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Abstract 
The article discusses the principles of development and application of an integrated system for monitoring 
and preventing forest fires using unmanned aerial vehicles (UAVs), ground autonomous systems (UGVs), 
and stationary sensor networks (SNs). The proposed system architecture provides for the prompt collection, 
processing, and analysis of environmental data using modern neural network algorithms and clustering 
methods. Suggested integrated approach combines the mobility of unmanned (UAV-UGV) platforms with 
continuous parameters monitoring using SNs. The integrated UAV-UGV-SN-based system allows for timely 
detection of threats, forecasting the spread of fires and coordinating measures to eliminate them. The results 
of the study demonstrate an increase in the efficiency of emergency response and a reduction in economic 
and environmental losses. 
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1. Introduction 

1.1. Motivation 

Forest fires have become one of the most serious environmental and social problems of our time. 
Every year they destroy millions of hectares of forest, causing significant damage to nature, the 
economy and society [1]. In the conditions of climate change, the risks of fires are only increasing, 
which requires the development of new effective methods for their detection and elimination. This 
is confirmed by studies that compare the effectiveness of different fire detection algorithms [2, 3]. 

An additional factor that increases the risk of fires is military operations, which can cause forest 
fires due to artillery shelling, air strikes or arson. Forests often become the scene of hostilities, which 
makes it difficult to control the situation and eliminate fires by traditional means. In such conditions, 
the use of unmanned systems for monitoring and fighting fires is critically important to reduce 
threats to both ecosystems and the civilian population. 

Traditional methods of monitoring forest fires are often not fast and effective enough. Therefore, 
it is important to integrate mobile and stationary subsystems for timely warning, detection of fires 
and their effective elimination. A mobile subsystem of unmanned aerial vehicles (UAVs) and ground-
based (UGVs) allows for rapid data collection from hard-to-reach areas, which increases the accuracy 
and speed of response [4]. Unmanned aerial vehicles provide quick detection of fire sources, while 
ground-based robotic platforms can operate in conditions dangerous to people, performing 
localization and primary extinguishing of fires. A stationary subsystem based on sensor networks 
(SN) provides continuous monitoring of the environment, which allows predicting the possibility of 
ignition and promptly responding to threats [5]. 
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The combination of mobile and stationary technologies allows creating a comprehensive system 
for monitoring and combating forest fires, which combines the flexibility of mobile devices with the 
reliability of stationary sensors. 

1.2. State of the art 

An analysis of modern research on the use of sensor networks, UAVs, and ground-based systems for 
forest fire monitoring covers a wide range of approaches to early detection, forecasting, and 
response. 

In [6], the use of UAVs with thermal imagers and multispectral sensors for the rapid detection of 
fire sources is considered. In [7], the deployment of sensor networks is studied with an emphasis on 
energy saving and reliability of data transmission in hard-to-reach areas. In [8], the integration of 
sensor data with AI methods for predicting the spread of fires is analyzed, which improves the 
accuracy of risk assessment. 

The works [9, 10] are devoted to modeling fire behavior taking into account vegetation, terrain, 
and weather conditions, offering numerical methods for assessing the effectiveness of fire prevention 
measures. In [11], remote sensing methods for automatic fire detection using satellite images are 
considered. The study [12] focuses on hardware solutions and communication interfaces between 
sensors. In [13], the integration of UAVs and ground-based robots (UGVs) for comprehensive fire 
detection and suppression, including communication between platforms, is analyzed. In [4], an early 
detection system based on wireless sensor networks using ZigBee is described. In [14], an overview 
of integrated monitoring systems combining data from sensors, UAVs, and satellites is proposed. 

The study [15] shows that AI methods, including clustering, allow not only to analyze current 
data, but also to take into account historical trends, forming dynamic risk maps. This facilitates 
preventive measures and optimization of resources for fire fighting. 

The analyzed works consider individual aspects of the use of UAV, UGV and SN for detecting, 
forecasting and extinguishing forest fires. However, there is no holistic integration of mobile (UAV, 
UGV) and stationary (SN) subsystems using neural networks to predict fire spread and coordinate 
actions in real time. This gap leads to delays in making operational decisions and does not allow for 
predictive prevention. Therefore, our research is aimed at developing and testing a single framework 
that will combine the advantages of unmanned platforms with continuous SN monitoring and 
powerful algorithms based on neural networks to increase the efficiency of fire risk management 
and reduce economic and environmental losses. 

1.3. Purpose, objectives and methodology 

The purpose of this article is to design and prototype an integrated forest-fire monitoring and 
suppression system that combines unmanned aerial vehicles (UAVs), unmanned ground vehicles 
(UGVs) and stationary sensor networks (SNs) in order to improve early detection, accurate 
forecasting and coordinated response. The research methodology is based on a comprehensive 
analysis of modern technologies, modeling and development of prototypes of an integrated system 
considering application neural networks for forecasting forest fires.  

Research objectives and stages are the following: 
● Justification of the architecture of the integrated UAV-UGV-SN system. To 

substantiate the architecture of an integrated UAV–UGV–SN environment that ensures synchronous 
interaction of subsystems for maximum coverage of the territory and prompt response. (section 2). 

● Formation of a set of scenarios for the use and interaction of the subsystems. To 
develop scenarios of the system operation at different stages (planning, pre-fire monitoring, fire 
detection and extinguishing, post-fire recovery) with the definition of the functions of UAV, UGV 
and SN and the role of neural networks. (section 3). 

● Development of neural network technology to support monitoring. Justification of 
the general algorithm of the neural network, description of the features of its architecture and 



mechanisms of integration into the general system for automatic analysis of data from sensors and 
visual streams (section 4). 

● Experiment. conduct an analytical experiment that will allow you to assess the potential of 
clustering and identify weaknesses for further improvements  (section 5). 

● Discussion of the solutions and future research steps. Discuss the results of the analysis 
and identify areas for further research (SN expansion, satellite data integration, adaptive models, 
etc.). (section 6). 

2. Architecture of the integrated UAV-UGV-SN system 

This section is devoted to a detailed description of the architecture of an integrated system combining 
UAV and UGV and a stationary sensor network (SN) for forest fire prediction, monitoring and 
suppression. The main goal is to provide prediction, rapid fire detection, operational data collection 
and effective response to emergencies through the synchronous operation of all system components. 

2.1. General concept of an integrated system 
The integrated system is built on the principle of interaction of three main subsystems. 

The first subsystem is a UAV swarm. It performs the role of rapid visual data collection and 
creation of a communication channel between individual elements of the system. Fire extinguishing 
is also possible. The effectiveness of using UAVs in such systems has been demonstrated in works 
on cooperative search and tracking [16, 17]. The next subsystem is a UGV swarm. The main task of 
this subsystem is to localize and extinguish fires. The last subsystem is SN sensor networks. They 
are deployed in high-risk areas and provide continuous monitoring of environmental parameters 
(temperature, humidity, smoke and gas concentration). Data from the sensors are sent to the central 
station for primary processing and analysis. 

This combined architecture allows using the advantages of both approaches: continuous 
monitoring of stationary sensors and mobility and efficiency of unmanned aerial vehicles, which 
significantly increases the effectiveness of responding to threats. Figure 1 shows a general 
architecture diagram. 

Figure 1: General system architecture: the central station performs data processing, analysis and 
decision making, while three subsystems operate in parallel—(1) the UAV swarm for visual data 
collection and communication relay, (2) the UGV swarm for fire localization and suppression, and 
(3) the SN (sensor network) for continuous environmental data collection (temperature, humidity, 
smoke, gas concentrations). 

2.2. System components  

The main components of the system play a key role in ensuring comprehensive monitoring and rapid 
response to forest fires. The system is based on the integration of several elements that interact with 
each other to achieve high accuracy of fire detection and fire suppression efficiency. 

First, the stationary sensor network consists of various devices, such as thermal and infrared 
cameras, smoke detectors, gas analyzers, meteorological, acoustic and multispectral sensors, which 
are installed in critical areas with a high risk of fire. These sensors continuously collect data on 



temperature, humidity, smoke and gas concentrations, which allows for real-time detection of 
anomalies that may indicate the onset of a fire. The application of multispectral processing for fire 
monitoring has been described in detail [18]. 

Secondly, unmanned aerial vehicles are equipped with high-precision optical, infrared and 
thermal imaging cameras to provide the possibility of detailed aerial photography and video 
surveillance of the territories where changes from the operation of the sensor network were 
recorded. Due to their high mobility, UAVs quickly cover large areas, verifying warning signals, and 
also creating a stable communication channel between various components of the system. 

Thirdly, unmanned ground vehicles play a crucial role in fire localization and immediate response. 
Equipped with means for transporting fire extinguishing materials and equipment for forming fire 
protection strips, UGVs carry out a detailed survey of the scene, which allows isolating and localizing 
the fire. 

The central control station, as the core of the system, receives all data, processes them using 
powerful neural network algorithms and analyzes the information obtained to build dynamic risk 
maps and predict the development of the fire. Thus, thanks to the comprehensive integration of the 
sensor network, UAV, UGV, communication unit and central control station, the system is able to 
detect fires in a timely manner, respond promptly and coordinate fire extinguishing measures, which 
significantly contributes to reducing economic and environmental losses. 

2.3. Interaction and reliability of subsystems   

The integrated system operates through a continuous cycle of monitoring, analysis, and response, 
ensuring timely detection and suppression of forest fires while maintaining an up-to-date risk map. 
A stationary sensor network continuously collects data on temperature, humidity, smoke, and gas 
concentration in critical areas. When anomalies are detected, data is transmitted via secure wireless 
channels to the central station, where it is combined with historical trends to enhance prediction 
accuracy [19, 20]. 

Based on this analysis, UAVs are deployed for aerial imaging and thermal surveillance, 
transmitting real-time data back to verify fire alarms and update the risk map. If the threat is 
confirmed, UGVs are dispatched for ground inspection, fire isolation, and initial suppression efforts. 
Throughout the process, sensor networks continue collecting and transmitting data, allowing real-
time monitoring and prediction of fire development for coordinated response actions. 

A key feature of the system is reliable communication between UAVs, UGVs, and the central 
station. UAVs act as relay nodes, ensuring uninterrupted data transmission even in complex terrain 
or high network loads. To enhance reliability, the system employs redundant communication 
channels, combining primary wireless networks with backup options to maintain stable operation in 
adverse conditions [21]. A modular architecture enables easy expansion by integrating new sensors 
and mobile platforms without disrupting performance. 

Autonomy is achieved through embedded neural network algorithms capable of making local 
decisions when communication with the central station is lost. These algorithms analyze sensor data, 
predict fire progression, and initiate response measures independently. Additionally, self-monitoring 
mechanisms continuously assess equipment status, detect failures, and switch to backup modes to 
prevent data loss and malfunctions. 

This integrated approach ensures continuous monitoring, real-time response, and dynamic risk 
assessment, minimizing economic and environmental damage from forest fires. 

2.4. Advantages of integrated architecture  

The UAV-UGV-SN-based system combines smart data handling, unmanned mobility, and accurate 
environmental checks to cover all bases in fire monitoring, prediction, and suppression. Its standout 
feature is efficiency: a real-time sensor network works in tandem with UAVs for quick aerial surveys 
and UGVs handling ground tasks, cutting down detection and reaction times when compared to older 
methods [22]. 



Another plus is its all-round monitoring capability. By merging inputs from sensors, drones, and 
ground vehicles, the system creates a full picture of the situation and keeps false alarms to a 
minimum. The risk map is continuously updated using both live and historical data, which lets AI 
algorithms spot high-risk zones by looking at past fire events, weather trends, and vegetation shifts. 
This helps kick off preventive actions before problems really start. 

Flexibility is a key characteristic as well. The system can run on its own through neural networks 
or in a mixed mode with human oversight, adapting to different situations. Its robust design includes 
backup communication paths and even lets UAVs serve as relay stations, ensuring steady data flow 
even in tricky terrains. 

The modular setup makes it easy to expand, whether by adding more sensors, new platforms, or 
updated AI models without major changes to the infrastructure. This adaptability means the system 
stays efficient over time, allowing for continual tech upgrades. 

In short, this integrated approach allows not only detecting and extinguishing fires, butpredicting 
and preventing them. By leveraging both real-time and historical data, the system refines fire 
prevention methods, cuts down on economic and environmental damage, and ensures prompt 
responses before fires get out of hand. 

3. System application scenarios 

3.1. Classification of scenarios  

This section discusses the main scenarios for the application of the integrated UAV-UGV-SN system 
for monitoring, forecasting and extinguishing forest fires. Each scenario covers a specific sequence 
of actions and defines the functions of unmanned aerial vehicles (UAV), ground robotic platforms 
(UGV / forestry machines) and stationary sensor networks (SN). The results that can be achieved 
through the synergy of these components are highlighted separately. Table 1 provides an example 
of eight basic scenarios that can be modified or expanded depending on the specifics of the landscape, 
climatic conditions or management goals. 
 
Table 1 
 Application scenarios of the integrated UAV-UGV-SN system  

№ Scenarios Functions Neural network Result 
Sc1 AI-based 

fire 
forecasting 
and 
prediction 

UAV: data collection on 
temperature, humidity, 
wind speed, recognition, 
etc. 
UGV/Forest machine: 
ground analysis. 
SN: analysis of current and 
historical data to build a 
risk map and predict fire 
occurrence. 

UAV: processes images from 
cameras to detect early signs of 
fire and anomalies 
UGV/Forest machine: analyzes 
data from ground sensors and 
conducts comparative analysis of 
local indicators 
SN: clusters data, builds a 
dynamic risk map based on 
current and historical values 

Proactive 
warning, 
identification 
of high-risk 
areas and 
timely 
detection of 
potential fires 

Sc2 Early 
detection of 
fires 

UAV: 
aerial photography with 
thermal imagers and smoke 
detectors. 
UGV/Forest machine: 
ground-based parameter 
verification. 
SN: capturing anomalies in 
climate data. 

UAV: performs visual anomaly 
recognition, identifies potential 
fire locations. 
UGV/Forest machine: analyzes 
local data and confirms or refutes 
the signal received from the 
UAV. 
SN: detects sudden changes in 
temperature or other parameters 
indicating fire 

Reduction of 
response time 
and prompt 
verification of 
fire 



Sc3 Autonomou
s fire 
extinguishin
g 

UAV: determining optimal 
points for water/foam 
discharge. 
UGV/Forest machine: 
creating firebreaks, ground 
extinguishing. 
SN: monitoring 
temperature changes. 

UAV: calculates optimal points 
and routes based on image and 
thermal data analysis 
UGV/Forest machine: 
monitors the effectiveness of 
local extinguishing measures and 
responds to changing situations 
SN: continuously analyzes 
temperature indicators to correct 
the extinguishing strategy 

Optimize 
resource 
usage and 
quickly 
extinguish 
fires 

Sc4 Recovery 
after fire 

UAV: seed scattering for 
forest regeneration. 
UGV/Forest machine: 
care for planted seedlings, 
watering, fertilizing. 
SN: soil and moisture 
monitoring. 

UAV: analyzes the condition of 
the terrain using images, 
identifies areas with the most 
damage 
UGV/Forest machine: 
monitors the condition of plants 
and the need for additional care 
SN: evaluates ecological 
indicators to adjust restoration 
measures 

Accelerated 
ecosystem 
recovery and 
fire 
mitigation 

3.2. Scenario description 

Scenario Sc1: AI-based fire forecasting and prediction 
This scenario integrates sensor data, historical climate records, and past fire incidents. Neural 

networks identify patterns signaling increased fire risk, as demonstrated in [23]. UAVs regularly 
gather temperature, humidity, and wind data, while sensor networks compare them with historical 
trends for early hazard detection. This enables timely preventive measures like enhanced monitoring 
or forest moistening. Neural networks operate at different subsystem levels: UAVs analyze images 
and video for fire signs, ground systems assess local data against typical indicators, and sensor 
networks use clustering models to create dynamic risk maps and predict potential fires. 
Scenario Sc2: Early fire detection 

In normal mode, the sensors show stable readings, but if a sudden temperature jump or smoke 
appears, the system immediately gives an alarm signal. Drones with thermal cameras quickly inspect 
the situation from above, and ground equipment double-checks the data. Neural networks help to 
recognize anomalies: deviations are seen from the air, and from the ground they are confirmed or 
denied. This approach allows for a quick response and minimization of damage. 
Scenario Sc3: Autonomous fire extinguishing 

Once a fire is confirmed, the system automatically switches to extinguishing mode. Ground robots 
then determine the best points for applying water or extinguishing agents, taking into account wind 
and terrain features. Meanwhile, flying drones focus on monitoring the fire, relaying real-time 
information between the ground drones and the central station. Sensors continuously track 
temperature changes to enable prompt adjustments, and neural networks optimize routes, analyze 
thermal images, and assess the efficiency of the extinguishing efforts in real time. 
Scenario Sc4: Recovery after fire 

After the extinguishing fire, the restoration phase begins. Drones scatter seeds over the damaged 
area, and ground devices water, fertilize, and monitor plant growth. Sensors record the condition of 
the soil and the level of moisture, and neural networks analyze the resulting images to determine 
which areas need the most attention. This comprehensive approach allows the ecosystem to 
gradually return its lost functions. 



4. Neural network technologies for integrated system 

This section describes the use of neural network technologies to support forest fire monitoring, 
taking into account the tasks of clustering data obtained from sensors located in different parts of 
the land. The use of such approaches allows not only to quickly analyze current environmental 
indicators, but also to classify areas by risk level, identifying patterns that may indicate an increased 
probability of fire. The use of deep neural networks to detect fire threats is described in [24], and the 
use of clustering methods is described in [25].  

Neural network algorithms are able to effectively process large amounts of data obtained from 
stationary sensors located in different parts of the forest. Due to the ability to detect complex patterns 
and anomalies, neural networks allow building dynamic risk maps, predicting possible fires, and 
supporting the process of making operational decisions. One of the important stages is data 
clustering, which allows grouping areas with similar characteristics and identifying those of them 
where the fire risk is highest. 

4.1. Architecture of a neural network system with clustering 

The neural network system for monitoring forest fire risks is based on the integration of various 
technologies for collecting, processing, and analyzing data from sensor devices (SN), unmanned 
aerial vehicles (UAV), ground autonomous systems (UGV), and other sources. The main task of the 
system is not only to collect and analyze current environmental indicators, but also to cluster the 
obtained data to predict the risk of fires and ensure prompt response. 

The architecture of this system consists of several key components (Figure 2): 

 
Figure 2: Architecture of the neural network processing and clustering subsystem. (1) Data 
collection subsystem gathering temperature, humidity and etc. readings from stationary SN, optical 
and thermal imagery from UAVs, and environmental scans from UGVs; (2) Data preprocessing 
subsystem performing noise filtering, normalization, anomaly removal, missing-value imputation 
and time-series synchronization; (3) Neural network feature extraction; (4) Generation of a dynamic 
risk map with real-time color-coded threat levels; (5) Fire prediction module analyzing temporal 
trends; (6) Continuous model retraining for adaptive parameter tuning.  



● Data collection subsystem: All data on the condition of forest areas comes from a 
distributed network of sensors installed on the ground, as well as from unmanned aerial vehicles and 
ground-based autonomous robots. 

● Data preprocessing subsystem: Data received from sensors has different formats and 
often contains noise, anomalies or unreliable values. Therefore, before further analysis, the following 
will be performed: data filtering and normalization, anomaly removal and restoration of lost values, 
aggregation and synchronization of time series for correct processing. 

● Neural network processing and data clustering: After pre-processing, the data is fed to 
a neural network model. This will extract features, which will automatically extract relevant features, 
such as the correlation between humidity levels, temperature, and gas concentrations. And using 
clustering for risk analysis, forest areas are automatically divided into risk groups. 

● Dynamic risk map generation: After clustering, the system will build an interactive risk 
map that displays all forest areas with specified threat levels. This map is updated in real time and is 
the main tool for making operational decisions. 

● Fire prediction system: A fire prediction system will operate based on historical data and 
current indicators. It will analyze changes in indicators over time and neural networks to determine 
the probability of fires in specific regions in the near future. This will allow for early implementation 
of preventive measures (for example, moistening areas or installing additional fire barriers). 

● Automatic learning and adaptation of the neural network: Another feature of the 
system will be its ability to self-learn. The neural network will continuously receive new data and 
update its clustering and forecasting algorithms to improve the accuracy of risk analysis and increase 
the efficiency of the system in the long term. 

The architecture of a neural network system with clustering provides for the efficient collection, 
analysis, and processing of environmental data, the creation of risk maps, and the prediction of fire 
occurrence. This architecture will allow for the response to threats and the implementation of 
preventive measures to significantly reduce the likelihood of large-scale fires and minimize their 
consequences. 

4.2. Algorithm of using neural networks with clustering 

In the future, our forest fire monitoring and forecasting system will combine collection, analysis and 
rapid response using a multi-layered approach to data processing. First, a map will be created that 
collects of: average temperature, humidity and other climate characteristics. This map will become a 
baseline for assessing the long-term condition of the area.  

In parallel, data will be collected in real time using sensors installed throughout the territory. 
These devices will continuously record current environmental parameters – temperature, humidity, 
pressure and other important indicators, which will allow timely detection of changes in the 
environmental situation. All data will be displayed on a separate map demonstrating current 
conditions in each region (Figure 3). 

The use of neural networks in a future forest fire monitoring system will be particularly feasible 
and effective when applied to data collected from relatively small forest patches. As described above, 
we will collect two main types of data for each target area: historical annual climate records and real-
time sensor readings. This dual-data approach will provide a robust dataset that reflects both long-
term trends and immediate environmental changes, capturing subtle shifts that may precede fire 
outbreaks. By combining these datasets, our neural network will perform a detailed cluster analysis 
to estimate the likelihood of a fire occurring in a given forest patch. The network will analyze the 
data to identify patterns and anomalies that may indicate increased fire risk. For example, an area 
that has historically experienced moderate temperatures but later exhibits a sudden temperature 
spike coupled with a rapid drop in humidity will be marked as a high-risk area (yellow) on our 
dynamic risk map. This localised analysis will not only refine the overall risk assessment across the 
forest, but will also allow us to implement targeted preventative measures and allocate resources 



more efficiently. In addition, the system will continuously monitor environmental conditions in real 
time, providing regular updates that allow us to quickly respond to any emerging threats. 

  
Figure 3: Wildfire risk maps: (A) — map based on annual climate data, (B) — map based on current 
sensor readings. 

As the neural network learns and adapts over time, its predictive accuracy will improve, allowing 
it to adjust to changing environmental patterns and further improve early warning capabilities. This 
adaptive quality ensures that even minor changes in microclimate are taken into account, making 
the monitoring system both proactive and resilient.  

Overall, using neural networks in this way will not only be practical, but also extremely valuable, 
ensuring that even the smallest, most vulnerable parts of the forest receive ongoing attention. This 
approach is set to significantly improve our ability to predict, prevent and respond to fires, thereby 
reducing damage and increasing the overall reliability of our fire management system. 

Based on accumulated annual data and indicators, the neural network will perform cluster 
analysis and create a dynamic fire risk map in real time. This map will be continuously updated and 
will demonstrate the current threat level using color coding: green will mean a stable condition, 
yellow - increased risk, and red - signs of a fire. This approach will allow not only to visually assess 
the situation, but also to quickly respond to the occurrence of dangerous conditions. 

When a yellow signal appears indicating a potential threat (for example, a sharp increase in 
temperature or a decrease in humidity detected by sensors), the system will automatically send a 
drone to inspect the corresponding area in detail. The drone will fly out to confirm or deny the 
presence of danger, providing additional information through video and photo data (Figure 4). 

  
Figure 4: Drone zone inspection stage: (A) — yellow preliminary risk areas, (B) — confirmed high-
risk areas. 

If, after checking the drone, the information confirms that the fire has already started or is in its 
early stages, the system will immediately activate the extinguishing mode. At this point, the neural 



network will update the zone status on the map, turning it red, which will signal the need for 
immediate intervention. Both air and ground assets will be used simultaneously: drones for aerial 
monitoring and applying primary extinguishing measures, as well as ground robots (UGV), which 
will be sent to carry out local fire extinguishing measures (Figure 5). 

  
Figure 5: Map update during extinguishing: black arrows show data exchange between UAV, UGV 
and ground station. Red areas dynamically expand or contract based on thermal imaging data and 
sensor readings. 

Thus, the integrated system will provide a comprehensive approach to forest fire prevention and 
suppression in the future. First, it will analyze annual and current data to assess the state of the 
territory, then create a dynamic risk map, promptly respond to anomalies using drone inspection 
and, if a fire is confirmed, activate a comprehensive extinguishing system involving both air and 
ground assets. This mechanism will significantly improve the efficiency of monitoring, reduce 
response time and minimize damage from fires, ensuring reliable risk management in forest areas. 

4.3. Advantages of using clustering  

In the future, clustering in neural network systems will play a key role in increasing the efficiency 
of monitoring, preventing and eliminating the consequences of forest fires. The use of clustering 
methods will allow not only to structure large volumes of data, but also to optimize decision-making 
based on the local characteristics of each region. Also among the advantages are local accuracy 
(grouping areas with similar characteristics allows more accurately identifying regions (where there 
is an increased risk of fire) and optimizing resources (clustering results help to optimally allocate 
resources for response, focusing on the most risky areas). 

5. Experiment 

The purpose of the section is to demonstrate the neural network clustering algorithm on synthetic 
data, to decompose the steps of calculating metrics (Precision, Recall, F1-score), and to show how to 
use simple mathematical calculations to assess the quality of the forecast of fire risk areas. 

5.1. Problem statement and data  

Let us take a set of 12,000 observations, each of which is described by five features: temperature (°C), 
humidity (%), smoke concentration (arbitrary units), wind speed (m/s), and dryness index (arbitrary 
scale 0–100). The observations are distributed across three risk classes: low (6,000 samples, 50%), 
medium (3,600 samples, 30%), and high (2,400 samples, 20%). The algorithm consists of two stages: 
first, MLP feature extraction, where each five-dimensional vector is passed through a sequence of 



layers 5 → 32 → 16 → 8 to obtain an 8-dimensional representation, and then the k-means method 
(k = 3) is applied to these 8-dimensional vectors to assign each observation to one of three clusters. 

To assess the effectiveness of clustering, consider the confusion matrix, which shows how many 
observations of each real class were assigned by the algorithm to each of the predicted classes in 
Table 2. 
Table 2 
Frequency of Special Characters 

 Predicted: 
low 

Predicted: 
medium 

Predicted: 
high 

Realistic: low 5 400  300  300  
Realistic: 

medium 
200  3 300  500  

Realistic: high 100  150  1 850 

 
In this matrix, for the class “low” we have TP = 5400 (the number of truly low-risk observations 

classified correctly), FN = 300 + 300 = 600 (low-risk observations incorrectly classified as medium 
and high), and FP = 200 + 100 = 300 (observations from other classes incorrectly classified as low-
risk). Similarly, FN and FP are determined for the classes “medium” and “high”, after which the 
classification quality indicators for each of the three classes are calculated using the formulas 
Precision, Recall, and F1 score. 

5.2. Formulas and calculations  

For each class 𝑖 (ℓ – low, m – medium, v – high), standard metrics are used: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ =
𝑇𝑃௜

𝑇𝑃௜ + ∑௝ஷ௜ 𝐹𝑃௝→௜

, 
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙௜ =
𝑇𝑃௜

𝑇𝑃௜ + ∑௝ஷ௜ 𝐹𝑁௝→௜

, 
(2) 

𝐹1௜ = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙௜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ + 𝑅𝑒𝑐𝑎𝑙𝑙௜
 

(3) 

where TPi (True Positives) denotes the number of observations that belong to class 
𝑖 and were classified into it correctly. FPi→j  (False Positives) is the number of elements from class j 
that the algorithm mistakenly assigned to class i. FNi→j (False Negatives) is the number of elements 
of class i that were mistakenly assigned to other classes j≠i. 

Formula (1) gives Precision — the ratio of correctly predicted positive cases to all predicted 
positives. A high Precision value means that there are few false positives among the predicted 
observations of class i. 

Formula (2) calculates Recall — the ratio of correctly predicted positives to the total number of 
true positive cases. Recall shows the ability of the algorithm to find all samples in class i. 

The combined F1-score metric in formula (3) is the harmonic mean of Precision and Recall, 
providing an objective assessment of the balance between these two indicators. 

For the “low” class (ℓ) from the discrepancy matrix we have: 
𝑇𝑃ℓ = 5400, 𝐹𝑃௠→ℓ = 200 + 100 = 300, 𝐹𝑁ℓ→௠ + 𝐹𝑁ℓ→௠ = 300 + 300 = 600 (4) 

Substituting these values into (1)–(3), we obtain: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ℓ =
5400

5400 + 300
≈ 0.9474, 𝑅𝑒𝑐𝑎𝑙𝑙ℓ =

5400

5400 + 600
≈ 0.9000, 𝐹1ℓ ≈ 0.9235 

(5) 

After this, according to this example, we consider the same for the "medium" and "high" class. 
Now we can calculate the overall macro F1 score. 

𝑚𝑎𝑐𝑟𝑜 𝐹1 =
𝐹1ℓ + 𝐹1௠ + 𝐹1௩

3
=

0.9235 + 0.8513 + 0.7793

3
≈ 0.8514 

(6) 

As a result, we get table 3, which shows all the results. 



Table 3 
Summary table of results 

Risk class Precision  Recall  F1-score  
Low 0.9474 0.9 0.9235 

Medium 0.88 0.825 0.8513 
High 0.6981 0.8809 0.7793  

Macro F1    0.8514 

 
The example calculation for the “low” risk class (ℓ) shows how the combination of precision and 

completeness yields F1 ≈ 0.9235. This indicates that the algorithm is quite good at separating low-
risk areas: only 600 out of 6,000 such areas were misclassified, while medium and high risks yielded 
300 false positives. 

For the “medium” class (m), Precision = 0.88 and Recall = 0.825 show that although the algorithm 
is able to detect most of the medium-risk observations, some of them (700) still fall into other classes. 
F1 ≈ 0.8513 demonstrates a balanced result, but indicates the possibility of further refinement. 

High risk (v) turned out to be the most problematic: with Recall ≈ 0.88 the module is able to find 
most of the critical points, but due to a significant number of false positives (800) Precision drops to 
≈ 0.6981, which leads to F1 ≈ 0.7793. This indicates that the algorithm needs to improve in terms of 
accuracy of recognition of the most dangerous zones.  

Finally, Macro-F1 (7) of ≈ 0.8514 generalizes the results across all three classes and allows 
comparing the quality of different models with each other regardless of the imbalance in the data. In 
our case, a value above 0.85 indicates a generally good ability of the model to classify risk zones, but 
draws attention to the need for optimization specifically for high-risk cases. 

5.3. Interpretation and conclusions 

Interpretation of the obtained results indicates that the clustering algorithm with a combination 
of MLP feature extraction and k-means demonstrates a sufficiently high ability to separate zones of 
different risk levels. In particular, the “low risk” class received the highest F1-score (~0.9235), which 
indicates the minimum number of false positives and misses in this category — only 600 out of 6000 
truly low-risk samples were classified incorrectly, and the number of false positives was 300. The 
“medium risk” class demonstrated an F1-score of ≈0.8513, which indicates a satisfactory balance 
between Precision (0.88) and Recall (0.825), but 700 observations still ended up outside their group, 
which may be due to the proximity of the parameters of these zones to the boundary values. The 
algorithm has the greatest difficulty in classifying “high-risk” areas: although Recall for this class 
(~0.8809) shows that most critical cases are detected, the high level of false positives (800) reduces 
Precision to ~0.6981 and leads to an F1-score of ≈0.7793. This indicates the need to refine the 
boundary conditions of the clusters or introduce additional features to increase the accuracy of 
recognizing the most dangerous areas. The Macro-F1 indicator of ≈0.8514 summarizes the 
effectiveness of the algorithm in conditions of class imbalance and serves as a benchmark for 
comparison with alternative approaches: a value above 0.85 indicates good model quality, but the 
identified weaknesses require additional experiments and possible adjustment of the network 
architecture or clustering parameters. 

6. Discussion of the solutions and future research steps 

Comparison of the obtained results with traditional clustering methods indicates significant 
advantages of the proposed combination of MLP-feature extraction and k-means: if pure k-means in 
similar studies demonstrates Macro-F1 of about 0.81 [25], then the addition of nonlinear vector 
processing increases this indicator to 0.85. This increase is explained by the fact that MLP allows 
better separation of clusters in the transformed feature space, increasing the clarity of the boundaries 



between classes. At the same time, the analysis of the discrepancy matrix revealed a systemic 
problem with the recognition of the most critical — high-risk — class: Recall for this group is 
approximately 0.88 (i.e., the algorithm finds most of the true “red zones”), but a large number of false 
positive classifications (~800) leads to a decrease in Precision to ~0.70. This imbalance between 
sensitivity and accuracy is repeated in many works on environmental data clustering, where close 
to threshold values of features make it difficult to clearly separate critical and non-critical 
observations. 

To address this limitation, it is advisable to apply several approaches: first, to conduct detailed 
normalization and standardization of input features, taking into account their mutual correlation; 
second, to expand the set of parameters by adding a complex fire hazard index (FWI), which 
integrates several risk factors; third, to consider hybrid models that combine clustering with 
threshold detectors that can instantly respond to extreme changes in individual features. 

It should be noted that the main limitation of this study is the use of synthetic data without testing 
on real sensor networks and field tests. Although analytical calculations allow us to quickly assess 
the potential of the algorithm and identify its “weak points”, experiments on UAV/UGV equipment 
in different climatic zones with real data from sensors are necessary to confirm its practical value.  

In the future, the integration of satellite and meteorological data can bring significant benefits, 
which will allow us to cover larger areas and improve the spatio-temporal consistency of forecasts. 
In addition, the development of adaptive algorithms that will automatically adjust the number of 
clusters depending on seasonal and regional features, as well as the implementation of a feedback 
system from operators for online model updates, will contribute to increasing accuracy and reliability 
in real-world applications. Overall, the discussion confirms the validity of the chosen approach and 
outlines clear paths for its further improvement and scaling. 

7. Conclusions 

The main contribution of this research is the development of the architecture of an integrated 
(UAV+UGV+SN)-based forest fire monitoring system, the definition of scenarios for its use and the 
implementation of neural network support for each stage of work. The integration of mobile 
unmanned vehicles (UAVs and UGVs) with stationary sensor networks allows significantly 
increasing the efficiency of fire detection and response. Thanks to continuous monitoring of the 
environment and the use of modern neural network technologies for data clustering and analysis, 
the system is able to form dynamic risk maps that take into account both current indicators and 
historical trends. This allows accurately identifying areas of increased risk and implementing 
preventive measures to reduce economic and environmental losses.  

Of particular importance is the use of an integrated approach that combines the advantages of 
mobile systems - efficiency, the ability to cover hard-to-reach areas, safe performance of work in 
combat zones - with the reliability of stationary sensor networks. In regions where military 
operations create additional threats, the proposed system can effectively provide early fire detection, 
rapid response and forecasting of fire outbreaks, which is key to protecting both ecosystems and the 
civilian population. 

Further research should be aimed at improving data analysis and clustering algorithms, 
expanding the sensor network, and integrating additional sources of information, including satellite 
data and data from public organizations. As a result of the implementation of such innovative 
technologies, it is possible to create autonomous, adaptive systems capable of providing a 
comprehensive approach to monitoring, forecasting and eliminating forest fires, which will help 
reduce the scale of losses and improve the ecological situation. 
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