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Abstract
The paper deals with the design of backgrounds to study and construct coupled single and multichannel dynamical
systems. Our studies are based on considering the motion equations of the known dynamical systems and defining
interrelations between these systems. Such an approach allows the transformation of one class of time-variant
systems into a time-invariant one, and motion analysis for them can be performed using the known control
theory methods. We study the motions of each subsystem and consider their trajectory variations to define the
system’s perturbed motions. The motions’ equations can be determined by taking into account the system model
and differentiating the perturbed motion coordinates. Such an approach allows us to define system dynamics as a
function of the perturbed motion coordinates and their derivatives only and does not require solving equations of
the initial system. The coupled system perturbed motion differs from the initial ones and allows us to consider the
perturbed motion’s dynamical systems as novel systems. Our method is proven by considering the well-known
Duffing pendulum as the subsystem in a coupled dynamical system.
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1. Introduction

Nonlinear systems has always been a critical component across numerous domains of human activity,
including defense, finance, healthcare, and industrial control systems [1, 2, 3]. In recent decades, the
significance of these systems has grown substantially, driven largely by the explosive development of
interconnected devices operating under the Internet of Things (IoT) paradigm [4, 5, 6]. The widespread
deployment of IoT systems has introduced new challenges in ensuring data confidentiality, integrity,
and authenticity, thereby increasing the demand for innovative encryption techniques [7, 8, 9].

Among the various approaches to signals producing and exchanging, nonlinear systems have emerged
as a promising and effective tool to produce novel complex signals [10, 11, 12, 13]. These systems offer
inherent properties such as sensitivity to initial conditions, ergodicity, and pseudo-random behavior
[14, 15, 16, 17, 18, 19]. As a result, the design and analysis of nonlinear systems have become an active
area of research, leading to the development of numerous models with distinct dynamic behaviors and
applications [20, 21, 22, 23].

One particularly well-studied nonlinear system is the Duffing oscillator, a nonlinear second-order
differential equation that models the behavior of certain mechanical and electrical systems [24, 25, 26].
Despite its relatively simple structure, the Duffing oscillator exhibits rich dynamic phenomena, including
periodic, quasi-periodic, and chaotic responses [27, 28, 29, 30]. When multiple Duffing oscillators are
coupled, the overall system exhibits even more intricate behavior due to the interaction between
individual units.

Recent investigations into coupled Duffing pendulums have focused on exploring their complex
dynamics through the lens of Hamiltonian chaos, bifurcation theory, and stability analysis [31, 32, 33, 34].
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These studies have uncovered a variety of interesting behaviors such as the emergence of novel motion
attractors, fluctuating maximum Lyapunov exponents, phase transitions, and the delineation of stability
domains [35, 36]. Such findings not only enhance the understanding of nonlinear coupled systems
but also open new avenues for practical applications, including signal generation, control, and system
motions’ synchronization.

In this work, we further contribute to this area by analyzing the dynamics of coupled Duffing pendu-
lums through the framework of perturbed motion analysis. This perspective allows us to characterize
the system’s response to small disturbances and identify regions of chaotic and periodic behavior with
greater precision. Building upon these insights, we propose a novel design for a chaotic signal generator
based on the dynamics of the coupled Duffing pendulum.

2. Method

2.1. Model of the generalized coupled dynamical system in continuous and discrete
time domains

Let us consider the generalized second-order nonlinear dynamical system which motion is given by the
following normal differential equations

𝑥̈1 = 𝑓1(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1), (1)
𝑥1(0) = 𝑥10, 𝑥̇1(0) = 𝑑𝑥10,

here 𝑥1 is the system generalized coordinates, 𝑦1 is some external excitation signal, 𝑥10 and 𝑑𝑥10 are
pendulum initial conditions.

We think that the system motions are caused by its initial conditions and some excitation signal 𝑦1 .
The signal 𝑦1 is assumed the harmonic one and produced as the result of solution ODE which is similar
to (1)

𝑦1 = 𝑔1(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1), (2)
𝑦1(0) = 𝑦10, 𝑦̇1(0) = 𝑑𝑦10,

here 𝑔1(.) is some nonlinear function, 𝑦10 and 𝑑𝑦10 are exciter initial conditions.
In other words, we consider (2) as the model of some exciter for the system (1). But contrary to the

known systems we assume that the dynamic of the exciter is driven by the considered system speed and
position. From the mathematical viewpoint, one can consider (1)–(2) as the conjugated equations that
define the excited system motion. We call this system the conjugated one. It is clear that the motions of
the conjugated system are determined by its parameters, initial conditions, and control signal. External
signal 𝑦1 is excluded from consideration by considering the dynamic of the subsystem that it produces.
Thus, we claim that the transformation of a dynamical system with external exciter into a conjugated
system allows us to take into account the exciter dynamic and exclude from consideration the external
excitation signal.

We think that exist another similar system which which we call as the second system and use
following equations to define its motions

𝑥̈2 = 𝑓2(𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2), (3)
𝑥2(0) = 𝑥20, 𝑥̇2(0) = 𝑑𝑥20;

𝑦2 = 𝑔2(𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2),

𝑦2(0) = 𝑦20, 𝑦̇2(0) = 𝑑𝑦20,

here 𝑥2 and 𝑦2 are second conjugated system state variables, 𝑓2(.) and 𝑔2(.) functions which define
system motions.



The considered systems interrelate each over in such a way

𝑥̈1 = 𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2), (4)
𝑦1 = 𝑔12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2),

𝑥̈2 = 𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2),

𝑦2 = 𝑔21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2),

here 𝑔𝑖𝑗 and 𝑓𝑖𝑗 are functions which allows to take into account the effect of one system to another.
Equations (4) define the dynamic of the coupled system which consists of two interconnected

subsystems. The order of such a coupled system equals to sum of orders each subsystem and can
becomes quite high while several similar subsystems are being considered.

Since various devices nowadays are designed with discrete-time electronic components and circuits
we offer to apply a discrete-time approximations

𝑥̇ ≈ 𝑑1(𝑥, 𝑧
−1𝑥, 𝑇 ), (5)

𝑥̈ ≈ 𝑑2(𝑥, 𝑧
−1𝑥, 𝑧−2𝑥, 𝑇 ), (6)

..., (7)
𝑥(𝑛) ≈ 𝑑𝑛(𝑥, 𝑧

−1𝑥, 𝑧−2𝑥, · · · , 𝑧−𝑛𝑥, 𝑇 ), (8)

here 𝑧−𝑖 is a shift operator which takes the value of system state variable 𝑥 that is defined 𝑖 time
discretization periods 𝑇 back, and 𝑑𝑖 is some approximation procedure to the derivatives in (4) and
rewrite them in finite-difference equations form

𝑑2(𝑥1, 𝑧
−1𝑥1, 𝑧

−2𝑥1, 𝑇 ) = 𝑓12𝑑(𝑥1, 𝑧
−1𝑥1, 𝑦1, 𝑧

−1𝑦1, 𝑥2, 𝑧
−1𝑥2, 𝑦2, 𝑧

−1𝑦2, 𝑢11, 𝑇 ), (9)
𝑑2(𝑦1, 𝑧

−1𝑦1, 𝑧
−2𝑦1, 𝑇 ) = 𝑔12𝑑(𝑥1, 𝑧

−1𝑥1, 𝑦1, 𝑧
−1𝑦1, 𝑥2, 𝑧

−1𝑥2, 𝑦2, 𝑧
−1𝑦2, 𝑢12, 𝑇 ),

𝑑2(𝑥2, 𝑧
−1𝑥2, 𝑧

−2𝑥2, 𝑇 ) = 𝑓21𝑑(𝑥1, 𝑧
−1𝑥1, 𝑦1, 𝑧

−1𝑦1, 𝑥2, 𝑧
−1𝑥2, 𝑦2, 𝑧

−1𝑦2, 𝑢21, 𝑇 ),

𝑑2(𝑦2, 𝑧
−1𝑦2, 𝑧

−2𝑦2, 𝑇 ) = 𝑔21𝑑(𝑥1, 𝑧
−1𝑥1, 𝑦1, 𝑧

−1𝑦1, 𝑥2, 𝑧
−1𝑥2, 𝑦2, 𝑧

−1𝑦2, 𝑢22, 𝑇 ),

where 𝑓𝑖𝑗𝑑 and 𝑔𝑖𝑗𝑑 are discrete-time images of initial nonlinear functions 𝑓𝑖𝑗 and 𝑔𝑖𝑗 and define initial
conditions equations as follows

𝑥1(0) = 𝑥10, 𝑑1(𝑥1(0), 𝑧
−1𝑥1(0), 𝑇 ) = 𝑑𝑥10, (10)

𝑦1(0) = 𝑦10, 𝑑1(𝑦1(0), 𝑧
−1𝑦1(0), 𝑇 ) = 𝑑𝑦10,

𝑥2(0) = 𝑥20, 𝑑1(𝑥2(0), 𝑧
−1𝑥2(0), 𝑇 ) = 𝑑𝑥20,

𝑦2(0) = 𝑦20, 𝑑1(𝑦2(0), 𝑧
−1𝑦2(0), 𝑇 ) = 𝑑𝑦20.

Solution (10) gives us the possibility to define system state variables and the first time moment and the
previous time moment

𝑥1(0) = 𝑥10, 𝑧
−1𝑥1(0) = 𝑠1(𝑥10, 𝑑𝑥10, 𝑇 ), (11)

𝑦1(0) = 𝑦10, 𝑧
−1𝑦1(0) = 𝑠1(𝑦10, 𝑑𝑦10, 𝑇 ),

𝑥2(0) = 𝑥20, 𝑧
−1𝑥2(0) = 𝑠1(𝑥20, 𝑑𝑥20, 𝑇 ),

𝑦2(0) = 𝑦20, 𝑧
−1𝑦2(0) = 𝑠1(𝑦20, 𝑑𝑦20, 𝑇 ),

here 𝑠1 means a solution for previous values of 𝑖-th state variable. Such a solution makes unambiguous
backgrounds to solve the system motion equations (9) which can be given in such a way

𝑥1 = 𝑓𝑠12𝑑(𝑥1, 𝑧
−1𝑥1, 𝑧

−2𝑥1, 𝑦1, 𝑧
−1𝑦1, 𝑥2, 𝑧

−1𝑥2, 𝑦2, 𝑧
−1𝑦2, 𝑢11, 𝑇 ), (12)

𝑦1 = 𝑔𝑠12𝑑(𝑥1, 𝑧
−1𝑥1, 𝑦1, 𝑧

−1𝑦1, 𝑧
−2𝑦1, 𝑥2, 𝑧

−1𝑥2, 𝑦2, 𝑧
−1𝑦2, 𝑢12, 𝑇 ),

𝑥2 = 𝑓𝑠21𝑑(𝑥1, 𝑧
−1𝑥1, 𝑦1, 𝑧

−1𝑦1, 𝑥2, 𝑧
−1𝑥2, 𝑧

−2𝑥2, 𝑦2, 𝑧
−1𝑦2, 𝑢21, 𝑇 ),



𝑦2 = 𝑔𝑠21𝑑(𝑥1, 𝑧
−1𝑥1, 𝑦1, 𝑧

−1𝑦1, 𝑥2, 𝑧
−1𝑥2, 𝑦2, 𝑧

−1𝑦2, 𝑧
−2𝑦2, 𝑢22, 𝑇 ),

where 𝑓𝑠𝑖𝑗𝑑 and 𝑔𝑠𝑖𝑗𝑑 means the solution of the nonlinear equations (9).
It is clear that due to the different subsystem parameters, initial conditions and control signals each

subsystem produces various motion trajectories. This fact raises the problem of study the variations
subsystem motions.

2.2. Perturbed motion of the generalized coupled system

Let us define the difference between trajectories of the same subsystems as follows

𝛿𝑥 = 𝑥1 − 𝑥2; (13)
𝛿𝑦 = 𝑦1 − 𝑦2 (14)

and consider the cases of both continuous and discrete time dynamical systems.
We start our studies from the continuous time system and we differentiate (13) to define the first and

second derivatives of the trajectory variation

̇𝛿𝑥 = 𝑥̇1 − 𝑥̇2; (15)
𝛿𝑦 = 𝑦̇1 − 𝑦̇2;

𝛿𝑥 = 𝑥̈1 − 𝑥̈2 = 𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2);

𝛿𝑦 = 𝑦1 − 𝑦2 = 𝑔12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑔21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2).

One can consider (15) as differential-algebraic observability equations for coupled dynamical system
(4). These equations allows us to define interrelations between the subsystem coordinates 𝑥𝑖, 𝑦𝑖 and
their variations 𝛿𝑥, 𝛿𝑦 as well as their derivatives. We call trajectory variations and their derivatives
as the perturbed motion coordinates. One can find the use of these equations is a quite suitable from
control theory viewpoint since it allows defining the derivatives from subsystems trajectory variations
without differentiating these variations. At the same time it is clear that to define trajectory variations
and their derivatives according to (13) and (15) it is necessary to use the system model (4) as the source
of system coordinates.

Another way which allows to exclude the considering of system model while control system is being
designed is rewriting (13) and (15) in terms only trajectory variations and their derivatives. The main
benefit of such an approach is the possibility to design several dynamical models which are defined with
various trajectory variations which defines the structure of control system and its operating algorithm.

The simplest case is the controlling of only one trajectory variations. In this case, the algorithm of
perturbed model design can be given in such a way:

• One should select which trajectory variation 𝛿𝑥 or 𝛿𝑦 is considered. Let us show the use of
proposed algorithm for 𝛿𝑥 variation.

• Since the system dynamic is defined by eight state variables, it is necessary to differentiate the
corresponding trajectory variation for seven times to define the equations to interrelate the
system state variables with derivatives of the selecting trajectory variations

𝛿𝑥 = 𝑥1 − 𝑥2; (16)
̇𝛿𝑥 = 𝑥̇1 − 𝑥̇2; (17)

𝛿𝑥 = 𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2);

𝛿𝑥(3) = 𝑑
𝑑𝑡𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑑

𝑑𝑡𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2) =

= 𝑑𝑓12(𝑥̇1,𝑥1,𝑦̇1,𝑦1,𝑥̇2,𝑥2,𝑦̇2,𝑦2)
𝑑𝑥̇1

𝑥̈1 +
𝑑𝑓12(𝑥̇1,𝑥1,𝑦̇1,𝑦1,𝑥̇2,𝑥2,𝑦̇2,𝑦2)

𝑑𝑥1
𝑥̇1 + · · ·

...
𝛿𝑥(7) = 𝑑5

𝑑𝑡5
𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑑5

𝑑𝑡5
𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2).



One can use (16) to define the initial conditions for the perturbed motion by known initial values
of the studied dynamical system.

• Solution (16) for the generalized system state variable 𝑞 can be written down in such a way

𝑞𝑖 = 𝑠𝛿𝑥𝑖
(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, · · · , 𝛿𝑥(7)), (18)

where 𝑠𝛿𝑥𝑖
(.) is the nonlinear function which define the interrelations between system state

variables and its perturbed motion variables.
• The desired perturbed motion equation can be obtained if one differentiate the last equation (16)

and substitute (18) into the defined derivative

𝛿𝑥(8) = 𝑓8(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, · · · , 𝛿𝑥(7)), (19)

here 𝑓8(.) is some nonlinear function.

It is clear that the similar transformations can be performed for the case when the perturbed motion
is considered for trajectory variation 𝛿𝑦. In both cases exact analytical solution of the perturbed motion
modeling problem (19) can be obtained only for few very specific cases. That is why we offer to use the
numerical methods based on the Newton-Raphson approach or replace the system nonlinearities with
their piecewise linear approximations and consider the nonlinear system as a variable-structure one.

Nevertheless, the designed perturbed motion model is defined for only one trajectory variation and
allows to control it by solving the minimization problem for the considered trajectory variation. It is
clear that the minimization of another variation does not guaranteed. The trying to solve optimization
problems for different trajectory variations by using corresponding equation like (19) in the parallel
way with using different control inputs can cause control conflicts and unstudied system dynamic.

That is why for the case when it is necessary to minimize both system trajectory variations we offer
another approach to model the system perturbed motion.

In this case we modify the above-given algorithm to design the perturbed motion in terms of both
perturbed motion coordinates:

• Both trajectory variations (13) are considered.
• Each of these variations are differentiated for three times to define the interrelations between the

perturbed coordinates and system motion coordinates

𝛿𝑥 = 𝑥1 − 𝑥2; (20)
𝛿𝑦 = 𝑦1 − 𝑦2;

̇𝛿𝑥 = 𝑥̇1 − 𝑥̇2;

𝛿𝑦 = 𝑦̇1 − 𝑦̇2;

𝛿𝑥 = 𝑥̈1 − 𝑥̈2 = 𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2);

𝛿𝑦 = 𝑦1 − 𝑦2 = 𝑔12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑔21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2);

𝛿𝑥(3) = 𝑑
𝑑𝑡𝑓12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑑

𝑑𝑡𝑓21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2);

𝛿𝑦(3) = 𝑑
𝑑𝑡𝑔12(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2)− 𝑑

𝑑𝑡𝑔21(𝑥̇1, 𝑥1, 𝑦̇1, 𝑦1, 𝑥̇2, 𝑥2, 𝑦̇2, 𝑦2).

• Solution (13) for system state variables allows us to define them in terms of both perturbed motion
coordinates and their derivatives. The generalized solution (18)

𝑞𝑖 = 𝑠𝛿𝑥𝑖
(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(3), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3)), (21)

• The desired perturbed motion equations are defined by differentiating the two last equations in
(20) and substituting (21) into these derivatives

𝛿𝑥(4) = 𝑓4(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(3), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3)); (22)
𝛿𝑦(4) = 𝑔4(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(3), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3)),

here 𝑓4(.) and 𝑔4(.) are some functions.



As one can see from comparison of (19) and (22) the order of perturbed motion equations of the
considered system does not depend on the way to represent its motion and it equals to 8 which equals
the order of initial coupled system (4). One can use this fact to check the correctness of performed
transformations while the perturbed motion model for the specific coupled dynamical system is being
designed.

One can easy transform (19) into discrete-time domain by applying to them approximations (5) and
representing the system dynamic in the explicit form as follows

𝛿𝑥 = 𝑓𝑠𝑑8(𝑧
−1𝛿𝑥, 𝑧−2𝛿𝑥, · · · , 𝑧−7𝛿𝑥, 𝑢11, · · · , 𝑧−6𝑢11, 𝑢21, · · · , 𝑧−6𝑢21), (23)

𝛿𝑦 = 𝑔𝑠𝑑8(𝑧
−1𝛿𝑦, 𝑧−2𝛿𝑦, · · · , 𝑧−7𝛿𝑦, 𝑢12, · · · , 𝑧−6𝑢12, 𝑢22, · · · , 𝑧−6𝑢22),

where 𝑓𝑠𝑑8(.) and 𝑔𝑠𝑑8(.) are discrete-time images of 𝑓8(.) and 𝑔8(.) functions which are used to define
the perturbed motion for 𝛿𝑥 and 𝛿𝑦 perturbed motion coordinates.

In similar way (22) can be rewriting

𝛿𝑥 = 𝑓𝑠𝑑4(𝑧
−1𝛿𝑥, 𝑧−2𝛿𝑥, · · · , 𝑧−4𝛿𝑥, 𝑧−1𝛿𝑦, 𝑧−2𝛿𝑦, · · · , 𝑧−4𝛿𝑦, (24)

𝑢11, 𝑧
−1𝑢11, 𝑢21, 𝑧

−1𝑢21, 𝑢12, 𝑧
−1𝑢12, 𝑢22, 𝑧

−1𝑢22);

𝛿𝑦 = 𝑔𝑠𝑑4(𝑧
−1𝛿𝑥, 𝑧−2𝛿𝑥, · · · , 𝑧−4𝛿𝑥, 𝑧−1𝛿𝑦, 𝑧−2𝛿𝑦, · · · , 𝑧−4𝛿𝑦,

𝑢11, 𝑧
−1𝑢11, 𝑢21, 𝑧

−1𝑢21, 𝑢12, 𝑧
−1𝑢12, 𝑢22, 𝑧

−1𝑢22),

where 𝑓𝑠𝑑4(.) and 𝑔𝑠𝑑4(.) are discrete-time images of 𝑓4(.) and 𝑔4(.) functions which are used to define
the perturbed motion for 𝛿𝑥 and 𝛿𝑦 perturbed motion coordinates.

Analysis of the discrete-time perturbed motion equations (23) and (24) allows us to claim the depen-
dency of these equations from the previous values of perturbed motion coordinates. So, one should
take into account this fact and reserve memory to save this data while the considered systems are
implemented with various digital devices.

Generally speaking, the above designed continuous and discrete-time models to study the systems
perturbed motions can be used as the sources of some signals which differ from the initial outputs of
each subsystem. It can be very useful in the case when the considered system has chaotic dynamic. In
this case the use of the proposed approach allows us to solve the direct dynamic problem and define
system motions by known control signals and initial conditions.

2.3. Synchronization of the coupled subsystems

However, the main benefit of the perturbed motion equations can be found while one design the control
system. The design of such a system can be considered from a mathematical viewpoint as the problem
of minimizing the perturbed motion trajectories which means the coincidence of both subsystems
motions.

We consider the system optimization problem as the solution of inverse dynamic problem which
means to determine the control signals by known motions. We assume that system has at least one
non-zero component of initial condition vector and we define such a control signals which make the
perturbed system motion asymptotically stable and tend it to zero.

It is a well known fact that the simplest asymptotic stable dynamical system is the linear first-order
one which motion can be given following linear differential operator

𝑊 (𝑠) =
1

𝑇𝑠+ 1
, (25)

here 𝑇 is a lag time of a desired system and 𝑠 is a Laplace operator.
Such an operator defines two components of the closed-loop system: feedback with gain equals to

one and integrator in feedforward channel with 1/𝑇 gain. One can use the last fact to claim that the
operator, which define the controller structure and parameters, should compensate the system inner
dynamic and define the desired motion of the open-loop system as follows

𝑞𝑖 =
1

𝑇
𝑣𝑗 , (26)



here 𝑞𝑖 and 𝑣𝑗 are some generalized output variable and control signal.
It is clear that compensation of system inner dynamic can be performed if one solves the inverse

dynamic problem for the system. From the mathematical viewpoint such a solution means the use
of previously-written perturbed motions to define the control signal as function of the perturbed
coordinates. Since the considered dynamical system is multichannel one can use the same perturbed
motion equation to define control signals for various channels. Thus, if one takes into account (19) it
becomes possible to define following control signals

𝑢11 = 𝑓8𝑢11(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, · · · , 𝛿𝑥(8), 𝑢21, · · · , 𝑢(6)21 ); (27)

𝑢21 = 𝑓8𝑢21(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, · · · , 𝛿𝑥(8), 𝑢11, · · · , 𝑢(6)11 ).

It should be mentioned that both of control signals allows to compensate inner system perturbed motion
and in-joint to (26) gives the possibility to form the desired motion which is defined by (25)

𝑢11 =
1

𝑇

∫︁
𝑓8𝑢11(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, · · · , 𝛿𝑥(8), 𝑢21, · · · , 𝑢(6)21 )𝑑𝑡; (28)

𝑢21 =
1

𝑇

∫︁
𝑓8𝑢21(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, · · · , 𝛿𝑥(8), 𝑢11, · · · , 𝑢(6)11 )𝑑𝑡.

These control signal can be supplied to the system in separate way to build a single-channel control
system on in parallel to design the dual-channel one.

The number of control signals which can be defined as the solution of inverse dynamic problem
increases for the case when system perturbed motion is defined by (22). Generally speaking, due to the
coupled nature of the considered system as well as dependency of each equation in (22) from all control
inputs one can use any of them to control any perturbed motion coordinate. The most specific case is
the use only one equations from (22) to define all control signals which allows to minimize the only
one perturbed motion coordinate. The following equations allows us to compensate inner perturbed
motion dynamic for the channel of 𝛿𝑥

𝑢11 = 𝑓4𝑢11(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(4), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3), 𝑢21, 𝑢̇21, 𝑢12, 𝑢̇12, 𝑢22, 𝑢̇22); (29)
𝑢12 = 𝑓4𝑢12(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(4), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3), 𝑢21, 𝑢̇21, 𝑢11, 𝑢̇11, 𝑢22, 𝑢̇22);

𝑢21 = 𝑓4𝑢21(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(4), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3), 𝑢11, 𝑢̇11, 𝑢12, 𝑢̇12, 𝑢22, 𝑢̇22);

𝑢22 = 𝑓4𝑢22(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(4), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3), 𝑢21, 𝑢̇21, 𝑢12, 𝑢̇12, 𝑢11, 𝑢̇11).

The use (29) to implement the control system cause the necessity to consider the four-channel
controller to control 𝛿𝑥 variation. It is clear that the coordinate 𝛿𝑦 in this case is non-controlled and it
can take any values.

We offer avoid the uncontrolled system dynamic by using (22) to define the control signals for each
control channel. Here we take into account the place where the signal is supplied to the system and we
use the control signals in the same subsystems to compensate their inner perturbed motions

𝑢11 = 𝑓4𝑢11(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(4), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3), 𝑢21, 𝑢̇21, 𝑢12, 𝑢̇12, 𝑢22, 𝑢̇22); (30)
𝑢21 = 𝑓4𝑢21(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(4), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(3), 𝑢11, 𝑢̇11, 𝑢12, 𝑢̇12, 𝑢22, 𝑢̇22);

𝑢12 = 𝑓4𝑢12(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(3), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(4), 𝑢21, 𝑢̇21, 𝑢11, 𝑢̇11, 𝑢22, 𝑢̇22);

𝑢22 = 𝑓4𝑢22(𝛿𝑥, ̇𝛿𝑥, 𝛿𝑥, 𝛿𝑥(3), 𝛿𝑦, 𝛿𝑦, 𝛿𝑦, 𝛿𝑦(4), 𝑢21, 𝑢̇21, 𝑢12, 𝑢̇12, 𝑢11, 𝑢̇11).

The designed in such a way control system can be considered as the multi-loop multi-channel control
system and each channel and loop are controlled in a parallel way. It is necessary to say that the similar
control signals can be defined in the discrete-time by using (23) and (24).

We show the use of our approach by designing a control system for coupled Duffing pendulum.



3. Results and discussion

3.1. Coupled Duffing pendulum with driven exciter

We show the use of our approach by studying the perturbed motion of the coupled Duffing pendulum.
It is a well known fact that the single Duffing pendulum’s dynamic can given as follows

𝑥̈+ 𝛿𝑥̇+ 𝛼𝑥+ 𝛽𝑥3 = 𝛾𝑐𝑜𝑠(𝜔𝑡), (31)
𝑥(0) = 𝑥0, 𝑥̇(0) = 𝑑𝑥0,

here 𝑥 is a pendulum position, 𝛼,𝛽,𝛿 are pendulum parameters, and 𝛾, 𝜔 are parameters of external
excitation signal, 𝑥0 and 𝑑𝑥0 are pendulum initial position and speed.

One can rewrite (31) in form of conjugated equations by considering an exciter dynamic

𝑥̈+ 𝛿𝑥̇+ 𝛼𝑥+ 𝛽𝑥3 = 𝛾𝑦; (32)
𝑦 + 𝜔2𝑦 = 0,

𝑥(0) = 𝑥0, 𝑥̇(0) = 𝑑𝑥0, 𝑦(0) = 𝑦0, 𝑦̇(0) = 𝑑𝑦0,

here 𝑦 is an exciter output, 𝑦0 and 𝑑𝑦0 are exciter initial position and speed.
Results of numerical solution (32) with the simplest Euler method are shown in Figure 1 and Figure 2
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Figure 1: Oscillations in Duffing pendulum

−2 −1 0 1 2

−4

−2

0

2

4

x

ẋ

x

Figure 2: Attractor of Duffing pendulum

Here and further we use following pendulum parameters 𝛼 = 1, 𝛽 = 5, 𝛾 = 8, 𝛿 = 0.02, and
𝜔 = 0.5. This results are the similar to a well-known one and prove correctness of the designed model.

It is clear that the pendulum position depend on the exciter output. This position can be more complex
and upredictive in case of the driven exciter (Figure 3–Figure 4)

𝑥̈+ 𝛿𝑥̇+ 𝛼𝑥+ 𝛽𝑥3 = 𝛾𝑦; 𝑦 + 𝜔2𝑦 + 𝜖𝑥 = 0. (33)

These simulation results are obtained for 𝜖 = 0.6. As one can see from Figure 3 and Figure 4 the
use of driven exciter which output depend on the pendulum position allows us to form non-regular
excitation signal 𝑦 which dramatically changes the pendulum oscillations and deforms the pendulum
attractor.

We consider the above-studied driven Duffing pendulum as one of two coupled Duffing pendulums
which dynamic is defined as follows

𝑥1 + 𝛿11𝑥1 + 𝛼11𝑥1 + 𝛽11𝑥
3
1 + 𝛿12𝑥2 + 𝛼12𝑥2 + 𝛽12𝑥

3
2 = 𝛾11𝑦1 + 𝛾12𝑦2; (34)

𝑦1 + 𝜔2
11𝑦1 + 𝜔2

12𝑦2 + 𝜖11𝑥1 + 𝜖12𝑥2 = 0;

𝑥2 + 𝛿21𝑥1 + 𝛼21𝑥1 + 𝛽21𝑥
3
1 + 𝛿22𝑥2 + 𝛼22𝑥2 + 𝛽22𝑥

3
2 = 𝛾21𝑦1 + 𝛾22𝑦2;

𝑦2 + 𝜔2
21𝑦1 + 𝜔2

22𝑦2 + 𝜖21𝑥1 + 𝜖22𝑥2 = 0,
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Figure 4: Attractor of Duffing pendulum with
driven exciter

here indices i and j means the effect of 𝑖 pendulum on 𝑗 one.
From the physically implementation viewpoint the above-defined interconnections means the use

spring with a nonlinear stiffness and internal dumping to connect both pendulums.
Simulation results are given in Figure 5–Figure 8 for the following pendulum parameters 𝛼11 = 1,

𝛼12 = 0.8, 𝛼21 = 0.9, 𝛼22 = 1.1, 𝛽11 = 5, 𝛽12 = 4, 𝛽21 = 4.5, 𝛽22 = 5.5, 𝛿11 = 0.02, 𝛿12 = 0.015,
𝛿21 = 0.01, 𝛿22 = 0.03, 𝛾11 = 8, 𝛾12 = 9, 𝛾22 = 9, 𝛾21 = 7, 𝜔11 = 0.5, 𝜔12 = 0.4, 𝜔22 = 0.8, and
𝜔21 = 0.2.
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Figure 5: Oscillations in coupled Duffing pendulum
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Figure 8: Attractor in coupled Duffing pendulum

As one can see the dynamic of two coupled chaotic system differ from the dynamic of one system.



One can use this fact to design the novel chaotic systems by coupling the known ones.

3.2. Perturbed motion model of coupled Duffing pendulums

The way to design a novel chaotic system is use of combnations of state variables of known systems.
One of such combinations which has a physical meaning is the system perturbed motion which can be
considered as pendulums and exciters trajectory variations

𝛿𝑥 = 𝑥1 − 𝑥2; (35)
𝛿𝑦 = 𝑦1 − 𝑦2;

̇𝛿𝑥 = 𝑥1 − 𝑥2;

𝛿𝑦 = 𝑦1 − 𝑦2.

In this case (35) can be considered as the observability equations for (34) and both of these equations
make state space equations of the perturbed motion of coupled Duffing pendulums. Numerical solution
such a system is shown in Figure 9–12.

As one can see the considering of pendulum’s perturbed motions allows us to define the novel chaotic
system which motions and attractors differ from the initial ones. Moreover, analysis of curves given in
Figure 9–12 shows that the designed in such a way system does not have two equilibrium points which
have the initial classical Duffing pendulum.

It is clear that the considered system can be easy implemented by using various digital devices like
MCU or FPGA. Such an implementation should be based on the use of various approximations of
derivative operator to solve (34) in a numerical way. In our paper we consider the implementation of
developed models in Arduino Due board by using backward finite-difference approximation which is
defined as follows

𝑑

𝑑𝑡
≈ 1− 𝑧−1

𝑇𝑧−1
, (36)

here 𝑇 is a discretization time and 𝑧−1 is a shift operator which define the previous value of the
considered system’s state variables.

The main feature of such an approach is the necessity to solve at first the differential equations of the
pendulum motions and then use the observability equations to define its perturbed motions. One can
find it is not very convenient to use such equations to various control problems such as a solution of
inverse dynamic problem. That is why we offer to rewrite (34) and (35) in form of differential equations
only.

It is clearly understood that such rewriting requires multiply differentiating of the perturbed motion
coordinates 𝛿𝑥 and 𝛿𝑦 which components are defined by using the nonlinear differential equations.
Since such a differentiating can cause the determination of derivatives for pendulum state variables
with highly nonlinear equations which cannot be solved in an analytical way, we offer to replace the
pendulum cubic nonlinearity with piece-wise linear function as follows

𝑥3 ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑘1𝑥+ 𝑏1 𝑖𝑓 𝑥0 ≤ 𝑥 < 𝑥1;
𝑘2𝑥+ 𝑏2 𝑖𝑓 𝑥1 ≤ 𝑥 < 𝑥2;

...
𝑘𝑛𝑥+ 𝑏𝑛 𝑖𝑓 𝑥𝑛−1 ≤ 𝑥 < 𝑥𝑛,

(37)

where 𝑘𝑖 and 𝑏𝑖 are piece-wise linear approximation factors and 𝑥𝑖 is coordinate of fracture point, and
𝑛 is number of these points.

The use of approximation (37) allows us to rewrite (34) in linear-like matrix form

Q̇ = AQ+B, (38)

Q =
(︀
𝑥1 𝑥1 𝑦1 𝑦1 𝑥2 𝑥2 𝑦2 𝑦2

)︀𝑇
, (39)
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B =
(︀
0 −(𝛽11 + 𝛽12)𝑏𝑖 0 0 0 (𝛼22 + 𝛽22𝑘𝑖) 0 0

)︀𝑇
.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−(𝛼11 + 𝛽11𝑘𝑖) −𝛿11 −(𝛼12 + 𝛽12𝑘𝑖) −𝛿12 𝛾11 0 𝛾12 0

0 0 0 1 0 0 0 0
−𝜖11 0 −𝜖12 0 −𝜔2

11 0 −𝜔2
12𝑦2 0

0 0 0 0 0 1 0 0
−(𝛼21 + 𝛽21𝑘𝑖) −𝛿21 −(𝛼22 + 𝛽22𝑘𝑖) −𝛿22 𝛾21 0 𝛾22 0

0 0 0 0 0 0 0 1
−𝜖21 0 −𝜖22 0 −𝜔2

21 0 −𝜔2
22 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(40)

𝑥1 = −𝛿11𝑥1 − (𝛼11 + 𝛽11𝑘𝑖)𝑥1 − 𝛿12𝑥2 − (𝛼12 + 𝛽12𝑘𝑖)𝑥2 + 𝛾11𝑦1 + 𝛾12𝑦2 − (𝛽11 + 𝛽12)𝑏𝑖;(41)
𝑦1 = −𝜔2

11𝑦1 − 𝜔2
12𝑦2 − 𝜖11𝑥1 − 𝜖12𝑥2;

𝑥2 = −𝛿21𝑥1 − (𝛼21 + 𝛽21𝑘𝑖)𝑥1 − 𝛿22𝑥2 − (𝛼22 + 𝛽22𝑘𝑖)𝑥2 + 𝛾21𝑦1 + 𝛾22𝑦2 − (𝛽21 − 𝛽22)𝑏𝑖;

𝑦2 − 𝜔2
21𝑦1 − 𝜔2

22𝑦2 − 𝜖21𝑥1 − 𝜖22𝑥2,

The perturbed motion system’s output we define by matrix observability equation

Δ = CQ, (42)

C =

(︂
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15 𝑐16 𝑐17 𝑐18
𝑐21 𝑐22 𝑐23 𝑐24 𝑐25 𝑐26 𝑐27 𝑐28

)︂
, (43)



where 𝑐𝑖𝑗 matrix components take values ±1 which depend on sign near state variable in (35).
Here we show the most general case for the matrix C when perturbed motion can be considered

for two variations at the same time. In more specific case when only one variation of pendulum state
variables are studied one should reduce a number of matrix C rows to one. Thus, if one study the
perturbed motion of the pendulums positions (43) can be given as follows

Cp =
(︀
1 0 −1 0 0 0 0 0

)︀
, (44)

for the case of studying the perturbed motions of pendulums exciters

Ce =
(︀
0 0 0 0 1 0 −1 0

)︀
, (45)

and if both perturbed motions are studied

Cpe =

(︂
1 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0

)︂
. (46)

The usage of matrix equations (38) and (42) gives us the possibility to write down equations which
interrelate perturbed motion coordinates and their derivatives with the pendulum state variables

Y = WQ+V, (47)
Y =

(︀
Δ Δ̇ Δ̈ · · · Δ(7)

)︀𝑇
; (48)

W =
(︀
C AC A2C · · · A7C

)︀𝑇
,

V =
(︀
C BC B2C · · · B7C

)︀𝑇
.

Solution (44) allows us to define state space variables of coupled pendulums with perturbed motion
coordinates

Q = W−1Y, (49)

The final perturbed motion equation can be given as follows

Δ(8) = A8CW−1Y +B8C. (50)

The main feature of (46) is its dependence only perturbed motions coordinates and pendulums parame-
ters. Numerical solution (46) allows us to get the results which are similar to shown in Figure.9–Figure.12
but only for one perturbed motion coordinate 𝛿𝑥 or 𝛿𝑦.

If one studies the perturbed motions of pendulums and exciters at the same time, he can should
modify the above-given formulas in such a way

Y =

(︃
Δx Δ̇x Δ̈x · · · Δ

(3)
x

Δy Δ̇y Δ̈y · · · Δ
(3)
y

)︃𝑇

; (51)

W =
(︀
C AC A2C · · · A3C

)︀𝑇
,

V =
(︀
C BC B2C · · · B3C

)︀𝑇
and

Δ(4) = A4CW−1Y +B4C. (52)

Defined in such a way perturbed motion models allows to study trajectory variations for coupled
Duffing pendulums without solution of each pendulum equations. Since they are written down by using
piece-wise linear functions one should use (45) while piece-wise linear factors are defined.



4. Conclusions

The considering some dynamical system as the part of coupled system allows us to change the initial
system’s dynamic and design the system with unique features and characteristics. These characteristics
can be improved by considering the trajectory variations for each subsytem. Using these trajectory
variations as novel state variables allows designing novel dynamical system based on the known one.
The order of novel system equals to initial one. The designed in such a way dynamical systems in
various applications.

We see the future development of our work in transforming the proposed approach in discrete-time
domain to design and study the controlled system motions as well as to solve the inverse dynamic
problem to define an external signal by known system coordinates.
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