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Abstract
The article deals with the issues of modeling static modes of autonomous generation systems with self-excited
induction generator, taking into account the nonlinearity of the generator magnetization curve and with different
load values. The simulation results, which have been verified experimentally, are presented and the three-
dimensional dependences of frequency and amplitude of generated voltage, obtained by mathematical modeling,
are given.
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1. Introduction

The use of autonomous power supply systems has become of great importance according the current
state of the Ukrainian energy sector [1, 2]. Such systems are used as backup power sources or to
provide electricity in the absence of centralized power supply. In such systems, in particular, self-excited
induction generators (SEIG) are used. Asynchronous induction machines with a squirrel-cage rotor are
characterized by small weight-and-dimensions and high reliability due to the absence of sliding contacts.
One of the significant disadvantages of such technical solution is the complexity of the self-excitation
process, which depends on many parameters - the generator rotation speed, the capacitance value and
the connection scheme of self-excitation capacitors, as well as the load value [3]. An important aspect
of the operation of autonomous power supply systems with SEIG is the stability of their operation
when the load value changes [4]. To analyze static operating modes, mathematical modeling of the
autonomous power supply system is carried out at different load values [5].

In [6] it is shown that the mathematical model of an induction generator with self-excitation must
necessarily take into account the nonlinearity of the magnetization curve of the machine. The approach
of piecewise linear approximation of the magnetization curve [7, 8] is widespread. This approach makes
it impossible to obtain analytical dependencies that describe the operation of an induction generator,
which, in turn, complicates the study of the entire generation system. In [9] an analytical description of
the magnetization curve is proposed, which allows obtaining analytical dependencies for studying the
operation of induction generator

Since the load of SEIG can vary during operation, the capacitance of the self-excitation capacitors is
adjusted to stabilize the output voltage [10, 11].
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The purpose of this paper is to simulate the static operating modes of an autonomous generation
system with a self-excited induction generator, taking into account the nonlinearity of magnetization
curve depending on the magnitude of the applied load and to establish the relationship between the
frequency and amplitude of the generated voltage and the generator load and the capacitor bank capacity,
which will be useful for the development of generator voltage regulation systems.

2. Method

Let us consider the circuit of an induction generator when connecting self-excitation capacitors in a
“triangle”. We will consider the load to be active, because taking into account the inductive component
leads to the need to solve sixth-order equations, which significantly complicates the obtaining of
analytical dependencies [12]. Then the equivalent circuit will take the form (Figure. 1), where RL is the
value of active resistance of the load in one phase:

Figure 1: Equivalent circuit of SEIG.

When capacitors are connected in delta configuration, the total capacitance of the battery can be
considered equal to C=3C1. The standard mathematical model of an induction generator in the rotating
d–q coordinate system is described by the following nonlinear differential equations [11].

𝑑Ψ𝑆

𝑑𝑡
= 𝑈𝑆 −𝑅𝑆𝑖𝑆 − 𝜔𝑐𝐽Ψ𝑆 , (1)

𝑑Ψ𝑅

𝑑𝑡
= −𝑅𝑅𝑖𝑅 + (𝑛𝑝𝜔 − 𝜔𝑐)𝐽Ψ𝑅, 𝐽 =

[︂
0 −1
1 0

]︂
,

where Ψ𝑆 =
[︀
Ψ𝑆𝑑 Ψ𝑆𝑞

]︀𝑇 , Ψ𝑅 =
[︀
Ψ𝑅𝑑 Ψ𝑅𝑞

]︀𝑇 are vectors of stator and rotor fluxes in d-q
coordinate system, 𝐼𝑆 =

[︀
𝐼𝑆𝑑 𝐼𝑆𝑞

]︀𝑇 , 𝐼𝑅 =
[︀
𝐼𝑅𝑑 𝐼𝑅𝑞

]︀𝑇 are stator and rotor current vectors,
𝑈𝑆 =

[︀
𝑈𝑆𝑑 𝑈𝑆𝑞

]︀𝑇 is stator voltage vector in the coordinate system d–q, 𝑅𝑆 and 𝑅𝑅 are active
resistances of the stator and rotor, 𝑛𝑝 is a number of pole pairs; 𝜔 is an angular velocity of the induction
generator rotor; 𝜔𝑐 is an angular velocity of an arbitrary coordinate system d–q.

Let us consider the equivalent circuit of one phase of a stand-alone generation system (Figure 2)
According to Kirchhoff’s current law, we can write that

Figure 2: Phase equivalent circuit of the generation system.

𝑖𝑆 + 𝑖𝐶 + 𝑖𝐿 = 0, (2)



where 𝑖𝐶 =
[︀
𝐼𝐶𝑑 𝐼𝐶𝑞

]︀𝑇 and 𝑖𝐿 =
[︀
𝐼𝐿𝑑 𝐼𝐿𝑞

]︀𝑇 are urrent vectors in the coordinate system d–q.

As it is well known [11], [12] 𝑖𝐶 = 𝐶
𝑑𝑈𝑠

𝑑𝑡
, thus, equation (2) can be represented as follows

−𝐶
𝑑𝑈𝑠

𝑑𝑡
= 𝑖𝑆 + 𝑖𝐿. (3)

The operation of a stand-alone generation system can be either stable or unstable. The stability
region of steady-state modes depends on several factors [12]. In works [11, 12], an expression for the
amplitude of the generated voltage at the equilibrium point has been derived.

|𝑈*
𝑆 | =

𝜔*
𝑐𝐿

*
𝑀 𝑖*𝑀√︂(︁

1 + 𝑅𝑆
𝑅𝐿

− 𝐶𝜔*
𝑐
2𝐿𝜎𝑠

)︁2
+ 𝜔*

𝑐
2
(︁
𝐿𝜎𝑠
𝑅𝐿

+ 𝑐𝑅𝑆

)︁2
(4)

where 𝐿𝜎𝑠 is stator leakage inductance, 𝐿*
𝑀 is magnetizing inductance, 𝑖*𝑀 is magnetizing current of

induction generator. The symbol * will denote that the corresponding vector or variable is defined at
the equilibrium point of the stand-alone generation system.

Another parameter of the steady-state operation mode of induction generator is generated voltage
frequency. According to [11], its value is defined as

𝑓*
𝑐 =

𝐶 − 𝑖𝑆 −
𝑈𝑠

𝑅𝐿

2𝜋𝐶𝑈𝑠
(5)

where 𝑓* = 𝜔*
𝑐/2𝜋.

3. Approximation of magnetic curve

When the load of the generator or other parameters of the generation system change, the currents in
the asynchronous machine, including the magnetizing current, also change [13]. This, in turn, leads
to a change in the magnetizing inductance. Therefore, for each operating point in the steady-state
mode, it is necessary to know the dependency 𝐿𝑀 = 𝑓(𝑖𝑀 ). This dependency is not provided in the
datasheets of asynchronous machines. The most common method for determining it is by experimentally
obtaining the no-load characteristic of the asynchronous machine, and then deriving the dependency
𝐿𝑀 = 𝑓(𝑖𝑀 ). based on it. However, this approach requires significant time and financial resources,
as it necessitates a controllable voltage supply for the asynchronous machine. In [14], a method was
shown for extrapolating an existing analytical dependency 𝐿𝑀 = 𝑓(𝑖𝑀 ) from asynchronous machines
of a similar type but different power ratings. This approach significantly simplifies the modeling process
of the operation modes of stand-alone generation systems. Therefore, we will use this method for
modeling the steady-state operation modes of the SEIG.

A schematic representation of the dependency 𝐿𝑀 = 𝑓(𝑖𝑀 ) obtained using the no-load characteristic
of the machine, is shown in Figure 3 [14].

The magnetizing inductance as a function of the magnetizing current can be divided into three
regions. In the first — ascending — section, the magnetizing inductance increases from the initial value
𝐿𝑀0 to 𝐿𝑀𝐴𝑋 . The inductance 𝐿𝑀𝐴𝑋 corresponds to the linear, unsaturated part of the magnetization
curve of the asynchronous machine. In this region, only an unstable state is possible, meaning that both
voltage generation and voltage collapse may occur [14]. In the second region — up to the saturation
zone of the magnetic system — the inductance remains constant at 𝐿𝑀𝐴𝑋 . The third region corresponds
to the saturation zone of the asynchronous machine, where the magnetizing inductance decreases —
the descending part of the 𝐿𝑀 = 𝑓(𝑖𝑀 ) curve.

In our study we will use on experimental dependence [12] of magnetizing inductance LM on the
magnetizing current iM, obtained in the idle mode test of asynchronous machine 6343 with the following



Figure 3: Dependency 𝐿𝑀 = 𝑓(𝑖𝑀 ).

Figure 4: Experimental dependence 𝐿𝑀 = 𝑓(𝑖𝑀 ).

nameplate data: rated power of 0.37 kW; Nominal stator phase voltage 220 V mains rated frequency 50
Hz, rated speed 1450 rpm, which is presented on Figure.4.

An important characteristics of SEIG are its self-excitation borders [9]. Moreover, the border of
spontaneous self-excitation is determined at 𝑖𝑀 = 0 and trigger self-excitation - in unsaturated linear
section of the magnetization curve, which is characterized by the highest value LM [12]. Therefore,
dependence 𝐿𝑀 = 𝑓(𝑖𝑀 ) in Figure.3 have to be extrapolated, since the value 𝑖𝑀 = 0.

Figure.5 shows the results of magnetizing inductance curve and dynamical inductance 𝐿 approxi-
mation, described in [14]. Dependence 𝐿𝑀 = 𝑓(𝑖𝑀 ) is presented in the form of four sections that are
joined together without breaking the derivative.

In [14] was obtained that this approximation allows one to accurately describe the self-excitation
border boundaries, which need to know primarily reliance 𝐿𝑀 = 𝑓(𝑖𝑀 ) with small currents. However,
as seen from Figure.5, in the steady-state operation modes a very significant deviation occurs between
approximated and experimental dependencies, making this approach unacceptable to study these modes.

The descending part of the magnetization curve can be accurately described by polynomial equation
of second order

𝐿+𝑀 = 𝑝1𝑖
2
𝑀 + 𝑝2𝑖𝑀 + 𝑝3. (6)

Its factors may be determined using polyfit function in MATLAB. Figure.6 shows the results of
magnetizing inductance 𝐿𝑀 and dynamical inductance 𝐿 approximation for values of approximation



Figure 5: Magnetizing inductance curve and dynamical inductance approximation.

coefficients:

𝐿 = 3𝑝1𝑖
2
𝑚 + 2𝑝2𝑖𝑀 + 𝑝3, (7)

𝑝1 = 0.042433076890268; 𝑝2 = ˘0.383816481755985; 𝑝3 = 1.143841689235056,

which were obtained using MATLAB.

Figure 6: Results of approximation with polynomial equation of second order.

As seen from Figure.6, approximated magnetizing inductance accurately replicates the experimental
curves on the descending part, and the dynamic inductance is negative and has growing part for
large values of current, that is violating the physical nature of the phenomenon. Since in the study
of steady-state of SEIG dynamic inductance is ignored, then this approach can be used in this case.
But this approximation does not allow to consider the initial part of dependence 𝐿𝑀 = 𝑓(𝑖𝑀 ) at low
currents that will not allow its implementation for the study of boundary modes.

he inductance value is directly related to the dynamic inductance consider the magnetization curve
approximation using dependence Ψ𝑀 = 𝑓(𝑖𝑀 ). Dependencies Ψ𝑀 = 𝑓(𝑖𝑀 ) that were obtained from
experimental data of SEIG at mentioned above conditions for next values of the load 200 Ohm, 400 Ohm
and no load case are depicted in Figure.7.

Approximation was performed by applying polyfit function in MATLAB to the saturated part of
the flux linkage curve of SEIG for the case of no load. Points that are derived from the idle mode



Figure 7: Experimental dependencies Ψ𝑀 = 𝑓(𝑖𝑀 ).

characteristics of SEIG are marked with *, Figure.8.

Figure 8: Results of approximation with polynomial equation of fourth order.

To account the unsaturated parts of magnetization curve the approximated dependence was amended
with linear region in the left , that corresponds the inductance 𝐿𝑀𝐴𝑋 at unsaturated part of magnetizing
curve (0, 105 < 𝑖𝑀 < 0, 33 ), and "sewn" to it part without breaking the original of the initial
magnetization (𝑖𝑀 < 0, 105 ). For the magnetizing currents 0, 33 < 𝑖𝑀 < 4 flux linkage was
approximated with fourth order polynomial equation:

Ψ𝑀 = 𝑝1𝑖
4
𝑀 + 𝑝2𝑖

3
𝑀 + 𝑝3𝑖

2
𝑀 + 𝑝4𝑖𝑀 + 𝑝5, (8)

𝑝1 = ˘0.005214090677207; 𝑝2 = 0.082454101449568; 𝑝3 = ˘0.481133636330431;

𝑝4 = 1.225474520316153; 𝑝5 = ˘0.020348151810052.

As shown in Figure.8, in the range of 0, 105 < 𝑖𝑀 < 0, 33𝐴 magnetization inductance is not constant,
equal 𝐿𝑀𝐴𝑋 , and varies by a parabolic law. Therefore, in the area 𝑖𝑀 < 0, 33𝐴 magnetizing inductance
approximation was adjusted as follows: at the site of 0, 105 < 𝑖𝑀 < 0, 33 and 𝐿𝑀 = 𝐿 = 𝐿𝑀𝐴𝑋 , it
goes right in a downward part described with previously given fourth order polynomial equation. In
addition, in the left it is described with a growing area of initial magnetization similarly as described in
articles [6, 11].



To avoid the problems associated with negative values of dynamic inductance 𝐿 when extrapolating
on the high values of current 𝑖𝑀 , the following correction was held. After the increase of magnetizing
current, the dynamic inductance 𝐿 first adopts zero, it is assumed that it must continue zero, and the
value of flux Ψ𝑀 also remains constant Ψ𝑀 = Ψ𝑀𝑀𝐴𝑋 (at 𝐿 = 0). The results of this approximation
are shown in Figure.9.

Figure 9: Results of approximation with correction for high current values.

Therefore, taking all the aforementioned factors into account, the magnetizing inductance of the
asynchronous machine can be expressed through the following dependencies:

• at 𝑖𝑀 < 𝑖𝑀1

𝐿𝑀 = 𝐿𝑚𝑎𝑥 − 𝑏1(𝑖𝑀 − 𝑖𝑀1)
2, (9)

where 𝑏1 – adjusted coefficient.
Dynamic inductance is defined as:

𝐿 = 𝐿+𝑀𝐴𝑋 − 𝑏1𝑖
2
𝑀1 − 𝑏1𝑖𝑀 (3𝑖𝑀 − 4𝑖𝑀1) (10)

• at 𝑖𝑀1 < 𝑖𝑀 < 𝑖𝑀2

𝐿 = 𝐿𝑀 = 𝐿𝑀𝐴𝑋 . (11)
If the value of 𝐿𝑀0 was obtained while 𝑖𝑀 = 0, then coefficient 𝑏1 will be determined by the
ratio

𝑏1 =
𝐿𝑀𝐴𝑋 − 𝐿𝑀0

𝑖2𝑀1

. (12)

• at 𝑖𝑀2 < 𝑖𝑀 < 𝑖𝑀3

𝐿𝑀 = 𝑝1𝑖
4
𝑀 + 𝑝2𝑖

3
𝑀 + 𝑝3𝑖

2
𝑀 + 𝑝4𝑖𝑀 + 𝑝5;

𝐿 = 4𝑝1𝑖
3
𝑀 + 3𝑝2𝑖

2
𝑀 + 2𝑝3𝑖𝑀 + 𝑝4 (13)

• at 𝑖𝑀 > 𝑖𝑀3

𝐿𝑀 =
Ψ𝑀𝑀𝐴𝑋

𝑖𝑀
, 𝐿 = 0. (14)

For the mentioned induction machine 6343 the next parameters of the approximation were accepted
[12]:

𝐿𝑀𝐴𝑋 = 1.03115 𝐻; 𝐿𝑀0 = 0.6345 𝐻; 𝑖𝑀1 = 0.105 𝐴; 𝑖𝑀2 = 0.2134𝐴; (15)
𝑖𝑀3 = 3.042 𝐴; Ψ𝑀𝑀𝐴𝑋 = 1.129833270853887𝑊𝑏;

𝑝1 = −0.005214090677207; 𝑝2 = 0.082454101449568;

𝑝3 = −0.481133636330431; 𝑝4 = 1.225474520316153;

𝑝5 = −0.020348151810052.



4. Results

Thus, using equations (4) and (5), and taking into account the nonlinear dependence 𝐿𝑀 = 𝑓(𝑖𝑀 ), the
modeling of steady-state characteristics by using MatLab software’s numerical routines and packages
was performed, and the dependencies of the amplitude and frequency of the asynchronous generator
voltage were obtained for two values of active load (Figure 10 and Figure 11) — 400 Ohms and 200 Ohms
— as well as for the no-load condition. The calculations were carried out assuming a self-excitation
capacitor bank capacitance of 90 Ohms, with varying generator shaft rotational speed.

The results obtained from modeling the steady-state modes were compared with experimental data
acquired for the induction generator A634U3. The rated parameters of the machine are: power —
0.37 kW; stator phase voltage — 220 V; supply frequency — 50 Hz; rotational speed — 1450 rpm. As
can be seen from the presented graphs, the modeling results are consistent with the experimental
characteristics.

Figure 10: Dependency of frequency of SEIG
voltage on angular velocity.

Figure 11: Dependency of amplitude of SEIG
voltage on angular velocity.

The voltage and frequency values of the induction generator depend on three parameters: the load
value, the capacitance of the self-excitation capacitor bank, and the generator shaft rotational speed [15].
To comprehensively assess the influence of these factors, we will model three-dimensional dependencies
𝑓*(𝐶, 1/𝑅𝐿) and |𝑈*

𝑆 |(𝐶, 1/𝑅𝐿).
Figures 12 and 13 show the dependencies of the output voltage magnitude and frequency of the stand-

alone generation system in steady-state operation mode, with varying load admittance 1/𝑅𝐿 within
the self-excitation limits, at a generator shaft speed of 119.32 rad/s. Lines 1 indicate the boundaries of
the self-excitation zone of the generation system, while lines 3 represent the maximum values of the
function within this zone. Curves 2 on both graphs represent the projections of the three-dimensional
graph onto the plane 𝐶 − 1/𝑅𝐿.



Figure 12: Steady-state dependences of the generated frequency on capacitance computed through the range
of the load admittance.

Figure 13: Steady-state dependences of the voltage magnitude on capacitance computed through the range of
the load admittance.

Similarly, Figures 14 and 15 show the dependencies of voltage |𝑈*
𝑆 |(𝐶, 1/𝑅𝐿) and frequency

𝑓*(𝐶, 1/𝑅𝐿) and with varying capacitance of the self-excitation capacitor bank within the self-excitation
limits, at a generator shaft speed of 119.32 rad/s.

Figure 14: Steady-state dependences of the generated frequency on the load admittance computed through the
range of capacitance.

A detailed analysis of the obtained graphs reveals that the maximum values of both frequency and



Figure 15: Steady-state dependences of the voltage magnitude on the load admittance computed through the
range of capacitance.

voltage occur under no-load conditions. This is consistent with the physical behavior of SEIG [16],
where the absence of load minimizes voltage drop and reactive power consumption, allowing the
system to reach its peak performance. Furthermore, in both cases examined, the three-dimensional
plots of the output voltage magnitude demonstrate pronounced maxima located near the center of the
self-excitation boundary region. This indicates that the optimal operating point, in terms of voltage
stability, lies within this central zone rather than at the extreme boundaries, which may be associated
with unstable excitation conditions. These findings underscore the importance of carefully selecting
system parameters to ensure operation within this optimal excitation region.

5. Conclusions

In this paper, the steady-state operating modes of a stand-alone generation system with an induction
generator were modeled. The investigation was carried out with consideration of an analytical rep-
resentation of the magnetization curve of the induction generator, which made it possible to derive
analytical dependencies for the generator’s voltage magnitude and frequency. A comparison between
the modeling results and experimental data demonstrated a high level of agreement, thereby validating
the accuracy of the proposed model.

Based on the developed models, three-dimensional plots were also obtained to analyze the combined
influence of the self-excitation capacitor bank capacitance and load variation within the self-excitation
limits of the induction generator, while maintaining a constant generator shaft speed. The analysis
showed that the maximum values of the investigated quantities occurred under no-load conditions at
the output of the stand-alone generation system.
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