt engineering techniques and requiring fewer resources, can obtain
competitive results on a challenging dataset. To this end, we introduce a benchmark dataset from the
open-source initiative Open SDG (OSDG3) and explore optimization strategies including in-context
learning Zero-Shot (ZS), Few-Shot (FS), and Fine-Tuning (FT). Our experiments demonstrate that with
proper fine-tuning and optimization, resource-efficient models can achieve competitive performance.
In summary, our main contributions are:

• The introduction of a novel benchmark for SDG text classification;
• A preliminary evaluation of several LLMs;
• An in-depth analysis of optimization strategies covering ZS, FS, and FT approaches.

The overarching objective of this project is to transform the OSDG dataset, along with the associated
classification labels for each document, into a structured Knowledge Graph, which will be deployed
via a SPARQL endpoint. This approach facilitates interoperability with Semantic Web and knowledge
graph technologies [13], which have demonstrated significant efficacy in enhancing AI systems across
a variety of domains in recent years [14, 15, 16, 17]. Advances in information extraction have led to the
development of numerous effective pipelines for constructing knowledge graphs from text, employing
either fully automated pipelines [18, 19, 20] or human-in-the-loop methodologies [21, 22]. As part of
our methodology, we also intend to leverage a combination of LLMs and SPARQL queries to efficiently
retrieve and align classified documents with established SDG taxonomies. This integration will enable
real-time monitoring and scalable data-driven decision-making while supporting conversational agents
that leverage the knowledge graph for advanced reasoning and contextual understanding [23, 24].

This research was carried out in collaboration with Ovum S.r.l., an Italian startup specializing
in Artificial Intelligence, Cloud Computing, and Big Data, focused on developing tools for efficient
interpretation of large-scale textual data through the lens of the SDGs. The remainder of the paper is
organized as follows. Section 2 presents the literature review. Section 3 describes the task, detailing
the benchmark dataset and outlining the characteristics of the employed LLMs. Section 4 explains the
experimental setup, and Section 5 presents the results. Finally, Section 6 concludes the paper and offers
recommendations for future work.

2. Related Work

We reviewed the literature on SDG classification and related taxonomies, with an emphasis on employing
LLMs for text categorization. Specifically, we found that various NLP methods have been used to classify
documents in the SDG context, including the development of ontologies and classification models.
For example, the OSDG initiative [25] combines features from previous work, such as the keyword
ontology by Bautista-Puig et al. [26] and data from the FP7-4-SD project4, to construct a comprehensive
ontology that is then mapped to the Microsoft Academic Graph5. A formal Knowledge Organization
System (KOS) has also been proposed [27, 28] to model the Global SDG Indicator Framework, covering
17 Goals, 169 Targets, and 231 indicators, while linking to resources such as UNBIS and EuroVoc. Other
studies have employed pre-trained deep learning models, like the Universal Sentence Encoder [29], to
classify SDG-related texts in legal and other domains, while research in [30] evaluated the Aurora SDG
model version 5 against previous systems and the Elsevier model. Commercial efforts are also notable.
Collaborations among Springer Nature, Digital Science Consultancy6, and Dimensions7 have led to
a system that categorizes publications into SDGs using supervised machine learning. Similarly, SDG
Juicer8, developed by Ovum, Linkalab9, and AB Innovation Consulting10, uses AI to extract SDGs from
3https://open-sdg.org/
4https://www.fp7-4-sd.eu/
5https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
6https://www.digital-science.com/product/consultancy/
7https://www.dimensions.ai/
8https://sdgjuicer.com/
9https://www.linkalab.it/
10https://www.abinnovationconsulting.com/
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corporate documents, thereby aligning business strategies with the UN Agenda 2030.
Over the past five years, LLMs have transformed NLP by processing vast amounts of text from

various sources [31, 32, 33, 34, 35, 13, 36]. Text classification, in particular, has benefited from these
advances, improving tasks such as sentiment analysis [37], research topic identification [38], intent
recognition [39], and automated fact-checking [40]. More broadly, LLMs have played a crucial role in
enhancing information extraction pipelines across various domains [41], including engineering [42]
and financial sustainability [43]. For instance, Angioni et al. [44] combined linguistic pattern analysis
with transformer models to construct a knowledge graph from a collection of news articles, aiming to
identify key trends related to ESG factors.

The advent of transformer architectures, initiated by models like BERT and GPT in 2018 [10, 45], has
been pivotal, with transformer-based models now dominating top NLP tasks [46]. The rise of platforms
such as HuggingFace11 and the rapid adoption of ChatGPT12 have further spurred research in text
classification. Recent advances have also explored alternative methodologies for SDG classification
by leveraging quantized, instruction-tuned LLMs. In particular, Fankhauser et al. [47] proposed the
Decompose-Synthesize-Refine-Extract (DSRE) framework, which employs advanced prompt decompo-
sition techniques to break down the classification task into more manageable subtasks. This framework
not only enhances the zero-shot capabilities of LLMs for both single-label and multi-label classification
but also addresses computational efficiency through model quantization. Their results indicate that,
even with minimal fine-tuning, such strategies can achieve competitive performance while significantly
reducing computational overhead. These insights further underscore the potential of incorporating
instruction tuning and prompt engineering to overcome data imbalance and scalability challenges in
automated SDG classification. Despite these advancements, challenges remain, including high computa-
tional costs and the need for robust hardware, which restrict access to state-of-the-art LLMs [48, 49]. In
light of these issues, a comparative evaluation of LLMs specifically for SDG classification is still lacking,
an issue that our work aims to address.

3. Background

The experiments described in this work were performed using 3 LLMs on data from the OSDG Commu-
nity Dataset13 (OSDG-CD), a dataset obtained thanks to the collaborative work of a thousand volunteers
distributed in more than 110 countries, who validated thousands of text extracts for training models
on SDG classification tasks; the October 2023 version, used in this work, includes more than 40k
excerpts with more than 300k labels, each averaging around 90 words and drawn from public documents
(including UN sources such as SDG-Pathfinder14 and SDG Library15). Nine volunteers analyzed each
text and consensus was measured by an “agreement” score defined as |𝐿𝑃 − 𝐿𝑁 |/(𝐿𝑃 + 𝐿𝑁), where L
stands for “Label”, P stands for “Positive” and N stands for “Negative”. In a preliminary dataset cleaning
phase, only texts with at least 3 validations, a positive-negative ratio greater than 2:1, and an agreement
greater than 0.75 were selected. Since the original dataset contains texts related only to SDGs 1 to 16,
adding another 400 texts to represent the category “Other” (which, for uniformity of nomenclature, we
called “SDG 0”) was necessary. The final balanced dataset was then divided into a training set of 4,760
texts (70%), and validation and test set both of 1,020 texts (15%), all equally distributed among the 17
classes mentioned above.

The three LLMs that were used in the experiments described in this work are: i) Llama-2-7b-chat-
hf16, ii) Mistral-7B-instruct17 and iii) Phi-3-mini-4k-instruct18. These LLMs were selected because,

11https://huggingface.co/
12https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
13https://zenodo.org/records/5550238
14https://sdg.iisd.org/news/oecd-tool-applies-sdg-lens-to-international-organizations-policy-content/
15https://www.sdglibrary.ca/
16https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
17https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
18https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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Table 1
Results (in percentages) of the experiments when employing ZS learning. Values are in percentages.

MODEL NAME Pre Rec Acc F1

Llama-2-7b-chat-hf 63.3 54.7 54.7 53.8
Mistral_7B_instruct 64.3 55.6 55.6 51.6
Phi-3-mini-4k-instruct 69.7 59.2 59.2 59.8

Table 2
Results (in percentages) of the experiments when employing FS learning with 3 random examples.

MODEL NAME Pre Rec Acc F1

Llama-2-7b-chat-hf 61.4 48.1 48.1 48.5
Mistral_7B_instruct 66.5 58.2 58.2 54.9
Phi-3-mini-4k-instruct 75.0 72.6 72.6 72.7

at the onset of this study, they were among the highest-performing open-weight models in classification
tasks, and the diversity in their architectures reflected the state-of-the-art in open-weight generative
AI at that time. LLaMa-2 is a decoder-only Transformer developed by Meta and available in sizes
from 7B to 70B parameters [50]. Its Chat variants are optimized via Supervised Fine-Tuning (SFT) and
Reinforcement Learning with Human Feedback (RLHF) on a 2T token corpus19 and public training
datasets. One of its strengths is Grouped-Query Attention (GQA) [51], which significantly optimizes
inference scalability. Mistral-7B is the first decoder-only model developed by the French company
Mistral AI, founded in 2023 [52]. Among the key innovations are the Sliding Window Attention
mechanism, which supports up to 8,000 tokens and a fixed cache of 128,000 tokens, grouped query
attention, and a BPE Byte-fallback tokenizer. The Phi-3 models were developed by Microsoft in 2024
and offer high performance in a compact decoder-only design [53]. The smallest model, with nearly
4 billion parameters, supports large context windows of up to 128K tokens without any quality loss.
These models are instruction-optimized and built according to the Microsoft Responsible AI standard,
making them particularly suitable for resource-constrained environments.

4. Experimental evaluation

The primary aim of this study was to assess the 3 LLMs cited in the previous sections using the OSDG
Community Dataset benchmark discussed above for SDG text classification. We employed three learning
approaches: ZS learning, FS learning, and FT.

In the ZS learning setting, models processed the test set with a basic prompt (no examples), while in
FS learning the prompt was augmented with 3 random training texts. For FT, the pre-trained models
underwent an additional training phase using the training and validation sets from the OSDG-CD (see
Section 3); evaluation was then performed on the corresponding test set.

All prompt templates are available at https://github.com/vincenzodeleo/sdg_classification_prompts.
For FT, standard parameter settings were used. Specifically, Llama-2 was fine-tuned for 1 epoch with

a learning rate of 2 ⋅ 10−4, batch size 4, LoRA attention dimension 64, LoRA scaling factor 16, dropout
0.1, using float16 for 4-bit base models with nf4 quantization. Mistral was fine-tuned for 10 epochs with
a learning rate of 10−5 and batch size 8, whereas Phi-3 was fine-tuned for 1 epoch with a learning rate
of 5 ⋅ 10−6, batch size 4, LoRA scaling factor 32, and dropout 0.05.

https://github.com/vincenzodeleo/sdg_classification_prompts


Table 3
Results (in percentages) of the experiments when employing FT. Values are in percentages.

MODEL NAME Pre Rec Acc F1

Llama-2-7b-chat-hf 86.8 85.3 85.3 85.5
Mistral_7B_instruct 88.0 88.2 88.2 88.1
Phi-3-mini-4k-instruct 70.7 62.7 62.7 63.5

5. Results

In this section, we present the experimental outcomes for the 3 models Llama-2-7b-chat-hf, Mistral-7B-
instruct, and Phi-3-mini-4k-instruct, evaluated using ZS learning, FS learning with 3 random examples,
and FT. Performance was assessed via macro-averaged Precision, Recall, Accuracy, and F1-score.

Tables 1 and 2 show the ZS and FS results, respectively. Notably, the Phi-3 model achieved 59.8%
in ZS and 72.7% in FS, indicating its strong performance in settings with minimal examples probably
thanks to its optimized architecture and training methodologies on optimized dataset. This finding
aligns with the result from [53], where Phi-3 is demonstrated to outperform larger models in specific
benchmarks despite being trained on fewer parameters

Table 3 presents the FT results, where all models (except Phi-3) improved significantly, with Mistral
attaining an F1-score of 88.1%. These results are consistent with findings already shown in other
experiments20, which claim that the fine-tuned Mistral-7B can also outperform GPT-4.

6. Conclusions

The experiments shown in this work demonstrate that open-weight LLMs performance in text classifica-
tion against SDGs can be significantly improved through prompt engineering and fine-tuning strategies.
In zero-shot and few-shot settings, the Phi-3-mini-4k-instruct model consistently outperformed the
other two models under evaluation, achieving F1-scores of around 60% and 70%, respectively; this
was possible thanks to its optimized architecture and efficient training methodologies, which provide
a competitive advantage in low-information situations. On the other hand, fine-tuning significantly
improved the performance of the Mistral-7B-instruct model, which managed to achieve F1-scores of
almost 90%; this result underlines the effectiveness of domain-specific supervised training. These results
not only highlight the potential of small open-weight LLMs as valid alternatives to proprietary models
that are vastly larger in terms of parameters, but also highlight the importance of tailoring prompting
and training strategies to the specific requirements of the task at hand. Building on the promising
results obtained in our current experiments, future work will extend our investigation in two significant
directions. First, we plan to broaden the portfolio of open-weight LLMs by incorporating additional
models, such as BERT [10], T5 [54], Mixtral [55], Zephir [56] and also to other state-of-the-art models
such as DeepSeek [57], to evaluate whether these alternatives can further enhance performance in
SDG text classification tasks under various learning paradigms (zero-shot, few-shot, and fine-tuning).
Second, we intend to integrate experiments with proprietary models, like OpenAI’s GPT-4 [58] and
DistilGPT-2 [59], to conduct a direct and comprehensive comparison between smaller, resource-efficient
models and their larger, closed-weight counterparts. This expanded study aims to provide deeper
insights into the trade-offs between efficiency, scalability, and domain-specific performance, ultimately
guiding the selection of the most suitable model for sustainable development applications.

19https://llama.meta.com/llama2/
20https://agentissue.medium.com/mistral-7b-outperforms-gpt-4-in-specialized-tasks-d75fec6803e2
https://predibase.com/blog/lora-land-fine-tuned-open-source-llms-that-outperform-gpt-4
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