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Abstract
Synthetic aperture radar (SAR) systems are pivotal in remote sensing, offering high-resolution imaging capabilities
under diverse environmental conditions. This study introduces an optimal algorithm for SAR raw data processing,
addressing the stochastic nature of surface scattering. By modeling the complex scattering coefficient as a random
spatial process it is propose a statistically optimized signal processing framework. A key innovation is the
incorporation of a decorrelation operation, which increases statistically independent samples, mitigates speckle
noise, and enhances image quality. Simulation results demonstrate superior performance over conventional
methods across multiple image quality metrics. The proposed algorithm improves radar cross section estimation,
offering enhanced resolution and clarity for complex surfaces. This advancement holds significant potential for
applications in Earth observation, geohazard monitoring, and structural analysis.

Keywords
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1. Introduction

Aerospace, navigation, and remote sensing applications require compact, high-resolution imaging
capabilities that can be provided by Synthetic Aperture Radar (SAR) systems [1, 2, 3]. Among the many
remote sensing technologies available today, SAR stands out as the most superior because it can provide
Earth surface images with resolutions better than one meter [4, 5] at any time of the day or night and
in all types of weather conditions. These features make SAR critical for many uses like watching the
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Earth [6], tracking ships [7], finding illegal boats, making digital elevation maps, keeping an eye on
geohazards, and checking structures without causing damage.

Radar imaging of various objects, surfaces, subsurface soil layers, atmospheric inhomogeneities, and
other natural media requires their mathematical, deterministic, and statistical description, along with
the justification of corresponding concepts and definitions. Correct mathematical model of radiated or
scattered electromagnetic fields is critical for optimizing the signal processing algorithm and designing
the architecture of remote sensing radar systems [8, 9].

Solving the problem of radar imaging for surfaces with small roughness, two-scale surfaces, or
complex real-world terrains like forests, grass, or agricultural land is challenging due to the complexity
and ambiguity of analytical expressions derived from fundamental diffraction principles such as the
Kirchhoff theorem, Rayleigh-Sommerfeld theorem, and Stratton-Chu formulas. Accurate electrodynamic
calculations for such surfaces are often infeasible, making a phenomenological approach more practical
for determining scattered electromagnetic fields [10]. Typically, radar images are understood as the
spatial distribution of a surface’s complex scattering coefficient, calculated using Maxwell’s equations,
wave equations, and corresponding integral equations under specified boundary conditions. However,
defining these conditions precisely for many surfaces, especially vegetation, is nearly impossible due to
the intricate internal structure of the scattering coefficient. A phenomenological approach, combined
with stochastic modeling of electromagnetic fields, is better suited for analyzing coherent images of
real-world surfaces.

Despite significant advancements in SAR technology, achieving optimal signal processing under
stochastic reflections remains challenging. A critical review of the literature reveals that many radar
imaging studies fail to account for the stochastic nature of complex reflection coefficients, favoring
deterministic models that oversimplify scattering as a function of spatial coordinates rather than
a random process influenced by surface texture, microstructure, and material composition. This
simplification limits the application of statistical optimization techniques, such as correlation-aware filter
synthesis, leaving unresolved fundamental issues like determining inverse correlation functions essential
for optimal estimators in random process theory, ultimately compromising algorithmic performance,
particularly in high-noise conditions or varying observation geometries.

In this study, we propose a novel approach that justifies describing the primary coherent image
either as a complex Wiener process or as its derivative, represented by non-stationary spatial complex
white noise, with its power spectral density governed by the variation in the radar cross section. This
approach is underpinned by a statistical framework for signal processing that accounts for the stochastic
nature of surface reflections and the internal noise of the radar system. A key element of our proposal is
the introduction of a decorrelation operation, which increases the number of statistically independent
signal samples, mitigates speckle noise, and substantially improves image quality.

2. Concept of radar image model

A radar image is a complex construct, both in terms of its structural analysis and mathematical represen-
tation. Radar imaging can be broadly categorized into two types: coherent and incoherent. Incoherent
images are the average intensity of electromagnetic wave without retaining any phase data. On the
other hand, coherent imagery depends on the phase information of waves reflected from observed
objects. Incoherent radar images are generated by non-coherent radar systems that transmit signals
with randomized initial phases. Conversely, SAR systems produce coherent images by processing both
the amplitude and phase of received signals. As a result, SAR is classified as a coherent radar technology.

Every separate point in coherent radar image has coordinate (𝑥, 𝑦) and represent one elementary
scattering area ∆𝑆 = ∆𝑥∆𝑦 on the surface. Prior to radar signal processing, wave scattering should
be analysed for a surface element of infinitesimal (but finite) area 𝑑𝑟⃗ = 𝑑𝑥𝑑𝑦. These elements, treated
as differential areas during integration, are associated with a scattering (reflection) coefficient:

𝑑𝑄̇(𝑟⃗) =
𝑑𝐸̇𝑠𝑐(𝑟⃗)

𝐸0(𝑟⃗)
(1)



where 𝐸0(𝑟⃗) is the incident electromagnetic field, 𝑑𝐸̇𝑠𝑐(𝑟⃗) is the scattered electromagnetic field by
element of the underlying surface.

In radar measurements of the surface, it is not appropriate to talk about the reflection of an infinitely
small point, therefore the concept of specific scattering coefficient is introduced

𝐹̇ (𝑟⃗) =
𝑑𝑄̇(𝑟⃗)

𝑑𝑟⃗
, (2)

𝑑𝑄̇(𝑟⃗) = 𝐹̇ (𝑟⃗)𝑑𝑟⃗, 𝑑𝐸̇𝑠𝑐(𝑟⃗) = 𝐸0(𝑟⃗)𝐹̇ (𝑟⃗)𝑑𝑟⃗. (3)

In many studies [11], this 𝐹̇ (𝑟⃗) represents an idealized complex radar image that must be reconstructed
through spatiotemporal processing of ground-reflected signals. The electromagnetic field in the antenna
aperture region, generated by this specific scattering coefficient 𝐹̇ (𝑟⃗), can be characterized using the
following theoretical formulations and mathematical expressions:

1. Kirchhoff’s integral theorem and scalar theory of diffraction∫︁
𝑉
(𝜙∇2𝐸 − 𝐸∇2𝜙)𝑑𝑉 =

∫︁
𝐷

(︂
𝜙
𝜕𝐸

𝜕𝑛⃗
− 𝐸

𝜕𝜙

𝜕𝑛⃗

)︂
𝑑𝐷, (4)

where 𝜙 and 𝐸 are arbitrary continuous complex functions of spatial coordinates with continuous
first and second partial derivatives inside the volume V and on the closed surface 𝐷 enclosing the
volume,𝑛⃗ is the outer normal to the surface 𝐷, ∇ is the Hamiltonian operator, ∇2 is the Laplace
operator;

2. Helmholtz-Kirchhoff theorem

𝐸̇(𝑟⃗′) =
1

4𝜋

∫︁
𝐷

{︃
𝜕𝐸̇(𝑟⃗)

𝜕𝑛

𝑒𝑥𝑝(𝑗𝑘𝑅𝐷)

𝑅𝐷
− 𝐸̇(𝑟⃗)

𝜕

𝜕𝑛

[︂
𝑒𝑥𝑝(𝑗𝑘𝑅𝐷)

𝑅𝐷

]︂}︃
𝑑𝑟⃗, (5)

where 𝐸̇(𝑟⃗′) is the electric field strength in the antenna aperture region with coordinate
𝑟⃗′, 𝑒𝑥𝑝(𝑗𝑘𝑅𝐷)

𝑅𝐷
is the Green’s function, 𝑘 = 2𝜋

𝜆 is the wave number, j is the imaginary unit,
𝐸̇(𝑟⃗) = 𝐸0(𝑟⃗)𝐹̇ (𝑟⃗) are values of the field’s complex amplitudes on the surface 𝐷,𝑅𝐷 is the
distance to every point on the surface with coordinates 𝑟⃗;

3. Rayleigh-Sommerfeld theory

𝐸̇(𝑟⃗′) = (𝑗𝜆)−1

∫︁
𝐷ℎ𝑜𝑙𝑒

𝐸̇(𝑟⃗)𝑐𝑜𝑠(𝑛⃗, 𝑅⃗)
𝑒𝑥𝑝(𝑗𝑘𝑅𝐷)

𝑅𝐷
𝑑𝑟⃗, (6)

where 𝐷ℎ𝑜𝑙𝑒 is the hole on a flat opaque screen with coordinates 𝑟⃗ ∈ 𝐷ℎ𝑜𝑙𝑒;
4. Stratton-Chu formulas

⃗̇𝐸(𝑟⃗′) = −(4𝜋)−1𝐷𝑗0[𝑛𝐻(𝑟)](𝑅)− [[𝑛𝐸(𝑟)]𝑔𝑟𝑎𝑑(𝑅)]− (𝑛𝐸(𝑟))𝑔𝑟𝑎𝑑(𝑅)𝑑𝑟, (7)

⃗̇𝐻(𝑟⃗′) = −(4𝜋)−1𝐷𝑗0[𝑛𝐻(𝑟)](𝑅) + [[𝑛𝐻(𝑟)]𝑔𝑟𝑎𝑑(𝑅)] + (𝑛𝐻(𝑟))𝑔𝑟𝑎𝑑(𝑅)𝑑𝑟, (8)

where ⃗̇𝐻(𝑟⃗′) is the magnetic field strength.

The fundamental diffraction theories presented here are largely similar, and the choice of which
formula to apply in practice depends on experimental conditions and analytical feasibility. To unify
these principles of diffraction theory, we propose a phenomenological description of the electromagnetic
fields [12, 13, 14]

𝐸̇(𝑟⃗′) =

∫︁
𝐷
𝐸0(𝑟⃗)𝐹̇ (𝑟⃗)

𝑒𝑥𝑝(𝑗𝑘𝑅(𝑟⃗, 𝑟⃗′))

𝑅(𝑟⃗, 𝑟⃗′)
𝑑𝑟⃗, (9)

where 𝑅(𝑟⃗, 𝑟⃗′) is a distance from point on the surface with coordinate 𝑟⃗ to the point of antenna surface
with coordinate 𝑟⃗′.



After processing the field in the antenna information signal in the receiver can be represented in a
simplified form [15, 16] :

𝑠𝑟(𝑡) = 𝑅𝑒

{︂∫︁
𝐷
𝐹̇ (𝑟⃗)𝑠̇0(𝑡, 𝑟⃗)𝑑𝑟⃗

}︂
= 𝑅𝑒

{︂∫︁
𝐷
𝑠̇0(𝑡, 𝑟⃗)𝑑𝑄̇(𝑟⃗)

}︂
, (10)

where 𝑠̇0(𝑡, 𝑟⃗) is the reference signal for one elementary surface on the ground with 𝐹̇ (𝑟⃗) = 1.
The received information signal combines with internal noise 𝑛(𝑡). The resulting signals for subse-

quent processing take the following form

𝑢(𝑡) = 𝑠𝑟(𝑡) + 𝑛(𝑡). (11)

For the given deterministic complex reflection coefficient model, optimal signal processing (10) is
typically implemented through evaluation of the correlation integral

𝑌̇ (𝑟⃗) =

∫︁ 𝑇

0
𝑢(𝑡)𝑠̇0(𝑡, 𝑟⃗)𝑑𝑟⃗, (12)

where T is the time of elementary surface on the ground observation.
In the case of noise absence, the physical meaning of complex scattering coefficient estimation can

be described as ̂̇︀𝐹 (𝑟⃗) =
1

2

∫︁
𝐷
𝐹̇ (𝑟⃗1)Ψ̇(𝑟⃗1, 𝑟⃗)𝑑𝑟⃗1 =

1

2

∫︁
𝐷
Ψ̇(𝑟⃗1, 𝑟⃗)𝑑𝑄̇(𝑟⃗1), (13)

where Ψ̇(𝑟⃗1, 𝑟⃗) is the ambiguity function of SAR system, ·̂is the sign of estimation.
When the individual signals within these integrals represent the impulse responses of filters, the

operations (11) constitute matched filtering operations (matched to the reference signal), and the
corresponding filters are referred to as matched filters. These operations enable coherent signal
integration along the aircraft flight path and implement classical aperture synthesis, i.e. the creation of
an artificial antenna aperture along the flight trajectory.

Signal processing according to (11) is optimal only in the case of deterministic model of the scattered
coefficient 𝑑𝑄̇(𝑟⃗). But in real remote sensing measurements is not true. Scattering of the environment
surfaces can be described as rough surface scattering, volume scattering, double bounce scattering.

Because of coherent processing and significant phase modulation of he scattered signal radar images
of the underlying surfaces have spotted structure, named speckle noise [17, 18]. Example of such image
from the radar imagery satellite Sentinel-1 is shown in the Figure 1. In this case, the image exhibits a
well-defined speckle pattern, making it unclear what should be considered the actual image content and
which elements are useful versus interference. The width of an individual speckle in the image roughly
matches the width of the SAR ambiguity function in both azimuth and range directions [19, 20, 21, 22].

To mitigate the impact of speckle noise when estimating the complex scattering coefficient ̂̇︀𝐹 (𝑟⃗), the
squared modulus is computed and then smoothed using various linear and nonlinear filters [23, 24]. If
we treat the complex scattering coefficient as a random variable, then this post-processing yields its
statistical property in the form of variance

𝜎0

𝜎
0

∧(𝑟⃗) =
⟨⃒⃒⃒ ̂̇︀𝐹 (𝑟⃗)

⃒⃒⃒2⟩
=

⟨[︂(︁
𝑅𝑒 ̂̇︀𝐹 (𝑟⃗)

)︁2

+
(︁
𝐼𝑚 ̂̇︀𝐹 (𝑟⃗)

)︁2
]︂⟩

, (14)

where 𝜎0

𝜎
0

∧(𝑟⃗) is called radar cross section in radar measurements, ⟨·⟩ is the sign of statistical averaging.
Based on the analysis of the scattering mechanism and coherent phase-accurate processing of real

radar images, we can conclude that the scattering coefficient behaves as a random spatial process with
an extremely narrow correlation function that is significantly narrower than the ambiguity function.
There is no practical value in estimating the complex scattering coefficient itself. Instead, the focus
should be on estimating its statistical property (13). The currently employed processing methods are
suboptimal, as they were derived under different problem conditions. Optimizing the restoration of the
function 𝜎0(𝑟⃗) will require developing a modified aperture synthesis algorithm that accounts for the
correlation properties of stochastic processes.



Figure 1: Radar image captured with satellite Sentinel-1.

3. Statistical optimization of radar imaging algorithm

The optimal approach for radar imaging of the Earth’s surface will be derived using the maximum
likelihood estimation framework [25, 26, 27].

For the case of a stochastic reflection coefficient, the correlation function of the observation equation
(10) takes the form:

𝑅𝑢(𝑡1, 𝑡2) = ⟨𝑢(𝑡1)𝑢(𝑡2)⟩ =
1

2
𝑅𝑒

∫︁ ∞

−∞
𝜎0(𝑟⃗)𝑆̇0(𝑡1, 𝑟⃗)𝑆̇

*
0(𝑡2, 𝑟⃗)𝑑𝑟⃗ +

1

2
𝑁0𝑛𝛿(𝑡1 − 𝑡2), (15)

where we suppose ⟨
𝐹̇ (𝑟⃗1)𝐹̇ (𝑟⃗2)

⟩
= 𝜎0(𝑟⃗1)𝛿(𝑟⃗1 − 𝑟⃗2) (16)

is corelation function of 𝐹̇ (𝑟⃗),

⟨𝑛(𝑡1)𝑛(𝑡2)⟩ = 0, 5𝑁0𝑛𝛿(𝑡1 − 𝑡2) (17)

is corelation function of 𝑛(𝑡), 𝑁0𝑛 is the internal noise power spectral density, 𝑆̇0(𝑡, 𝑟⃗) is the complex
envelope of 𝑠̇0(𝑡, 𝑟⃗).

Assuming a zero-mean Gaussian random process 𝑢(𝑡), the likelihood functional for parameter 𝜎0(𝑟⃗)
takes the form

𝑝[𝑢(𝑡)|𝜎0(𝑟⃗)] = [0(𝑟)]𝑒𝑥𝑝− 120𝑇0𝑇𝑢(𝑡1)𝑊𝑢𝑡1, 𝑡2, 0(𝑥, 𝑦)𝑢(𝑡2)𝑑𝑡1𝑑𝑡2, (18)

where 𝜅[𝜎0(𝑟⃗)] is the constant that depend on parameter 𝜎0(𝑟⃗),𝑊𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑥, 𝑦)
]︀

represents the
inverse correlation function, obtained by solving the integral equation∫︁ 𝑇

0
𝑊𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑟⃗)
]︀
𝑅𝑢

[︀
𝑡2, 𝑡3, 𝜎

0(𝑟⃗)
]︀
𝑑𝑡2 = 𝛿(𝑡1 − 𝑡3). (19)



The desired parameter 𝜎0(𝑟⃗) representing radar image does not appear directly in the observation
equation as in classical SAR. Rather, it is embedded within the correlation and inverse correlation func-
tions. Since 𝜎0(𝑟⃗) is a coordinate-dependent function 𝑟⃗, the optimization problem for maximizing the
likelihood functional (17) must be solved using variational methods. By computing the first variational
derivative of functional (17) with respect to 𝜎0(𝑟⃗) and setting it to zero, we obtain the following integral
equation:

−
∫︁ 𝑇

0

∫︁ 𝑇

0

𝛿𝑅𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑟⃗)
]︀

𝛿𝜎0(𝑟⃗)
𝑊𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑟⃗)
]︀
𝑑𝑡1𝑑𝑡2 =

∫︁ 𝑇

0

∫︁ 𝑇

0
𝑢(𝑡1)

𝛿𝑊𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑟⃗)
]︀

𝛿𝜎0(𝑟⃗)
𝑢(𝑡2)𝑑𝑡1𝑑𝑡2.

(20)
The variational derivative of the inverse correlation function can be expressed as

𝛿𝑊𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑟⃗)
]︀

𝛿𝜎0(𝑟⃗)
= −

∫︁ 𝑇

0

∫︁ 𝑇

0
𝑊𝑢

[︀
𝑡1, 𝑡3, 𝜎

0(𝑟⃗)
]︀ 𝛿𝑅𝑢

[︀
𝑡3, 𝑡4, 𝜎

0(𝑟⃗)
]︀

𝛿𝜎0(𝑟⃗)
𝑊𝑢

[︀
𝑡4, 𝑡2, 𝜎

0(𝑟⃗)
]︀
𝑑𝑡3𝑑𝑡4.

(21)
The inverse correlation function has the form

𝑊𝑢

[︀
𝑡1, 𝑡2, 𝜎

0(𝑟⃗)
]︀
=

∫︁ 𝑇

0

∫︁ 𝑇

0
𝑊𝑢

[︀
𝑡1, 𝑡3, 𝜎

0(𝑟⃗)
]︀
𝑅𝑢

[︀
𝑡3, 𝑡4, 𝜎

0(𝑟⃗)
]︀
𝑊𝑢

[︀
𝑡4, 𝑡2, 𝜎

0(𝑟⃗)
]︀
𝑑𝑡3𝑑𝑡4. (22)

After substituting all components, equality (19) takes the following form:⟨⃒⃒⃒
𝑌̇ (𝑟⃗)

⃒⃒⃒2⟩
=

1

2

∫︁ ∞

−∞
𝜎0(𝑟⃗1)

⃒⃒⃒
Ψ̇𝑊 (𝑟⃗, 𝑟⃗1)

⃒⃒⃒2
𝑑𝑟⃗1 +𝑁0𝑛𝐸𝑊 (𝑟⃗), (23)

where
𝑌̇ (𝑟⃗) =

∫︁ 𝑇

0
𝑢(𝑡1)𝑠̇0𝑊

[︀
𝑡1, 𝜎

0(𝑟⃗)
]︀
𝑑𝑡1, (24)

is the correlation integral of 𝜎0(𝑟⃗) estimation,

𝑠̇0𝑊
[︀
𝑡1, 𝜎

0(𝑟⃗)
]︀
=

∫︁ 𝑇

0
𝑊𝑢

[︀
𝑡1, 𝑡3, 𝜎

0(𝑟⃗)
]︀
𝑠̇0(𝑡3, 𝑟⃗)𝑑𝑡3 (25)

is the reference signal for 𝜎0(𝑟⃗) estimation,

𝐸𝑊 (𝑟⃗) =
1

2

∫︁ 𝑇

0

⃒⃒
𝑠̇0𝑊

[︀
𝑡3, 𝜎

0(𝑟⃗)
]︀⃒⃒2

𝑑𝑡3 (26)

is the energy of the reference signal,

Ψ̇𝑊 (𝑟⃗, 𝑟⃗1) =

∫︁ 𝑇

0
𝑠̇0(𝑡1, 𝑟⃗)𝑠̇

*
0𝑊 (𝑡1, 𝑟⃗)𝑑𝑡1 (27)

is the ambiguity function of SAR system recovering 𝜎0(𝑟⃗). The left part of (22) is the optimal spatio-
temporal signal processing algorithm and the right part is physical description of radar imaging with
derived formulas.

Unlike previously mentioned solutions (11) the proposed signal processing method incorporates
a decorrelation operation in the filter with pulse response 𝑊𝑢

[︀
𝑡1, 𝑡3, 𝜎

0(𝑟⃗)
]︀
, thereby increasing the

number of statistically independent samples in the observed response. Furthermore, the operations of
squared modulus formation and statistical averaging emerge naturally from the optimization solution
rather than being introduced empirically.

The imaging process physically represents a convolution of the true image with the squared magnitude
of the system’s ambiguity function. Note that the convolution result is additionally offset by a systematic
displacement 𝑁0𝑛𝐸𝑊 (𝑟⃗).



4. Evaluation novel optimal processing algorithm

To verify the functionality of the proposed algorithm, it is necessary to perform simulation modelling
of radar images. Based on the correlation function defined in equation (15), the complex scattering
coefficient in the model should be represented as white Gaussian noise. However, this process is
unrealizable in digital simulations due to its infinite variance and the need for infinitely dense sampling
over any finite interval. To overcome this contradiction, we will represent the differential in integral (9)
as a measure of the set of the stochastic Ito integral sum

∆𝑄̇ (𝑟⃗𝑖) =

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

𝐹̇ (𝜌⃗) 𝑑𝜌⃗. (28)

On infinitesimal intervals ∆𝑟⃗ within the neighborhood of the variable’s values 𝑟⃗𝑖 we consider discrete
samples of the coherent image as their associated stochastic measures

𝐹̇ (𝑟⃗𝑖) =
∆𝑄̇ (𝑟⃗𝑖)

∆𝑟⃗
=

1

∆𝑟⃗

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

𝐹̇ (𝜌⃗) 𝑑𝜌⃗ =
1

∆𝑟⃗

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

̇𝑅𝑒𝐹 (𝜌⃗) 𝑑𝜌⃗+
1

∆𝑟⃗

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

̇𝐼𝑚𝐹 (𝜌⃗) 𝑑𝜌⃗,

(29)
where ∆𝑟⃗ denotes the standard measure of the sampling interval, equivalent to its area ∆x∆y.

Following the classical mean value theorem of mathematical analysis, these samples represent the 𝐹̇ (𝑟⃗)
average values over their respective sampling intervals ∆𝑟⃗. The resulting random increments ∆𝑄̇ (𝑟⃗𝑖)
and complex numbers 𝐹̇ (𝑟⃗𝑖) will be statistically independent with zero mean, forming discretized
analogues of a true coherent image 𝐹̇ (𝑟⃗). Such sequences of independent zero-mean random variables
are conventionally referred to as discrete white Gaussian noise [28, 29].

Variance of (28) has the following form

𝜎2
𝐹 (𝑟⃗𝑖) =

⟨⃒⃒⃒⃒
⃒ 1

∆𝑟⃗

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

𝐹̇ (𝜌⃗) 𝑑𝜌⃗

⃒⃒⃒⃒
⃒
2⟩

=
1

(∆𝑟⃗)2

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

∫︁ 𝑟⃗𝑖+Δ𝑟⃗

𝑟⃗𝑖

⟨
𝐹̇ (𝜌⃗1) 𝐹̇

* (𝜌⃗2)
⟩
𝑑𝜌⃗1𝑑𝜌⃗2 =

𝜎0 (𝑟⃗𝑖)

∆𝑟⃗
,

(30)
The variance distribution of the ideal incoherent radar image is shown in Figure 2. Figure 3 repre-

sents plots of the statistically independent components of the discrete complex reflection coefficient
1
Δ𝑟⃗

∫︀ 𝑟⃗𝑖+Δ𝑟⃗
𝑟⃗𝑖

̇𝑅𝑒𝐹 (𝜌⃗) 𝑑𝜌⃗𝑎𝑛𝑑 1
Δ𝑟⃗

∫︀ 𝑟⃗𝑖+Δ𝑟⃗
𝑟⃗𝑖

̇𝐼𝑚𝐹 (𝜌⃗) 𝑑𝜌⃗. Figure 4 displays the resulting radar image gener-
ated using algorithm (11) with following operations of squared modulus and averaging. For comparison,
Figure 5 presents the radio image obtained through the optimal radar cross section estimation algorithm
(22).

To quantify performance, we employed standardized image quality metrics for comparison with
reference data [30, 31, 32, 33, 34]. Table 1 presents both the metric definitions and their corresponding
values, demonstrating the quality assessment of radio images produced by both conventional and our
proposed optimal methods.

Analysis of Table 1 reveals that decorrelation processing yields superior performance across most
quality metrics. This improvement occurs because the decorrelation filter approximates the received
signal as white noise, particularly at high signal-to-noise conditions. The filter reduces speckle size in
the primary radar image while increasing speckle density within the secondary processing window. This
higher speckle count enhances averaging effectiveness, ultimately improving radar image resolution as
measured by the effective scattering surface representation.

5. Conclusions

This study presents a novel approach to optimizing synthetic aperture radar (SAR) signal processing
by addressing the stochastic nature of surface reflections, which significantly enhances radar imaging
performance. By modeling the complex scattering coefficient as a random spatial process it is developed
a statistically optimized algorithm for azimuth and range compression processing. The proposed method



Figure 2: Ideal radar cross section.

Figure 3: Components of the discrete complex reflection coefficient: a – real part, b – imaginary part.

incorporates a decorrelation operation within the signal processing framework, which increases the
number of statistically independent samples, mitigates speckle noise, and improves image quality
without relying on empirical post-processing techniques.

Simulation results demonstrate that the modified algorithm outperforms conventional SAR processing
methods across multiple standardized image quality metrics. The decorrelation filter approximates
the received signal as white noise under high signal-to-noise conditions, reducing speckle size and
increasing speckle density, which enhances the effectiveness of averaging and improves the resolution
of the radar cross section representation.

Future work could focus on refining the algorithm for real-time implementation, exploring its
applicability to multi-polarization SAR systems, and validating its performance with diverse datasets



Figure 4: Estimation of radar cross section with algorithm (11).

Figure 5: Estimation of radar cross section with modified algorithm (22).

from operational SAR platforms. This advancement contributes to the broader field of remote sensing
by providing a more accurate and reliable method for high-resolution imaging under challenging
environmental conditions.



Table 1
Quality evaluation of the classical and novel radar imaging algorithms.

Metric Ideal radar Classical radar Modified radar
cross section imaging imaging

Average Difference 0 16.0394 16.3491
Feature Similarity Extended 1 0.3860 0.4673
Structural Similarity Index 1 0.5638 0.6262

Normalized cross-correlation 1 0.9887 0.9893
Noise Quality Measure 13.6155 13.6268

Peak Signal-to-Noise Ratio 99 19.0089 19.2281
Mean square error 0 816.9412 776.7219
Structural Content 1 0.9016 0.9015

SVD-Based Image Quality Measure 0 22.1278 22.4622
Visual Information Fidelity 1 0.2476 0.2541
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