
On Optimizing Acquisition Functions for Improved
Positioning Accuracy in SyDR
Ha My Nguyen1, Antoine Grenier1, Aleksandr Ometov1 and Jari Nurmi1

1Tampere Wireless Research Center, Tampere University, Korkeakoulunkatu 1, Tampere, Finland, FI-33720

Abstract
This work-in-progress paper presents advancements in the acquisition function for processing GNSS signal
snapshots, integrated within the System for Dynamic Repositioning (SyDR) framework. The primary objective of
this research is to improve the accuracy and efficiency of GNSS signal processing, which is critical for applications
such as navigation and positioning. The study addresses the challenges posed by complex wireless environments
and the imperative need for energy-efficient solutions in embedded devices. Significant modifications were
implemented in the existing positioning function, notably the removal of a Bayes classifier and the simplification
of the acquisition function. The performance evaluation demonstrated substantial improvements in positioning
accuracy, evidenced by a reduction in median errors and an increase of at least 5% in the percentage of errors
below 200 meters for the test data. Despite these advancements, certain challenges persist, particularly concerning
processing speed and performance issues encountered when integrating satellites from multiple GNSS systems.
This paper contributes to the ongoing discourse on GNSS signal processing, offering insights into the optimization
of acquisition functions, and highlighting areas for future research to address the remaining challenges.

Keywords
GNSS, IQ, benchmarking, open-source software

1. Introduction

Over the past decade, Global Navigation Satellite Systems (GNSS) receivers have become a cornerstone
of modern industrial and person electronics, seamlessly integrated into a wide array of consumer and
industrial devices [1, 2]. With the exponential growth of the Internet of Things (IoT) paradigm, the
demand for precise and reliable positioning services has increased significantly. Forecasts suggest that
the number of connected IoT devices is expected to reach 26 billion by 2025 [3], further amplifying the
need for efficient and robust GNSS solutions.

However, the evolving usage scenarios of GNSS introduce considerable challenges. Embedded
devices, particularly those operating in constrained environments, are often subject to adverse wireless
conditions, including signal obstruction, multipath propagation, and intentional or unintentional
interference. Moreover, unfavorable Dilution of Precision (DOP) metrics can significantly degrade
positioning accuracy. The design and optimization of GNSS receivers for such scenarios require
innovative strategies that ensure signal acquisition and tracking under limited resources. The
modernization of GNSS constellations, offering enhanced signal structures, e.g., as additional frequencies,
improved coding schemes, and increased signal power, represents a step forward in mitigating
these limitations [4, 5]. Nevertheless, these advancements come at the cost of increased processing
complexity [6].

In response to these constraints, the research community has placed significant emphasis on
developing novel algorithms to enhance signal processing efficiency. Numerous techniques have
been proposed to incorporate the benefits of modernized signals into practical receiver designs. Yet,
the trade-offs between measurement accuracy, computational burden, and implementation feasibility
remain non-trivial.

WIPHAL’25: Work-in-Progress in Hardware and Software for Location Computation June 10–12, 2025, Rome, Italy
$ alekasndr.ometov@tuni.fi (A. Ometov); jari.nurmi@tuni.fi (J. Nurmi)
� 0009-0004-9593-6174 (H. M. Nguyen); 0000-0002-3440-8659 (A. Grenier); 0000-0003-3412-1639 (A. Ometov);
0000-0003-2169-4606 (J. Nurmi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alekasndr.ometov@tuni.fi
mailto:jari.nurmi@tuni.fi
https://orcid.org/0009-0004-9593-6174
https://orcid.org/0000-0002-3440-8659
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0003-2169-4606
https://creativecommons.org/licenses/by/4.0/deed.en


A critical challenge for embedded GNSS receivers is power consumption, particularly in
battery-operated or energy-constrained devices. According to the 2024 GNSS User Consultation
Platform, majority of respondents identified power consumption as a major design concern [2]. GNSS
modules are often among the most power-intensive components in IoT nodes [7], primarily due to
the continuous operation required to maintain accurate positioning. While techniques such as duty
cycling have been explored [8, 9], their practical application is limited by startup latency and cold-start
acquisition requirements. Offloading strategies, where raw GNSS data are transmitted to remote servers
for processing, offer energy savings at the cost of positioning accuracy [10, 11]. These approaches
warrant further investigation to assess their effectiveness across diverse application domains [12].

In this context, our ongoing research focuses on enhancing the acquisition function within the System
for Dynamic Repositioning (SyDR) framework, first introduced in [13]. The objective is to integrate
robust snapshot signal processing capabilities that are well-suited for constrained embedded platforms.
Specifically, we target improvements in positioning accuracy, algorithmic efficiency, and support for
multi-constellation scenarios.

The key contributions of this work include: (i) proposing the modification of the existing positioning
function to support modern GNSS signals, (ii) initial simulation of representative test cases to validate
performance under controlled conditions. Preliminary evaluations indicate measurable improvements
in positioning accuracy. However, challenges remain, particularly in managing computational load
and maintaining real-time responsiveness when handling signals from multiple GNSS systems, as
well as factual integration in SyDR. Overall, this work contributes to the broader effort of developing
energy-aware, high-performance GNSS solutions for next-generation IoT and cyber-physical systems.

The rest of the paper is organised as follows. First, we identify the main research objectives in
Section 2. Selected numerical results are provided in Section 3. The last section concludes the paper.

2. Research Objectives

A target platform is depicted in Figure 1. SyDR is an open-source SDR framework, implemented
in Python and available via GitHub [14], specifically designed to facilitate benchmarking of GNSS
algorithms. The design philosophy of SyDR is founded upon five fundamental principles, adapted from
GNSS-SDR [15] and developed towards [13, 16], which define its intended functionality and usage for
interoperability, usability reproducibility, openness, and efficiency.

Software-Defined
Receiver

Performance
metrics

Reference
datasets

Vehicle UAV ...Pedestrian

Processing chain

Algorithm
n

New
algorithm

Algorithm
1 ...

Processing algorithmsScenario

...ForestOpen-sky Urban
canyoning

Environment

Figure 1: An overview of SyDR’s framework

From its inception, SyDR was developed with algorithm benchmarking as a primary objective. It
delivers a fully controllable and extensible framework that can be adapted to accommodate specific
research requirements. In this respect, SyDR exhibits distinct differences from previously introduced
SDR platforms.



First and foremost, SyDR is designed exclusively for post-processing applications. It processes
pre-recorded IQ samples while emulating the behavior of a real-time receiver. Post-processing enables
the establishment of deterministic receiver behavior, which is essential for rigorous algorithm evaluation.
Since GNSS data significantly affects algorithm performance, benchmarking must be conducted within
a well-defined and repeatable environment to ensure that observed variations stem solely from the
algorithm under test. The pseudo-real-time characteristics of the system allow for deeper insight into
the virtual receiver’s behavior and the effect of algorithmic modifications across the signal processing
pipeline.

Secondly, the framework emphasizes a high-level, modular development environment utilizing an
open-source language. While many high-level SDR platforms have historically been implemented
in proprietary environments such as Matlab, Python was chosen to maintain an open and
community-driven development model while achieving satisfactory code efficiency. Modularity has
often been a limiting factor in prior SDR platforms, which were typically tailored for evaluating a
narrow set of algorithms rather than serving as comprehensive benchmarking tools.

Thirdly, the evaluation of energy consumption forms a key research direction for SyDR. Absolute
power consumption figures are difficult to derive for specific hardware implementations when working
with high-level software environments. In this context, algorithmic complexity serves as a practical
proxy, offering relative performance comparisons between algorithms. Although this metric does
not directly reflect real energy usage, it provides meaningful insights into computational demands.
Furthermore, by simulating the full receiver behavior, SyDR allows researchers to assess the impact of
algorithmic changes on the overall system.

Ultimately, SyDR aims to serve as a reference platform for future research efforts in GNSS algorithm
development, mitigating redundant implementation efforts. Although this work has primarily
concentrated on the DSP aspects of the receiver, the framework’s modular design positions it as
a promising foundation for further advancements in areas such as high-precision positioning and
advanced signal processing techniques.

3. Selected Experimental Results

With an end-to-end virtual receiver like SyDR, it becomes possible to estimate the complexity of
algorithms within the GNSS signal processing chain. While this estimation is inherently coarse, subject
to variations stemming from code quality, operating system overhead, and other environmental factors, it
still offers a practical means of assessing relative algorithmic complexity through runtime measurements.

To enable this functionality, the time module from Python’s standard library has been employed,
as recommended by the official documentation [17]. It is integrated into the codebase using a Python
decorator , allowing benchmarking to be seamlessly added to any function. Owing to SyDR’s

database architecture, every function wrapped with the benchmarking.time decorator logs its
runtime as part of the intermediate results. This setup provides flexibility in measurement granularity,
allowing users to identify the most time-consuming sections of processing with precision.

The primary development in this project involved improving the acquisition function to enhance
snapshot positioning and integrating it into the broader SyDR framework. The numerical results
obtained from this updated acquisition function demonstrated substantial improvements in positioning
accuracy.

3.1. Snapshot Positioning Code Modifications

Only minimal changes were necessary to adapt the existing positioning function. A Bayes classifier was
initially implemented to prioritize satellite selection based on their SNR values. However, it offered no
advantage over simpler SNR-based ranking and was thus removed. Additionally, support for processing
multiple snapshots in a single call was removed to simplify functionality.

The original acquisition function in the library produced suboptimal results, even when supplied
with accurate input data such as satellite visibility and expected Doppler values. Its reliance on



complex high-dimensional vectorized operations made it difficult to interpret and debug. As a result, a
complete reimplementation was undertaken. The new acquisition function combines vectorized 3D
array operations with traditional for -loops, resulting in clearer and more maintainable code.

This revised implementation, using the same input parameters as the customized version, yielded
markedly improved positioning performance. Specifically, the median position error decreased, and the
percentage of errors under 200 meters increased by at least 5% on the test datasets. However, these gains
came at the cost of reduced processing speed as the new function currently operates approximately ten
times slower than the original.

3.2. Performance on Data Obtained in TAU

Initial tests using TAU laboratory data yielded poor results due to an incorrect assumption about the data
format. Upon discovering that the recordings were in IQ format (rather than real-valued), appropriate
modifications were made. After these adjustments, the updated acquisition function performed well,
albeit limited to one GNSS system at a time.

The simulation setup employed Spectracom (a.k.a., Orolia) and a USRP. Early issues involving the
unavailability of trajectory and RINEX files [18] were resolved via firmware and software updates.
Simulated datasets were created under the following configurations:

• Static files: Contain signals from a single satellite.
• Dynamic files: Include data from five satellites, with known PRN IDs.
• Transmit Power and C/N0: Adjusted for each scenario. Note that power adjustments are

possible only on the hardware simulator, not in StudioView.
• Recording Duration: One minute for static and five minutes for dynamic scenarios.

Sampling was conducted using 40 MHz and 16 MHz rates, with intermediate frequencies of 10 MHz
and 4 MHz, respectively. Two processing phases were developed for pre-processing:

• resampling : Implements zero-padding, upsampling, downsampling, resampling, and linear
correlation via overlap-and-add.

• file_to_snapshots : Converts input recordings into snapshot data suitable for positioning.

These tools collectively enable the generation of consistent and controllable GNSS datasets, aiding in
system testing and evaluation.

3.3. Main Findings

A total of 7 static and 4 dynamic simulated files (each with different 𝐶𝑁0 values) were recorded,
dedicated to GNSS data. Visualization of these results is supported through the TAU data.ipynb

notebook, which provides plots and statistics derived from results.npy , see, e.g., Table 1 and
Figure 2. These visualizations include error metrics and per-mode performance summaries.

Scenario Min East Max East Median East RMS East SD East Error <50m, %
5MHz_1bit_IQ_gain_25 −20.29 72324.01 0.72 9047.28 8968.86 88
5MHz_8bit_IQ_gain_25 −15.42 19.70 −1.68 6.93 6.82 98
10MHz_1bit_IQ_gain_25 −6.41 7.97 −0.80 3.88 3.87 100
10MHz_1bit_IQ_gain_25 −6.67 6.21 −1.03 3.28 3.18 100

Table 1
Example of statistical data for LS-Single mode truncatednortherror in meters.



5MHz_1bit_IQ_gain25
N
or
th
[m
]

100

100 50 0 50 100

75

50

25

0

-25

-50

-75

-100

East [m]

5MHz_8bit_IQ_gain25

N
or
th
[m
]

100

100 50 0 50 100

75

50

25

0

-25

-50

-75

-100

East [m]

10MHz_1bit_IQ_gain25

N
or
th
[m
]

100

100 50 0 50 100

75

50

25

0

-25

-50

-75

-100

East [m]

10MHz_8bit_IQ_gain25

N
or
th
[m
]

100

100 50 0 50 100

75

50

25

0

-25

-50

-75

-100

East [m]

Figure 2: Visualization of positioning errors

The results demonstrate substantial improvements in positioning accuracy, particularly in the later
test cases. First, we observe a very high maximum error, suggesting significant outliers in the dataset, but
the low median error indicates that most errors are negligible. Further cases show better performance,
with maximum errors below 10 meters and median errors close to zero, indicating high accuracy. The
high percentages of errors within 50 meters in these rows highlight the effectiveness of the updated
acquisition function. However, the presence of extreme outliers underscores the need for further
refinement and testing to ensure consistent performance across all scenarios.

The results align with expectations, i.e., positioning errors decrease with higher sampling rates
and greater quantization depth. However, a significant issue arises when multiple GNSS systems are
processed simultaneously. While the function performs well with a single GNSS system, accuracy
degrades substantially when combining satellites from different systems. This issue also affects the
ls-combo satellite selection mode, which evaluates all possible combinations of visible satellites and has
been found to underperform relative to simpler selection schemes. This is a concerning outcome, as
combining data from more visible satellites is theoretically expected to improve, not worsen, positioning
accuracy. Overall, these findings highlight the potential of the proposed modifications to enhance
positioning accuracy while also identifying areas for further optimization.

4. Conclusions and Future Work

This research successfully enhanced the acquisition functionality for snapshot-based GNSS signal
processing and integrated it into the SyDR framework. The improvements achieved, particularly in
positioning accuracy, demonstrate the potential of the proposed modifications. However, challenges
remain, especially when processing multiple GNSS constellations concurrently, which has led to
degraded performance and requires further investigation.

The key findings from this work include improved positioning accuracy, with the updated acquisition
function significantly reducing the median position error and increasing the percentage of errors under
200 meters. These improvements highlight the effectiveness of the new implementation in enhancing
positioning accuracy. However, while the function performs well with a single GNSS system, accuracy
degrades substantially when combining satellites from different systems. This issue also affects the
ls-combo satellite selection mode, which underperforms relative to simpler selection schemes. This
unexpected outcome indicates the need for further optimization and testing.

Future work will focus on addressing the identified limitations in multi-constellation processing
and implementing SyDR on real hardware [16]. Specific areas for future research include ensuring the
decoupling of acquisition pipelines for each GNSS system to improve performance when processing
multiple constellations. Furthermore, resampling and signal preparation routines should be moved
outside the acquisition block to reduce computational overhead and enhance overall system efficiency.
Implementing SyDR on real hardware will validate the framework’s performance in practical scenarios
and further refine the acquisition function.

In summary, this work has established a solid foundation for further research in GNSS signal



processing using SyDR. The insights gained and the system improvements realized contribute
meaningfully to the evolution of the SyDR platform and its applicability in real-world virtual receiver
implementations.

Acknowledgments

The authors gratefully acknowledge funding from European Union’s Horizon 2020 Research and
Innovation Programme under the Marie Skłodowska Curie grant agreement No. 956090 (APROPOS:
Approximate Computing for Power and Energy Optimisation, http://www.apropos-itn.eu/)

Declaration on Generative AI

During the preparation of this work, the authors used Microsoft Copilot in order to: styling, grammar
and spelling checks. After using these tool, the authors reviewed and edited the content as needed and
take full responsibility for the publication’s content.

References

[1] S. Jin, A. Camps, Y. Jia, F. Wang, M. Martin-Neira, F. Huang, Q. Yan, S. Zhang, Z. Li, K. Edokossi,
et al., Remote Sensing and Its Applications Using GNSS Reflected Signals: Advances and Prospects,
Satellite Navigation 5 (2024) 19.

[2] European Union Agency for the Space Programme (EUSPA), EUSPA: EO and GNSS Market Report,
2024. URL: https://www.euspa.europa.eu/european-space/euspace-market/gnss-market, issue 2.

[3] 6GWorld, Ericsson: Short-range IoT Set to Reach More than 20 Billion Connected Devices by 2026
(2024). URL: https://www.6gworld.com/exclusives/ericsson-short-range-iot-set-to-reach-more-t
han-20-billion-connected-devices-by-2026/, accessed: June 10, 2025.

[4] X. Luo, H.-H. Chen, Q. Guo, LEO/VLEO Satellite Communications in 6G and Beyond
Networks–Technologies, Applications, and Challenges, IEEE Network 38 (2024) 273–285.

[5] I. Fernandez-Hernandez, A. Chamorro-Moreno, S. Cancela-Diaz, J. Calle-Calle, P. Zoccarato,
D. Blonski, T. Senni, F. Blas, C. Hernández, J. Simón, A. Mozo, Galileo High Accuracy Service: Initial
definition and Performance, GPS Solutions 26 (2022). doi:10.1007/s10291-022-01247-x.

[6] A. Grenier, E. S. Lohan, A. Ometov, J. Nurmi, On the Integration of Approximate Computing in
GNSS Signal Processing for Improved Energy-Efficiency, in: Proc. of 11th Workshop on Satellite
Navigation Technology (NAVITEC), IEEE, 2024.

[7] S. Narayana, R. V. Prasad, V. Rao, L. Mottola, T. V. Prabhakar, Hummingbird: Energy Efficient GPS
Receiver for Small Satellites, in: Proc. of the 26th Annual International Conference on Mobile
Computing and Networking, MobiCom ’20, Association for Computing Machinery, New York, NY,
USA, 2020. URL: https://doi.org/10.1145/3372224.3380886. doi:10.1145/3372224.3380886.

[8] V. Bellad, Intermittent GNSS Signal Tracking for Improved Receiver Power Performance, Ph.D.
thesis, University of Calgary, 2015. URL: https://prism.ucalgary.ca/handle/11023/2667. doi:10.115
75/PRISM/10182.

[9] T. Everett, T. Taylor, D.-K. Lee, D. M. Akos, Optimizing the use of RTKLIB for smartphone-based
GNSS measurements, Sensors 22 (2022) 3825.

[10] A. Grenier, E. S. Lohan, A. Ometov, J. Nurmi, A Survey on Low-Power GNSS, IEEE Communications
Surveys & Tutorials (2023).

[11] P. Misra, W. Hu, Y. Jin, J. Liu, A. S. de Paula, N. Wirström, T. Voigt, Energy Efficient GPS Acquisition
with Sparse-GPS, in: Proc. of the 13th International Symposium on Information Processing in
Sensor Networks (IPSN-14), 2014, pp. 155–166. doi:10.1109/IPSN.2014.6846749.

https://www.euspa.europa.eu/european-space/euspace-market/gnss-market
https://www.6gworld.com/exclusives/ericsson-short-range-iot-set-to-reach-more-than-20-billion-connected-devices-by-2026/
https://www.6gworld.com/exclusives/ericsson-short-range-iot-set-to-reach-more-than-20-billion-connected-devices-by-2026/
http://dx.doi.org/10.1007/s10291-022-01247-x
https://doi.org/10.1145/3372224.3380886
http://dx.doi.org/10.1145/3372224.3380886
https://prism.ucalgary.ca/handle/11023/2667
http://dx.doi.org/10.11575/PRISM/10182
http://dx.doi.org/10.11575/PRISM/10182
http://dx.doi.org/10.1109/IPSN.2014.6846749


[12] H. M. Nguyen, Review of Off-loading Processing Strategies for GNSS Positioning: Theoretical
Review and Visual Analysis Implementation, 2024. URL: https://trepo.tuni.f i/handle/10024/156652,
examiners: Antoine Grenier, Simona Lohan.

[13] A. Grenier, E. S. Lohan, A. Ometov, J. Nurmi, An Open-Source Software-Defined Receiver for
GNSS Algorithms Benchmarking, in: Proc. of 14th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), IEEE, 2022, pp. 31–38.

[14] A. Grenier, SyDR, [Online] https://github.com/aproposorg/sydr, 2023. [Accessed on June 10, 2025].
[15] C. Fernández–Prades, J. Arribas, P. Closas, C. Avilés, L. Esteve, GNSS-SDR: An Open Source Tool

For Researchers and Developers, in: Proc. of the 24th International Technical Meeting of the
Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, 2011, pp. 780–794.

[16] A. Grenier, J. Lei, H. J. Damsgaard, E. S. Quintana-Ortí, A. Ometov, E. S. Lohan, J. Nurmi, Hard
SyDR: A Benchmarking Environment for Global Navigation Satellite System Algorithms, Sensors
24 (2024) 409.

[17] Python, Time Access and Conversions, https://docs.python.org/3/library/time.html, 2025. Last
accessed: June 10, 2025.

[18] International GNSS Service, RINEX Working Group, https://igs.org/wg/rinex/, 2025. Accessed:
June 10, 2025.

https://trepo.tuni.fi/handle/10024/156652
https://github.com/aproposorg/sydr
https://docs.python.org/3/library/time.html
https://igs.org/wg/rinex/

	1 Introduction
	2 Research Objectives
	3 Selected Experimental Results
	3.1 Snapshot Positioning Code Modifications
	3.2 Performance on Data Obtained in TAU
	3.3 Main Findings

	4 Conclusions and Future Work

