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Abstract
Our paper deals with the design of mathematical backgrounds to study 2nd-order dynamical systems’ phase
portraits in planes with non-orthogonal coordinates. We design our approach by using affine coordinate transfor-
mations such as shift, rotation, and scale to define the new system phase portrait. Since coordinate transformations
are defined by algebraic expressions one can find it is not convenient to use both differential equations to de-
fine system motions and algebraic ones to perform the transformations. That is why we offer to differentiate
transformation expressions and use the obtained derivatives to write down system differential equations in the
transformed coordinate system. Such differentiation in the most common case gives us the possibility to take into
account coordinate systems motions. Moreover, one can define a coordinate system in which motions depend on
the motions of the initial dynamical system and time. So, in the most general case, our transformation allows us
to define the variable-structure time-dependent systems. We show the use of our approach by considering the
dynamic of the Duffing pendulum in the non-orthogonal coordinates. Such transformation makes it possible to
design and implement a chaotic generator that forms oscillations different from known ones.

Keywords
dynamical system, coordinate transformation, chaotic system, Duffing equation

1. Introduction

Today various nonlinear systems are widely used in different scientific and engineering applications be-
cause their unique properties [1, 2, 3]. These systems are used to study various biological, meteorological,
communication and process control, and technical systems modeling [4, 5, 6, 7, 8, 9, 10].

One of the applications for such systems is control plant prototyping to design novel control algo-
rithms which are used in cyber-physical systems [11, 12, 13, 14, 15] and Industrial Internet of Things’
systems [16, 17, 18, 19, 20, 21].

A lot of various systems with nonlinear dynamic are known [22, 23, 24, 25, 26, 27, 28] and used
[29, 30, 22, 23] in different communication applications as well [31, 32, 33]. However, many authors
design and study these systems without any explanation of how and why they use one or another block
in their system. Thus, the main drawback of known chaotic systems is their subjective design.

We offer to avoid this drawback by using a well-known coordinate transformation to give the
considered system the desired features and put it attractor in the desired domain of coordinate system.
Our method is demonstrating by considering a simple 2nd order chaotic system in the 2D plane, but
due to the matrix methods usage it can easily be extended to any N-dimensional dynamical system.

The paper is organized as follows: firstly, we affine transformation from one orthogonal coordinate
system into another one and define system matrix motion equation as derivative of transformation
equation. Then, we generalize this equation for the case of non-orthogonal coordinates. We illustrate
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the use of our approach by studying a well-known Duffing equation’s transformation and implementing
it by using modern single-chip MCU. Finally, we make a conclusion.

2. Method

2.1. Dynamical system model in the orthogonal coordinate system

Let us show the principle of the proposed dynamical system transformation by considering the 2nd
order harmonic-driven nonlinear dynamical system

𝑦1 = 𝑓(𝑦1, 𝑦̇1) + 𝛾 sin(𝜔𝑡+ 𝜙0), (1)

where 𝑦1 is a system state variable, 𝑓(.) is some nonlinear function, 𝛾 and 𝜔 are parameters of an
external harmonic signal.

But our studies can be easy generalized for the case of N-dimensional dynamical system as well.
If one takes into the consideration derivative of system state output as some new state variable , he

can rewrite (1) in the normal canonical form

𝑦̇1 = 𝑦2; 𝑦̇2 = 𝑓(𝑦1, 𝑦2) + 𝛾 sin(𝜔𝑡+ 𝜙0) (2)

and then represent it as a matrix equation

𝑌̇ = 𝐹 (𝑌 )+𝐺(𝜔, 𝑡, 𝜙0), (3)

𝑌 =
(︀
𝑦1 𝑦2

)︀𝑇
; 𝐹 (𝑌 ) =

(︀
𝑦2𝑓(𝑦1, 𝑦2)

)︀
; 𝐺(𝜔, 𝑡, 𝜙0) =

(︂
0

𝛾 sin(𝜔𝑡+ 𝜙0)

)︂
.

In the most general case, here and further one should use n-th sized vectors and matrices to define
system dynamic in N-dimensional state space and perform its transformations. Solution of this system
allows us to define some phase portrait 𝑦1(𝑦2) (Figure. 1).

Figure 1: Phase portrait of nonlinear dynamical system in the orthogonal axes

If one applies affine transformations to the system phase portrait, he can define the system motions
in another coordinate system 𝑦′1(𝑦

′
2). We think that old 𝑦1(𝑦2) and new 𝑦′1(𝑦

′
2) coordinate systems

are interrelated each other by using gain, shift, and rotate transformations, which allows us to define
system’s state variables in the new coordinates by using following matrix expression

𝑌 ′ = 𝐾𝑅𝑌 + 𝑌0, (4)

𝑌 ′ =

(︂
𝑦′1
𝑦′2

)︂
; 𝐾 =

(︂
𝑘1 0
0 𝑘2

)︂
; 𝑌0 =

(︂
𝑦01
𝑦02

)︂
; 𝑅 =

(︂
cos(𝛼) sin(𝛼)
− sin(𝛼) cos(𝛼)

)︂
,

here 𝑘𝑖 are some gain factors, 𝑦0𝑖 are shift factors, and 𝛼 is angle between new and old coordinate
systems (Figure 1), 𝐾 is a gain matrix, 𝑅 is a rotation matrix, and 𝑌0 is a shift matrix. Here and later
we assume that all terms in matrices 𝐾 , 𝑌0, and 𝑅 are time-depended ones.



From the control theory viewpoint, one can consider (4) as observability equation for systems (3)
and so use control methods to study systems that are defined by the equations.

Solution of (3) and substituting its results into (4) gives us the possibility to define system coordinates
in the new coordinate system that is different from the initial one. The main drawback of such an
approach is representing system motion by both algebraic and differential equations which can cause
some difficulties in applying the known control theory approaches and methods to study system stability
or design its motion trajectories.

We offer to avoid this drawback by transforming (3) and (4) into differential equation only. To perform
such a transformation, we take into account the-above made assumption about matrices terms and
differentiate (4)

𝑌̇ ′ = 𝑌0 + 𝐾̇𝑅𝑌 +𝐾𝑅̇𝑌 +𝐾𝑅𝑌̇ . (5)

Since the last term in (5) depend on derivatives of system state vector we substitute (3) into (5)

𝑌̇ ′ = 𝑌0 + 𝐾̇𝑅𝑌 +𝐾𝑅̇𝑌 +𝐾𝑅(𝐹 (𝑌 )+𝐺(𝜔, 𝑡, 𝜙0)). (6)

It is clear that right-hand expression in (6) depends on system motion vector 𝑌 in the old coordinate
system. This fact causes some misunderstanding in solution of (6) which we avoid by solving (4) for 𝑌 .

𝑌 = 𝑖𝑛𝑣(𝐾𝑅)(𝑌 ′ − 𝑌0), (7)

where 𝑖𝑛𝑣(.) means determination of inverse matrix,
and substituting (7) into (6)

𝑌̇ ′ = 𝑌0+(𝐾̇𝑅+𝐾𝑅̇)𝑖𝑛𝑣(𝐾𝑅)(𝑌 ′ − 𝑌0)+𝐾𝑅(𝐹 (𝑖𝑛𝑣(𝐾𝑅)(𝑌 ′ − 𝑌0))+𝐺(𝜔, 𝑡, 𝜙0)). (8)

We call (8) as dynamical system’s motion equation in the generalized orthogonal coordinate system.
The main feature of this equation is possibility to take into account motion of coordinate system’s
origin, axes rotation and scaling as some known time functions.

The particular case of this equation is a system motion’s equation in the stationary rotated, shifted,
and scaled coordinate system, which allows us to neglect the first summand in (8)

𝑌̇ ′ = 𝐾𝑅(𝐹 (𝑖𝑛𝑣(𝐾𝑅)(𝑌 ′ − 𝑌0))+𝐺(𝜔, 𝑡, 𝜙0)). (9)

One can use (9) and (8) to define novel motions for known dynamical systems. It is clear that for the
nonstationary coordinate systems these motions can significantly differ from known ones.

2.2. Dynamical system model in the non-orthogonal coordinate system

One of the features of (9) and (8) is a rotation matrix 𝑅. This matrix has the simplest form in the
case of orthogonal coordinate system. At the same time one can define transformation (4) for the case
non-orthogonal coordinates as well. The necessity to consider such coordinate system can occurs in the
case when angle between axes is different than 𝜋/2, it corresponds the use of the generalized differential
operators which forms phase shift different from 𝜋/2. For example, in fractional order systems or other
which use both classical derivatives from system state variables and their current values.

Let us consider the transformation of such a system in details we think that the angle between axes
is equal to some angle 𝛽. Performing of simple trigonometric transformations allows us to rewrite
transformation matrix 𝑅 as follows

𝑅 =

(︂
cos(𝛼) sin(𝛼)

cos(𝛼+ 𝛽) sin(𝛼+ 𝛽)

)︂
. (10)

It is clear that matrix 𝑅′ in (10) is the generalization of matrix 𝑅 in (4) and for 𝛽 = 0 it allows to define
only one axis . The position of dynamical system in this axis depend on 𝛼 in this case. When 𝛽 is
considered as 𝜋/2 the previously defined 𝑅 matrix can be obtained.



Replacing 𝑅 with 𝑅′ in (8) gives us the possibility to define the generalized system motion equation
for the case of non-orthogonal coordinate system

𝑌̇ ′ = 𝑌0 + (𝐾̇𝑅′ +𝐾𝑅̇′)𝑖𝑛𝑣(𝐾𝑅)(𝑌 ′ − 𝑌0)+ (11)
+𝐾𝑅′(𝐹 (𝑖𝑛𝑣(𝐾𝑅′)(𝑌 ′ − 𝑌0))+𝐺(𝜔, 𝑡, 𝜙0)).

Thus, in the most common case, (11) can be used to define motion equations of the generalized dynamical
system in some arbitrary coordinate system which can be non-orthogonal one.

3. Results and discussions

We show the use of our approach by studying a well-known Duffing’s pendulum equation

𝑦 + 𝑎1𝑦̇ + 𝑎2𝑦 + 𝑎3𝑦
3 = 𝑏1 cos(𝜔𝑡), (12)

here 𝑦, 𝑦̇, and 𝑦 are pendulum acceleration, speed, and position, 𝑎𝑖 are pendulum parameters, 𝑏1 and 𝜔
are driving force factors.

Since our approach is based on the use of matrix equations let us rewrite (12) into matrix form (3)
with matrices

𝑌 =
(︀
𝑦1 𝑦2

)︀𝑇
; 𝐹 (𝑌 ) =

(︀
𝑦2 − 𝑎1𝑦2 + 𝑎2𝑦1 − 𝑎3𝑦

3
1

)︀
; 𝐺(𝜔, 𝑡, 𝜙0) =

(︂
0

𝑏1 cos(𝜔𝑡)

)︂
.

At first, we consider the stationary case of coordinate system transformation from the orthogonal
into some nonorthogonal (9) as more simple case and then generalize out results for the case of model
transformation into non-stationary coordinates.

Let assume that this transformation is characterized by matrices (4) and (10), and rewrite (7) as
follows

𝑌 = 𝑖𝑛𝑣

(︂(︂
𝑘1 0
0 𝑘2

)︂(︂
cos(𝛼) sin(𝛼)

cos(𝛼+ 𝛽) sin(𝛼+ 𝛽)

)︂)︂(︂
𝑦′1
𝑦′2

)︂
−
(︂

𝑦01
𝑦02

)︂
= (13)

=

(︃
sin(𝛼+𝛽)
𝑘1 sin(𝛼)

(𝑦′1 − 𝑦10)− sin(𝛼)
𝑘2 sin(𝛽)

(𝑦′2 − 𝑦20)

− cos(𝛼+𝛽)
𝑘1 sin(𝛼)

(𝑦′1 − 𝑦10) +
cos(𝛼)

𝑘2 sin(𝛽)
(𝑦′2 − 𝑦20)

)︃
. (14)

Then, we substitute (13) into matrix-function 𝐹 (𝑌 )

𝐹 (𝑌 ) =

(︂
𝑘11(𝑦

′
1 − 𝑦10) + 𝑘12(𝑦

′
2 − 𝑦20)

𝑘22(𝑦
′
2 − 𝑦20) + 𝑘21(𝑦

′
1 − 𝑦10) + 𝑎3(𝑘232(𝑦

′
2 − 𝑦20) + 𝑘231(𝑦

′
1 − 𝑦10))

3

)︂
, (15)

𝑘231 =
cos(𝛼)

𝑘2 sin(𝛽)
; 𝑘11 =

sin(𝛼+ 𝛽)

𝑘1 sin(𝛼)
; 𝑘22 =

𝑎1 cos(𝛼)− 𝑎2 sin(𝛼)

𝑘2 sin(𝛽)
; 𝑘232 = −cos(𝛼+ 𝛽)

𝑘1 sin(𝛼)
;

𝑘12 = − sin(𝛼)

𝑘2 sin(𝛽)
; 𝑘21 =

𝑎2 sin(𝛼+ 𝛽)− 𝑎1 cos(𝛼+ 𝛽)

𝑘1 sin(𝛽)
.

Analysis of (15) shows that contrary to (13) the terms of vector-function (15) depends on both
pendulum parameters and transformation factors. Moreover, detailed study of the first row in matrix
(15) shows that after transformation the pendulum position depends on both its speed and position.
This fact proves the above-given sentence about the generalized differential operator because control
theory shows that phase shift in dynamical system with inner feedback is not equal 𝜋/2.

If one substitutes (15) and (13) into (9) he can write down the Duffing equation in the non-orthogonal
coordinate system

𝑌 ′ =

⎛⎜⎜⎝
𝑑110𝑦10 + 𝑑11𝑦

′
1 + 𝑑120𝑦20 + 𝑑12𝑦

′
2+

+𝑑13(𝑘232(𝑦20 − 𝑦′2) + 𝑘231(𝑦10 − 𝑦′1))
3 + 𝑒1 cos(𝜔𝑡)

𝑑210𝑦10 + 𝑑21𝑦
′
1 + 𝑑220𝑦20 + 𝑑22𝑦

′
2+

+𝑑23(𝑘232(𝑦20 − 𝑦′2) + 𝑘231(𝑦10 − 𝑦′1))
3 + 𝑒2 cos(𝜔𝑡)

⎞⎟⎟⎠ , (16)



𝑑110 = 𝑘1𝑘21 sin(𝛼)− 𝑘1𝑘11 cos(𝛼); 𝑑11 = 𝑘1𝑘11 cos(𝛼)− 𝑘1𝑘21 sin(𝛼);

𝑑120 = −𝑘1𝑘12 cos(𝛼) + 𝑘1𝑘22 sin(𝛼)𝑙 𝑑12 = 𝑘1𝑘12 cos(𝛼)− 𝑘1𝑘22 sin(𝛼);

𝑒1 = 𝑘1𝑏1 sin(𝛼); 𝑑210 = 𝑘2𝑘21𝑠𝑖𝑛(𝛼+ 𝛽)− 𝑘2𝑘11 cos(𝛼+ 𝛽);

𝑑22 = −𝑘2𝑘22 sin(𝛼+ 𝛽) + 𝑘2𝑘12 cos(𝛼+ 𝛽);

𝑒2 = 𝑘2𝑏1 sin(𝛼+ 𝛽); 𝑑23 = 𝑘2𝑎3 sin(𝛼+ 𝛽).

Analysis of (16) shows that the equation has the similar components but with different factors.
We believe that this fact can be used while control problems are being solved to reduce the order of
controlled system but checking of this hypothesis is leaved for future studying.

Numerical solution of (16) is performed by using a well-known Arduino Due board. Numerical
simulation program, which solves (16), implements the simplest integration method which is based on
the use of finite backward difference with sample time 0.001 s. Signals from the board where obtained
to PC by using standard serial communication. In Figure.2 and Figure.3 we show the transformed and
classical system attractors.

Figure 2: Transformed pendulum attractor Figure 3: Classical pendulum attractor

As one can see our approach allows to scale, rotate, and shift the transformed attractor in comparison
with the known one. The above-given results are obtained for the following transformation factors
here , 𝛼 = 𝑝𝑖/6, 𝛽 = 𝑝𝑖/4 and pendulum equation factors 𝑎1 = 1, 𝑎2 = 0.02, 𝑎3 = 5, 𝑏1 = 8, 𝜔 = 0.5.

It is clear that the attractor changing is caused by changing chaotic oscillations in the transformed
dynamical system. We show transformed and classical pendulums oscillations in Figure.4 and Figure.5
respectively.

Figure 4: Numerical solution of
the transformed Duffing equation

Figure 5: Numerical solution of
the classical Duffing equation

Analysis of the above-given results of numerical simulations allows us to claim that even in a quite
short time range statically-transformed and classical systems produce different outputs. This fact allows
us to claim the possibility to generate novel chaotic oscillations by transforming known ones. Here



we study the simplest affine transformation with the constant factors but we believe that the use of
nonlinear one with variable factors which depend on system state variables and time can dramatically
change system motion.

Now we turn our attention into the most general case when transformations factors are some
time-depended functions. In this case we use (11) instead of (9) to perform the pendulum model
transformation. Also, we take into account that the last summand in (11) is the system motion equation
in stationary coordinates which is defined by (9). This fact allows us to use the previously defined
equation (16) as the part of following one

𝑌 ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘2(𝑦1 − 𝑦01)𝑘̇1 sin(𝛼) + 𝑘1𝛼̇ cos(𝛼) cos(𝛼+ 𝛽)+

+𝑘2(𝑦2 − 𝑦02)𝑘̇1 sin(𝛼) + 𝑘1𝛼̇ cos(𝛼) sin(𝛼+ 𝛽)+
+𝑘21𝛼̇((𝑦2 − 𝑦02) cos

2(𝛼)− 𝑠𝑖𝑛(𝛼)(𝑦1 − 𝑦01) cos(𝛼)− 𝑦2 + 𝑦02)𝛼̇+

+𝑘1((𝑦1 − 𝑦01) cos(𝛼) + sin(𝛼)(𝑦2 − 𝑦02)) cos(𝛼)𝑘̇1 + 𝑦̇01+
+𝑑110𝑦10 + 𝑑11𝑦

′
1 + 𝑑120𝑦20 + 𝑑12𝑦

′
2+

+𝑑13(𝑘232(𝑦20 − 𝑦′2) + 𝑘231(𝑦10−𝑦′1
))3 + 𝑒1 cos(𝜔𝑡)

−(𝑘̇2(𝑦2 − 𝑦02)− 𝑘2(𝑦1 − 𝑦01)(𝛼̇+ 𝛽̇))𝑘2 cos
2(𝛼+ 𝛽)+

+(𝑘2((𝑦1 − 𝑦01)(𝑘̇2 + 𝑘2(𝑦2 − 𝑦02)(𝛼̇+ 𝛽̇)) sin(𝛼+ 𝛽)+

+𝑘1𝑘̇2((𝑦1 − 𝑦01) cos(𝛼) + sin(𝛼)(𝑦2 − 𝑦02)) cos(𝛼+ 𝛽)−
−(𝛼̇+ 𝛽̇)𝑘1((𝑦1 − 𝑦01) cos(𝛼) + sin(𝛼)(𝑦2 − 𝑦02))𝑘2 sin(𝛼+ 𝛽)+

+𝑘2(𝑦2 − 𝑦02)𝑘̇2 + 𝑦̇02 + 𝑑210𝑦10 + 𝑑21𝑦
′
1 + 𝑑220𝑦20 + 𝑑22𝑦

′
2+

+𝑑23(𝑘232(𝑦20−𝑦′2
) + 𝑘231(𝑦10−𝑦′1)

)3 + 𝑒2 cos(𝜔𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

Equation (17) use the most general terms to define derivatives for components of matrices 𝐾 , 𝑌 0,
and 𝑅′ by assuming all these components are some functions. The main feature of the transformed
system is its determination by using both polynomial and trigonometric functions. One can use this
fact to define the classes of system’s nonlinearities which use cause chaotic motions.

One can specify (17) by taking into account different transformation functions’ formulas. It is clear
that there is no any restriction of the functions’ formulas. Also, we think that these functions make
great effect in system dynamic that is why we leave study and design of chaotic systems with specified
transformation functions for future research and now show some examples of numerical solution (17).
We use the same numerical methods to solve this equation as the above-used. Also, we leave unchanged
the MCU board to implement the considered chaotic system.

Implementation of all above-considered dynamical systems are performed by using the simplest
feedback difference approximation for derivative operator

𝑦̇ ≈ 1− 𝑧−1

ℎ
𝑦, (18)

here ℎ is a system discretization period and 𝑧−1 means backward signal shifting on one discretization
period.

It is clear that contrary to transformation of pendulum motion for the case of constant values of
transformation factors, in the most general case of variable transformation factors one should take into
account both value and derivative of such factor. This fact causes the necessity to define trajectories of
these factors’ motions.

Since these trajectories can be defined by tons of different expressions, we consider here several of
them and leave detailed system studies for future research.

We start our studies from the case of linear time-depended changing of transformation factors

𝑤𝑖 = 𝑤𝑖1𝑡+ 𝑤𝑖0, (19)

where 𝑤𝑖 is a generalized transformation factor, 𝑤𝑖𝑗 are parameters of linear dependency and 𝑡 is a
system time.

Simulation results for the system (17) with transformation factors (19) are shown if Figure.6-Figure.8



Figure 6: Pendulum transformed state variables
in non-orthogonal linearly-moved coordinates

Figure 7: Transformed pendulum attractor
in non-orthogonal linearly-moved coordinates

Figure 8: Pendulum factors

Shown in Figure.6-Figure.8 simulation results are obtained for following linear time-depended trans-
formation factors

𝑘1 = 0.1𝑡+ 0.1; 𝑘2 = −0.1𝑡− 0.2; 𝑦01 = 0.01𝑡+ 0.03; (20)
𝑦02 = 0.04𝑡− 0.02; 𝛼 = 𝑡+ 0.5; 𝛽 = 1.5𝑡+ 0.5.

Analysis of given in Figure.6-Figure.7 simulation results shows that system trajectories after trans-
formation into moved non-orthogonal coordinates dramatically changed in comparison of the initial
system. This fact makes strong backgrounds to the design of novel systems. The motion equations
for these systems can be defined in terms of system output variable and its derivatives as well as the
system time. Thus, the usage of transformation factors (20) allows us to define the new class of systems
with chaotic dynamic which motions depend on both state variables and time.

It is clear that the linear dependency of transformation factors from system time define linear rising
of system state variables because of the continuous linear origin shifting and gains increasing.

For the case of polynomial dependency of transformation factors from time

𝑤𝑖 = 𝑤𝑖1𝑡
2 + 𝑤𝑖0, (21)

one can obtain following simulation results (Figure.9-Figure.11),
Shown in Figure.9-Figure.11 simulation results are obtained for following polynomial time-depended

transformation factors

𝑘1 = 0.0025(𝑡+ 1)2; 𝑘2 = −0.0025(𝑡+ 2)2;

𝑦01 = 0.00025(𝑡+ 3)2; 𝑦02 = 0.00025(4𝑡− 2)2; (22)



Figure 9: Pendulum transformed state variables
in non-orthogonal polynomialy-moved coordinates

Figure 10: Transformed pendulum attractor
in non-orthogonal polynomialy-moved coordinates

Figure 11: Pendulum factors

𝛼 = 0.0125(2𝑡+ 1)2; 𝛽 = 0.0125(3𝑡+ 1)2.

Analysis of given inFigure.9-Figure.11 simulation results shows that the use of nonlinear time-depended
functions to define transformation factors makes system dynamic more complex and allows to increase
the oscillation frequency. Also, it allows us to claim that the amplitude of chaotic oscillations in the
transformed coordinates depends from the functions which define the transformation factors. This
sentence is proven by quadratic rising of oscillation amplitudes which depend on system time.

The above-given simulation results allow us to claim that use of more complex functions to define
the transformation factors allows us to form highly-nonlinear system motions. To prove this sentence,
we consider following harmonic transformation functions

𝑘1 = sin(𝑡+ 1); 𝑘2 = cos(𝑡+ 2); 𝑦01 = sin(0.1𝑡+ 0.3); 𝑦02 = cos(0.4𝑡− 0.2); (23)
𝛼 = sin(𝑡+ 0.5); 𝛽 = cos(1.5𝑡+ 0.5). (24)

Simulation results for dynamical system(17) which use (23) are shown in Figure.12-Figure.14.
Analysis of the given in Figure.7 curves shows that one can use highly-nonlinear time-depended

functions to perform system transformation and design novel chaotic system which are defined by
nonlinear equations.

All above-considered transformed systems are designed by using information about system time
to define the transformation functions. It is clear that such approach is convenient from practical
implementation viewpoint only in case when bounded or harmonic function are used. Because in case
of unbounded functions after achieving some time value system coordinates can reach very high values
which cannot be physically implemented. So, one should use time-depended transformation factors
carefully. At the same time the using information about system state variables allows us to solve this
problem and design novel chaotic system without using system time in explicit form.



Figure 12: Pendulum transformed state variables
in non-orthogonal harmonicaly-moved coordinates

Figure 13: Transformed pendulum attractor
in non-orthogonal haarmonicaly-moved coordinates

Figure 14: Pendulum factors

Thus, in Figure.8 and Figure.9 we show the simulation results for the case when time in (20) and (23)
are replaced with pendulum state variables. This replacement is defined by using cross-numbering
strategy, according to which the factor 𝑤1 depends on 𝑦2 and vice versa.

The given simulation results prove above-given hypothesis about possibility to use the pendulum
state variables to define transformation factors and allow us to claim that highly-nonlinear chaotic
system can be designed in case of using nonlinear transformation functions which depend on system
state variables.

4. Conclusions

Applying of known affine transformations to the phase portrait of the generalized dynamical system
allows us to transform this phase portrait into non-orthogonal coordinate system. From the control
theory viewpoint, in this case, the motion of transformed system is defined with system of matrix
differential motion equation and algebraic observability equation. To fit the use of these equations to
known methods of dynamical system analysis and synthesis we represent them with only differential
equations by differentiating the observability equation. Such an approach allows us to take into account
possible motions of the new coordinate system, where the motion of considered dynamical system are
transformed, and define matrix expression for this transformation. The use of this expression allows us
to write down differential equations for any transformed dynamical system without performing any
coordinate transformation and using observability equation.

Applying of the proposed approach to the existing chaotic systems equations allows us to define
novel chaotic systems which attractors are defined in non-orthogonal coordinate systems. Our studies



Figure 15: Pendulum transformed state variables
in non-orthogonal linearly-moved coordinates
which linearly depend on pendulum state variables

Figure 16: Transformed pendulum attractor
in non-orthogonal linearly-moved coordinates
which linearly depend on pendulum state variables

Figure 17: Pendulum factors

show that using of the above-given approach while Duffing pendulum is being modeled, allows to
change the form of its oscillations and shift, scale and rotate its attractor.

We see the future development of our work in applying nonlinear transformations to the considered
nonlinear system.
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Figure 18: Pendulum transformed state variables
in non-orthogonal harmonicaly-moved coordinates
which harmonicaly depend on pendulum state variables

Figure 19: Transformed pendulum attractor
in non-orthogonal harmonicaly-moved coordinates
which harmonicaly depend on pendulum state variables

Figure 20: Pendulum factors
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