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Abstract
Building Information Modeling (BIM) centralizes project data within a unified digital framework, enhancing
collaboration across the Architecture, Engineering, Construction, and Operation (AECO) sector stakeholders.
However, querying BIM data remains challenging due to the complexity of formats such as Industry Foundation
Classes (IFC), which require specialized expertise. Existing tools provide limited functionality when attempting
to extract information through natural language interactions, while Large Language Models (LLMs) struggle
with IFC data due to its scale and complex relationships. The proposed approach addresses these limitations by
integrating LLMs and knowledge graphs (KGs) to facilitate natural language queries. By structuring BIM data as
a KG prior to LLM processing, we are able to enhance the extraction of knowledge while preserving semantic
integrity. Evaluated on a multi-storey building, our approach demonstrates the potential of graph-based AI for
BIM analysis.
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1. Introduction

Building Information Modeling (BIM) has significantly advanced the Architecture, Engineering, Con-
struction, and Operation (AECO) industry by consolidating project data into a structured digital
representation. It enhances collaboration across all project phases, from design to facility management,
by incorporating diverse types of information, such as geometry, scheduling, costs, and sustainabil-
ity aspects [1]. However, despite its advantages, extracting meaningful insights from BIM models
remains a challenge due to their complexity, high data volume, and reliance on structured formats
like Industry Foundation Classes (IFC) [2]. Existing tools, including Autodesk Revit1, Navisworks2, or
Solibri3, facilitate querying and analysis but require specialized expertise, making them less accessible
to non-experts.

Advancements in artificial intelligence, particularly in Large Language Models (LLMs), offer promising
approaches to improve data retrieval from BIM models. However, directly applying LLMs to IFC files
has proven ineffective due to BIM data’s extensive size and non-sequential nature, which limits their
ability to establish semantic connections between elements. While these models can extract elementary
numerical information, they struggle with reasoning over complex interdependencies between building
components. To address this, we propose an approach that combines AI-driven reasoning with structured
data representations to enhance the accessibility of BIM information through natural language queries.
By transforming BIM data into a structured graph before applying AI-based processing, this approach
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ensures that essential relationships between elements are maintained, facilitating more effective query
resolution. The primary contributions of this research are:

• A system framework that processes natural language questions and retrieves relevant BIM-related
information from IFC files.

• A two-step LLM-driven approach: first, by employing prompt engineering techniques we translate
user queries into structured queries, and second, reasoning techniques are applied to enhance
response accuracy.

• An experimental evaluation conducted on a real-world multi-storey building, demonstrating the
system’s effectiveness in retrieving structured BIM data from a natural language question.

This research is conducted within the scope of Digital Building Logbooks (DBLs) under the CHRON-
ICLE4 and LEGOFIT5 projects, both of which focus on digitalization and sustainability in the built
environment [3]. The remainder of this paper is structured as follows: Section 2 reviews related re-
search, Section 3 provides background on BIM data representation and graph-based transformations,
and Section 4 details the proposed approach. The experimental setup and the obtained results are
illustrated in Section 5, whereas conclusions are drawn in Section 6.

2. Related Works

Researchers have explored a variety of strategies to enhance Natural Language Processing (NLP)
applications within BIM, with a particular focus on semantic enrichment and comprehensive data
retrieval. A wide-ranging review provided in [4] surveys the literature on augmenting BIM models
with meaningful semantics, examining existing IFC-based methods and web-ontology approaches.

A systematic study in [5] assesses the use of NLP under Industry 4.0 principles, identifying key
datasets, technologies, and methodological gaps by reviewing 91 articles. The authors highlight the
persistent issue of data isolation in research and recommend cross-disciplinary methods, such as unified
frameworks and pretrained neural networks, to bridge these gaps.

Further integrating NLP into construction workflows, the authors in [6] developed a virtual assistant
for handling textual queries related to BIM and IFC models, achieving notable performance over multiple
test queries and diverse datasets. Another framework, introduced in [7], employs machine learning
classification of question types, combined with syntactic and semantic analyses, to extract user-relevant
details from BIM models through a specialized Navisworks application.

A graph-based approach is presented in [8], which formulates constraints and keywords for user
requirements, mapping them to IFC properties via the International Framework for Dictionaries (IFD).
This technique leverages pathfinding to link user queries with the IFC schema. Additionally, the
work reported in [9] leverages a modular ontology and an ontology-supported parser to translate
multi-constraint textual questions into SPARQL statements, obtaining a high accuracy rate on natural
language queries for BIM data. Likewise, [10] proposes an intelligent dialogue system that combines
BERT-based language models and natural language generation to retrieve specific attribute information
from IFC models.

A recent review [11] further supports the motivation of this study, highlighting the intermediate level
of data readiness in BIM environments for AI integration and identifying graph-based data preparation
as a promising method for elucidating relationships within IFC models.

The approaches presented in the cited works collectively indicate that making BIM models more
accessible through various techniques, ranging from virtual assistants to ontology-driven interfaces, is
a scientifically promising direction. These studies served as a foundation and inspiration, confirming
the relevance of enhancing human, BIM interaction through NLP and semantic methods. In particular,
the recurring use of graph-based representations suggested their potential for capturing complex
relationships inherent in IFC models. Building on these insights, our work adopts similar principles
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but extends them through a dedicated pipeline that integrates graph-based BIM transformation with
LLM-driven prompt engineering.

3. Background

BIM models can rely on open or closed data formats. Open formats and open standards (such as IFC)
foster interoperability and efficient data exchange. In this research, we adopt an Open BIM6 approach to
leverage these advantages. Open BIM has gained increasing prominence in the AECO industry because
it promotes data exchange based on shared standards and non-proprietary formats [12]. One of the most
recognized formats within Open BIM is the IFC, which provides a rich data model for describing building
components and their attributes [13]. The decision to work with IFC stems from its interoperability: it
allows a wide array of design, analysis, and management software tools to exchange information without
locking stakeholders into specific proprietary ecosystems. Consequently, open standards accelerate
collaboration by lowering technical barriers and enhancing transparency, making IFC an appealing
choice for creating comprehensive digital representations of buildings. In this work, we employed
an IFC model containing both geometric and spatial information about a multi-storey office building.
Models like the one used in this work are typically created through CAD-to-BIM processes, where
existing computer-aided design files are manually converted into BIM representations. Models derived
from photogrammetry and LiDAR-based Scan2BIM workflows are also frequently used, by capturing
real-world environments and converting them into precise digital representations. These approaches
yield a robust and detailed source of building data, suitable for subsequent semantic processing. To
streamline access, we transformed IFC data into a KG using the IFC-to-LBD converter [14]. This
conversion preserves critical building elements such as walls, floors, and openings as well as their
interrelationships, while casting the model into a more semantic format that can be queried via SPARQL.

The IFC model is publicly available7, along with its conversion to a KG representation8.

4. The Proposed Approach

The input of our approach consists of an IFC file representing a construction asset alongside a user’s
natural language question. The goal is to convert the building data into a knowledge graph (KG), apply
prompt engineering techniques to formulate SPARQL queries for data retrieval, and then generate a
concise, contextually relevant answer derived from these results.

In our approach, we use a variety of prompt techniques to support complex reasoning and data
extraction tasks from the KG. These include instruction prompting, chain-of-thought prompting, and
decomposed prompting. Each technique is tailored to a specific stage in the pipeline to improve clarity,
accuracy, and semantic alignment with the KG. For executing these prompts, we utilized the open-source
model GPT-4o Mini, which offered a suitable trade-off between reasoning capability and computational
efficiency.

In the first stage, the IFC file undergoes conversion into a KG using the IFC-to-LBD converter
mentioned in Section 3. This transformation maps building components (such as walls, doors, or floors)
to graph entities, while relevant attributes and relationships are encoded as RDF triples. The resulting
KG is then stored in GraphDB9, a database optimized for managing and querying semantic data.

Once the KG is available, the user’s query is processed through an LLM to generate SPARQL statements.
Specifically, decomposed prompting engineering approaches ensure that the question is first analyzed
for complexity, potentially dividing it into smaller sub-questions if multiple entities are involved10.
This decomposition is important because complex queries often involve multiple relationships and

6https://www.buildingsmart.org/about/openbim/
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8https://github.com/aibba19/ASK-BIM/tree/main/IFC-to-LBD%20Conversion/LBD%20Model
9https://graphdb.ontotext.com/
10https://github.com/aibba19/ASK-BIM/blob/main/prompts/simplify_question.py
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properties that need to be retrieved separately before reasoning over them. The system ensures that the
question is broken down into the smallest number of sub-questions necessary to retrieve all relevant
data efficiently. This structured approach leads to the generation of a minimal set of SPARQL queries,
each targeting specific data points. For example, if a query involves comparing the dimensions of walls
and windows, it would be split into two sub-questions: one retrieving wall dimensions and another
retrieving window dimensions. This ensures that each sub-question focuses on a distinct entity.

This approach accommodates both simple questions, which focus on a single type of building element
or property, and more complex queries requiring retrieval and comparison of different types of data
(for example, dimensions of windows relative to walls).

Each sub-question is then mapped to the relevant KG classes and relationships, providing the LLM
with the contextual elements needed to construct accurate SPARQL queries.

In this prompt, we use a matching technique that leverages instruction prompting to guide the
model in selecting the most relevant building element classes from a predefined list of available classes
extracted from the KG. It then instructs the model to match key terms or implied concepts in the
question (e.g., “height of doors”) with related classes (e.g., Door) based on their relevance.11

Thanks to this matching process, we can retrieve all properties and values associated with the key
entities present in the question, ensuring that the necessary contextual information is available for
further processing.

In the next step, a separate prompt is used to construct the actual SPARQL queries. The previously
extracted classes, properties and values from the KG are provided as contextual input to this prompt,
allowing the LLM to generate meaningful and well-structured queries.

The SPARQL generation prompt12 instructs the model to generate SPARQL queries based on the
provided classes, properties, and prefixes. It emphasizes simplicity, the inclusion of specific identifiers,
and adherence to given constraints. By clearly delineating the requirements and structure of the desired
output, the model is guided to produce accurate and relevant queries.

Once the LLM has created suitable SPARQL statements, they are executed against the SPARQL
endpoint to obtain the necessary data. The retrieval process is designed to yield a broad set of candidate
elements and property values, especially in more involved questions where calculations or comparisons
are required.

After retrieving the raw results, our approach employs the LLM once more to interpret these outcomes
and formulate a concise, contextually relevant answer in natural language to the original user’s question.
This step involves synthesizing the retrieved data and applying reasoning over multiple results when
necessary. The model is prompted with both the original user question and the structured output from
the SPARQL queries13, allowing it to refine the final response based on the retrieved information. This
not only enhances the clarity of the answer but also ensures that relationships between different queried
elements are properly understood.

5. Experimental Settings

We defined 28 questions by consulting architects, engineers, and BIM modelers, aiming to cover both
basic data retrieval and more advanced inference needs from an IFC model. The questions range
from straightforward element counts to queries requiring additional reasoning, ensuring a balanced
evaluation of our approach’s capabilities.

The defined questions are designed to be broadly applicable across various types of buildings, without
relying on prior knowledge of a specific structure. Their formulation targets common architectural
elements and relationships typically present in most BIM models, making them suitable for general-
purpose evaluation. Nonetheless, despite their intended generality, not all questions are applicable
to every building instance. For example, queries referring to upper floors, such as those involving a

11https://github.com/aibba19/ASK-BIM/blob/main/prompts/identify_classes.py
12https://github.com/aibba19/ASK-BIM/blob/main/prompts/generate_SPARQL.py
13https://github.com/aibba19/ASK-BIM/blob/main/prompts/final_answer.py
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“second floor”, cannot be meaningfully applied to single-storey buildings. Still, the overall design of the
questions prioritizes generalizability and avoids dependency on unique features or naming conventions
specific to the building used in our evaluation.

We categorized these questions by complexity, based on the number of IFC entities involved, the
relationships between them, the properties required, and the need for inference by the LLM. Higher-
complexity queries often demand recognizing multiple entities, retrieving a wider array of properties,
and interpreting results through logical connections. To assess the approach thoroughly, we divided
the validation process into three main steps. First, we examined how effectively the system breaks
down each user query into smaller, entity-focused sub-questions. Next, we evaluated the accuracy
of the generated SPARQL queries, ensuring they were both syntactically and logically valid. Finally,
we assessed the LLM’s ability to integrate and reason over the retrieved data, producing coherent,
user-friendly answers aligned with the original questions.

To assess the performance of our approach, we categorized the 28 test questions based on two key
dimensions. The first dimension defines the complexity of each question in relation to the number
of entities it references, the depth of relationships between them, and the extent of data processing
required. This classification includes:

• Single Entity, Single Property: Questions that focus on retrieving a single attribute associated
with one entity without requiring additional reasoning.

• Single Entity, Multiple Properties: Queries that involve multiple attributes of a single entity,
requiring retrieval and potential comparison or aggregation.

• Based on Reasoning: More complex queries that require relationships between multiple entities
to be analyzed, as well as inference or reasoning over retrieved data.

The second dimension distinguishes between questions based on how the requested information is
stored and whether additional inference is needed:

• Direct Questions: Queries that rely on explicitly modeled entities and attributes in the KG,
where retrieving the answer requires only structured queries.

• Indirect Questions: Queries requiring additional inference, either because the target information
is not directly represented in the graph or because multiple relationships must be combined to
extract relevant insights.

To evaluate system accuracy, one BIM expert analyzed the responses and classified them into three
groups: correct, if the provided answer fully addressed the question; partially correct, if the response
contained minor errors or missing details; and incorrect, if the system failed to generate a valid or
meaningful answer. The final assessment determined that 16 responses were classified as correct, 3
as partially correct, and 9 as incorrect. The list of questions and their split and evaluation results is
publicly available14.

To qualitatively assess the tool’s performance, we present representative examples for each outcome
label. For the Correct category, the tool successfully answered the direct question “How many doors
are there on the second floor of the building?”, leveraging the explicitly represented beo:Door entity
and floor-level property. In the case of a Partially Correct answer, the system addressed the indirect
query “What is the average ceiling height of all hallways in the building?”, but failed to accurately isolate
hallway-specific elements, resulting in a generalized approximation. For the Incorrect outcome, the
indirect question “How many rooms are located on the second floor?” could not be answered due to the
absence of a direct room representation in the KG, highlighting current limitations in reasoning over
inferred spatial constructs.

Performance varied across the different categories of questions. In the single entity with a single
property category, our approach demonstrated strong performance, correctly answering five out of
seven questions. One response was deemed partially correct due to an omission in the SPARQL query,
14https://github.com/aibba19/ASK-BIM/tree/main/Results
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which resulted in retrieving an incomplete dataset. Another response was incorrect because the system
attempted to infer room counts, a concept not explicitly stored in the KG, leading to query failure.

For the single entity with multiple properties category, our method performed well, with six of seven
questions answered correctly. The single partially correct case involved retrieving the glazed area of
windows, where the system retrieved the total surface area instead due to the absence of a dedicated
property for glazing in the KG. This limitation highlights the challenge of interpreting missing or
implied attributes when explicit representations are unavailable.

The reasoning-based category, which posed the most significant challenges, required inference across
multiple entities and relationships. Out of fourteen queries, five were successfully answered, one
was partially correct, and eight failed. The correct responses illustrate the ability of our approach to
manage multi-step reasoning when all required attributes are explicitly represented. For example, when
asked about the largest window that could fit within the smallest wall, the system accurately identified
relevant entities, generated sub-queries, retrieved dimensions, and computed the correct response.

Many incorrect responses resulted from errors in SPARQL query construction. In cases such as
calculating the enclosed area between walls, the system retrieved individual wall areas instead of
reasoning over their spatial relationships. Similarly, when asked to identify corridors with doors
exceeding a specified width, the failure arose because corridors were not explicitly represented as
entities in the KG, requiring reasoning capabilities that were beyond the system’s current capacities.

Despite these limitations, our approach successfully handled some indirect questions, demonstrating
its potential to extract meaningful insights beyond explicitly modeled attributes. One notable success
involved identifying fire-resistant walls, where the system inferred fire resistance based on textual
labels in the KG. By recognizing standard notation such as “(1-hr)”15 in wall descriptions, it was able to
deduce the fire rating, showcasing its ability to process structured text elements for reasoning.

The evaluation underscores the strengths of our method in answering direct queries and performing
structured reasoning when the required attributes are explicitly defined in the KG. However, the results
also highlight challenges in handling complex inference tasks that require reasoning over implicit
relationships or missing properties. The most frequent failure points were associated with SPARQL
query generation, where queries were either too broad, leading to irrelevant results, or too restrictive,
returning no useful data. Another common point of failure is the loss of information when converting
the IFC model to the KG.

The system shows promise in bridging the gap between natural language queries and structured
BIM data, but further refinement is needed to improve query generation and reasoning over inferred
relationships.

6. Conclusions and Future Work

In this study, we explored how artificial intelligence and NLP could enhance access to BIM data, allowing
users to query complex models through intuitive interactions. We developed an approach that converts
BIM models into a structured KG, enabling semantic querying through a combination of SPARQL
queries and LLM-based reasoning.

The system follows a structured process: first, converting an IFC model into a KG; second, analyzing
user queries to identify relevant entities, relationships, and properties; and third, executing SPARQL
queries to extract data, which is then processed by an LLM to generate a final response. We carried out
the evaluation on a BIM model of a multi-storey office building in Barcelona, testing its performance
against a range of predefined questions classified by complexity and information representation.

The evaluation showed that our approach performs well in retrieving information for direct queries,
where relevant data is explicitly represented in the KG. However, indirect queries, especially those
requiring inference or spatial reasoning, proved more challenging. A key limitation of the system lies in
SPARQL query generation, where incorrect or incomplete queries sometimes led to inaccurate results.

15The “1-hr” notation indicates that the wall has a fire resistance rating of one hour, meaning it can withstand fire exposure
for 60 minutes before losing its structural integrity.



Additionally, due to prompt size constraints, the system lacks full contextual awareness of the entire
ontology, limiting its ability to infer implicit relationships between BIM entities.

Despite these challenges, the results demonstrate that integrating KGs with LLMs provides a viable
method for natural language querying of BIM data. Future research will focus on improving SPARQL
query accuracy, enhancing LLM-based reasoning for complex queries, and leveraging AI-driven tech-
niques to interpret spatial relationships more effectively. Further exploration of ontology integration
and optimized prompt engineering will also be key to improving the reliability and contextual accuracy
of the responses of the presented approach.

7. Acknowledgments

This research has been partially funded by the European Union’s Horizon research and innovation pro-
gramme, as part of CHRONICLE project - Building Performance Digitalisation and Dynamic Logbooks
for Future Value-Driven Services (Grant agreement ID 101069722). This work has been partially funded
by the European Union’s Horizon project LEGOFIT - Adaptable technological solutions based on early
design actions for the construction and renovation of Energy Positive Homes (Grant agreement ID:
101104058).

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT, Grammarly in order to: Grammar
and spelling check, Paraphrase and reword. After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility for the publication’s content.

References

[1] R. Charef, H. Alaka, S. Emmitt, Beyond the third dimension of bim: A systematic review of
literature and assessment of professional views, Journal of Building Engineering 19 (2018) 242–257.
URL: https://www.sciencedirect.com/science/article/pii/S2352710217306320. doi:https://doi.
org/10.1016/j.jobe.2018.04.028.

[2] R. Kebede, A. Moscati, H. Tan, P. Johansson, Integration of manufacturers’ product data in bim
platforms using semantic web technologies, Automation in Construction 144 (2022) 104630. URL:
https://www.sciencedirect.com/science/article/pii/S0926580522005003. doi:https://doi.org/
10.1016/j.autcon.2022.104630.

[3] R. Alonso, R. Olivadese, A. Ibba, D. R. Recupero, Towards the definition of a european digital
building logbook: A survey, Heliyon (2023).

[4] T. Bloch, Connecting research on semantic enrichment of bim - review of approaches, methods
and possible applications, Journal of Information Technology in Construction 27 (2022) 416 –
440. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133341225&doi=10.36680%
2fj.itcon.2022.020&partnerID=40&md5=bdfc6f37b9e7773519e48cc003041c64. doi:10.36680/j.
itcon.2022.020.

[5] Y. Ding, J. Ma, X. Luo, Applications of natural language processing in construction, Automa-
tion in Construction 136 (2022) 104169. URL: https://www.sciencedirect.com/science/article/pii/
S0926580522000425. doi:https://doi.org/10.1016/j.autcon.2022.104169.

[6] N. Wang, R. Issa, C. Anumba, Nlp-based query-answering system for information extraction
from building information models, Journal of Computing in Civil Engineering 36 (2022) 04022004.
doi:10.1061/(ASCE)CP.1943-5487.0001019.

[7] A. Nabavi, I. J. Ramaji, N. Sadeghi, A. Anderson, Leveraging natural language processing for auto-
mated information inquiry from building information models, Journal of Information Technology
in Construction 28 (2023) 266–285. doi:10.36680/j.itcon.2023.013.

https://www.sciencedirect.com/science/article/pii/S2352710217306320
http://dx.doi.org/https://doi.org/10.1016/j.jobe.2018.04.028
http://dx.doi.org/https://doi.org/10.1016/j.jobe.2018.04.028
https://www.sciencedirect.com/science/article/pii/S0926580522005003
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2022.104630
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2022.104630
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133341225&doi=10.36680%2fj.itcon.2022.020&partnerID=40&md5=bdfc6f37b9e7773519e48cc003041c64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133341225&doi=10.36680%2fj.itcon.2022.020&partnerID=40&md5=bdfc6f37b9e7773519e48cc003041c64
http://dx.doi.org/10.36680/j.itcon.2022.020
http://dx.doi.org/10.36680/j.itcon.2022.020
https://www.sciencedirect.com/science/article/pii/S0926580522000425
https://www.sciencedirect.com/science/article/pii/S0926580522000425
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2022.104169
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0001019
http://dx.doi.org/10.36680/j.itcon.2023.013


[8] J.-R. Lin, Z.-Z. Hu, J.-P. Zhang, F.-Q. Yu, A natural-language-based approach
to intelligent data retrieval and representation for cloud bim, Computer-Aided
Civil and Infrastructure Engineering 31 (2016) 18–33. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/mice.12151. doi:https://doi.org/10.1111/mice.12151.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12151.

[9] M. Yin, L. Tang, C. Webster, S. Xu, X. Li, H. Ying, An ontology-aided, natural language-based
approach for multi-constraint bim model querying, Journal of Building Engineering 76 (2023)
107066. URL: https://www.sciencedirect.com/science/article/pii/S2352710223012457. doi:https:
//doi.org/10.1016/j.jobe.2023.107066.

[10] N. Wang, R. R. A. Issa, C. J. Anumba, Query Answering System for Building In-
formation Modeling Using BERT NN Algorithm and NLG, ????, pp. 425–432. URL:
https://ascelibrary.org/doi/abs/10.1061/9780784483893.053. doi:10.1061/9780784483893.053.
arXiv:https://ascelibrary.org/doi/pdf/10.1061/9780784483893.053.

[11] S. Du, L. Hou, G. Zhang, Y. Tan, P. Mao, Bim and ifc data readiness for ai integration in the
construction industry: A review approach, Buildings 14 (2024). URL: https://www.mdpi.com/
2075-5309/14/10/3305. doi:10.3390/buildings14103305.

[12] S. Jiang, L. Jiang, Y. Han, Z. Wu, N. Wang, Openbim: An enabling solution for information
interoperability, Applied Sciences 9 (2019) 5358.

[13] buildingSMART, Ifc schema specifications, https://technical.buildingsmart.org/standards/ifc/
ifc-schema-specifications/, 2024. Accessed: February 2025.

[14] M. Bonduel, J. Oraskari, P. Pauwels, M. Vergauwen, R. Klein, The ifc to linked building data
converter-current status, in: The IFC to Linked Building Data Converter-Current Status, 2018.

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12151
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12151
http://dx.doi.org/https://doi.org/10.1111/mice.12151
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12151
https://www.sciencedirect.com/science/article/pii/S2352710223012457
http://dx.doi.org/https://doi.org/10.1016/j.jobe.2023.107066
http://dx.doi.org/https://doi.org/10.1016/j.jobe.2023.107066
https://ascelibrary.org/doi/abs/10.1061/9780784483893.053
http://dx.doi.org/10.1061/9780784483893.053
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/9780784483893.053
https://www.mdpi.com/2075-5309/14/10/3305
https://www.mdpi.com/2075-5309/14/10/3305
http://dx.doi.org/10.3390/buildings14103305
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/

	1 Introduction
	2 Related Works
	3 Background
	4 The Proposed Approach
	5 Experimental Settings
	6 Conclusions and Future Work
	7 Acknowledgments

