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Abstract 
Thе study examines how different activation functions influence the performance of a U-Net model applied to 
binary water-body segmentation in Sentinel-2 imagery. Using an identical training setup for each experiment, 
six nonlinearities—ReLU, Leaky ReLU, ELU, PReLU, Swish and RReLU—are individually substituted into the 
network while all other parameters remain fixed. Comparative evaluation on a held-out validation set reveals 
that Leaky ReLU provides the most balanced trade-off between precision and recall, making it the preferred 
choice for accurate water-mask generation. PReLU offers a similar but slightly lower performance, whereas 
ELU excels at capturing additional water pixels at the cost of more false positives. The findings highlight the 
importance of activation-function selection in remote-sensing segmentation tasks and suggest further 
exploration of advanced nonlinearities and larger, more diverse datasets to enhance generalization. 
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1. Introduction 

Monitoring water resources, including rivers, lakes, and coastal areas, plays a crucial role in modern 
research related to sustainable environmental management, agrotechnology, and ecology. Thanks to 
an extensive satellite network, particularly the Sentinel-2 program, it is now possible to obtain high-
resolution multispectral imagery for the regular assessment of water bodies. However, the task of 
automatically and accurately separating water from land (segmentation) remains challenging due to 
factors such as water turbidity, seasonal variability, cloud coverage, and the spectral similarity of 
various landscape elements. 

Traditional algorithms based on indices such as the Normalized Difference Water Index (NDWI) 
offer fast solutions, but they are often vulnerable to complex environmental conditions. With advances 
in deep learning within the field of computer vision, there is a growing trend towards the use of deep 
convolutional neural networks (CNNs), which enable more accurate identification of image features 
[1,2]. One of the most widely used models for segmentation tasks is the U-Net, proposed by 
Ronneberger et al. Its encoder-decoder architecture with skip connections enables the fusion of deep 
semantic information with high spatial resolution. 

Nonetheless, the effectiveness of CNN training — including that of U-Net — depends not only on 
architectural design but also on the choice of activation functions, which define how neurons respond 
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to incoming signals. The ReLU (Rectified Linear Unit) family remains the most used due to its 
simplicity and immunity to the vanishing gradient problem in the positive domain. However, 
numerous modifications of ReLU (e.g., Leaky ReLU, PReLU, RReLU) as well as alternative functions 
(ELU, Swish, Mish) have been proposed to improve convergence and address the limitations of 
standard ReLU. 

This study presents a comparative analysis of six activation functions (ReLU, Leaky ReLU, ELU, 
PReLU, Swish, RReLU) in the context of binary segmentation of water bodies using Sentinel-2 satellite 
imagery. To ensure objective evaluation, all training parameters (number of epochs, dataset) were fixed 
so that the only changing variable was the activation function. The evaluation criteria included F1 
score, Intersection over Union (IoU), precision, recall, and convergence rate. The results provide 
insights into which activation function contributes most effectively to accurate and reliable water 
segmentation under diverse landscapes and imaging conditions. 
 
2. Methodology 

U-Net Architecture 

This study employs a modified U-Net architecture specifically designed for the binary segmentation of 
water bodies based on Sentinel-2 satellite data. The choice of U-Net is justified by its ability to 
integrate high-level (global) features with fine-grained local details—an essential quality for detecting 
small water bodies and complex shoreline structures. To enhance performance, the input data 
undergoes preprocessing, including the generation of training patches from satellite scenes and the 
creation of corresponding target masks. This enables the model to operate effectively on multispectral 
imagery by adjusting the number of input channels and scale according to the available spectral bands. 

During model development, the unique characteristics of Sentinel-2 imagery are considered such as 
the varying spatial resolution of individual bands and uneven surface illumination [23]. Each image is 
normalized and divided into fixed-size patches, which simplifies the training process and reduces the 
need to store large full-resolution intermediate results. Each patch is input into the U-Net as a tensor, 
typically with 3 or 4 channels (RGB or RGB plus near-infrared). In this project, 512×512 sized patches 
are used, striking a balance between computational cost and spatial detail preservation. 

The architecture retains the classic encoder-decoder structure with convolutional and transposed 
convolutional blocks. The encoder progressively reduces spatial resolution while extracting 
increasingly abstract features, whereas the decoder reconstructs the original image dimensions and 
focuses on the accurate localization of segmented objects. Skip connections between corresponding 
levels of the encoder and decoder help retain crucial fine-grained information that would otherwise be 
lost—essential for delineating the boundaries of water bodies [6]. The final output layer generates a 
binary map, where each pixel is assigned a probability of belonging to the water class. For full-size 
imagery, the model processes each patch individually and subsequently reassembles the outputs into a 
single map using mosaicking. Post-processing smoothing techniques are applied to reduce potential 
artifacts or misclassifications. 

The advantages of U-Net in this project are further supported by multiple studies demonstrating its 
effectiveness for remote sensing data [5]. The model's scalable filter size and layer dimensions allow it 
to perform robustly under various imaging conditions while preserving the ability to identify narrow 
linear structures. In this work, the encoder comprises layers with 64, 128, 256, and 512 filters, while the 
bottleneck block reaches 1024 filters—a configuration widely used for high-resolution image 
segmentation tasks [9, 10, 3]. To improve the model’s sensitivity to water, a near-infrared channel 
(Sentinel-2 B8) may be incorporated alongside standard RGB, as this band provides better water-land 
contrast due to differences in spectral reflectance [11]. Ultimately, each 512×512 patch is processed 



independently, and the results are aggregated into a continuous segmentation map, optimizing 
computation while accounting for spatial variability across the image. 

 

 
Figure 1: Structure of U-net model used in research 
 
Model Learning and Evaluation 

The research begins with the selection of Sentinel-2 satellite image that contains the relevant spectral 
bands for distinguishing between water and land. The imageis normalized to minimize differences in 
illumination and acquisition conditions.  
 

 
Figure 2: Selected Sentinel-2 image (ID: 
S2A_MSIL2A_20241023T090031_N0511_R007_T36UUA_20241023T122451.SAFE) 



The fragment (5376x5376 pixels) of the original satellite image was selected for training dataset. The 
image is then divided into fixed-size patches of 512×512 pixels to simplify the training process and 
optimize computational efficiency. The total number of patches used for training is 110. 

Next, binary masks are generated to indicate the presence of water at the pixel level. Some of these 
masks are refined manually, while others are derived from spectral indices and later validated for 
labeling errors. This approach enables the creation of a robust training and validation dataset with a 
balanced representation of water and non-water regions. A baseline U-Net model is used for 
segmentation, with the number of input channels tailored to the selected spectral bands. Batch size, 
learning rate, and other hyperparameters remain constant across all experiments to ensure fair 
comparison among activation functions.  

 
 
 

 
Figure 3: Image fragment used for neural network training 
 

The encoder-decoder structure, along with max-pooling and transposed convolution operations, 
allows the network to preserve local details while reconstructing spatial features of the input image. 

For each activation function under consideration (ReLU, Leaky ReLU, ELU, PReLU, Swish, RReLU), 
a separate variant of the model is implemented in which only the activation layers are modified. Aside 
from the activation function, all other components—including the dataset and training duration—
remain unchanged. 
Upon completion of training, the models are evaluated on a validation set using F1, IoU, precision, 
recall, and convergence metrics. 

The predicted outputs are stitched into complete segmentation maps, enabling both visual and 
quantitative assessment of water body detection quality. Finally, a comparative analysis of all six 
activation functions is performed to identify the most effective one for binary water segmentation 
from Sentinel-2 imagery. 



3. Experiments 

ReLU Activation Function 

The Rectified Linear Unit (ReLU) is one of the most used activation functions in modern deep 
convolutional networks [4]. It operates by zeroing all negative input values while retaining a linear 
relationship for positive inputs. It is defined as: 

𝑓(𝑥) = max(0, 𝑥) (1) 
 
ReLU was introduced to mitigate the vanishing gradient problem often encountered with sigmoid 

or tanh activations [7]. Unlike these nonlinearities, ReLU provides a constant gradient for positive 
inputs and avoids costly exponential computations, resulting in faster training. 

Its main advantages include computational simplicity and the ability to maintain non-zero gradients 
when x > 0, which facilitates effective optimization in deep architectures [12]. Additionally, the lack of 
saturation for positive inputs allows neurons to output arbitrarily large values, assuming supportive 
data and weights. However, ReLU has a significant drawback in the form of "dead neurons"—units that 
output zero across all inputs if they remain in the negative region during training [8]. Despite this, 
ReLU continues to demonstrate reliable performance in high-resolution image segmentation, including 
satellite imagery [13]. 

In this study, ReLU serves as the baseline activation function. The U-Net model with ReLU is used 
as a reference to evaluate the performance gains achieved by its alternatives (Leaky ReLU, ELU, etc.). It 
remains a widely adopted standard due to its proven efficacy in segmentation, classification, and 
various deep learning tasks [4, 7,12]. An example of model execution is presented below: 

 

 
Figure 4: Example of UNetReLU water segmentation result 
 
Leaky ReLU 

Leaky ReLU is a variant of ReLU designed to mitigate the issue of "dead neurons" by allowing a small, 
non-zero gradient for negative input values. While ReLU completely discards negative signals, Leaky 
ReLU applies a small slope α to retain some gradient information [8]. It is defined as: 



𝑓(𝑥) = max (𝑎𝑥, 𝑥) (2) 

 

where α is a small positive coefficient (e.g., 0.01). This modification reduces the risk of permanent 
neuron inactivity during training [14]. 

The performance of Leaky ReLU is sensitive to the choice of α. A very small value makes it behave 
like ReLU, whereas a large value may weaken its ability to discriminate between signal polarities [15]. 
In practice, α is often chosen between 0.01 and 0.1 to balance learning speed and neuron activity, 
especially in vision tasks and satellite image segmentation [16]. 

In water segmentation tasks, Leaky ReLU may enhance model adaptability in regions with high 
spectral variability, such as vegetated shorelines or partially flooded zones. This study examines 
whether Leaky ReLU enables the network to retain more informative neurons and achieve superior 
segmentation performance compared to baseline ReLU [10]. 

 

 
Figure 5: Example of UNet Leaky ReLU water segmentation result 
 
ELU 

The Exponential Linear Unit (ELU) was introduced to accelerate convergence and reduce bias shift 
during training. It is defined as: 

𝑓(𝑥) = ൜
𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0

α(𝑒௫ − 𝑥), 𝑓𝑜𝑟 𝑥 < 0
 

(3) 

where α is a positive parameter, typically set to 1 [17]. Unlike ReLU, ELU produces smooth negative 
outputs rather than hard zeros, preserving gradients in the negative region [14]. For x ≥ 0, it behaves 
similarly to ReLU, ensuring simple optimization and avoiding saturation [4]. 

ELU also helps to center activation values around zero, which can facilitate learning and reduce 
reliance on normalization techniques [18]. However, it incurs higher computational costs due to the 
exponential term and may generate large negative outputs that destabilize training in some cases [19]. 



In this study, ELU is evaluated in contexts where nuanced control over negative inputs is 
beneficial—for instance, near noisy land-water transitions. The goal is to assess whether ELU can 
accelerate learning and improve segmentation metrics compared to ReLU and Leaky ReLU. 

 

 
Figure 6: Example of UNetELU water segmentation result 
 
PReLU 

Parametric ReLU (PReLU) generalizes Leaky ReLU by learning the coefficient α during training rather 
than fixing it manually [26]. It is defined as: 

𝑓(𝑥) = ൜
𝑥, 𝑓𝑜𝑟 > 0

𝑎𝑥, 𝑓𝑜𝑟 𝑥 ≤ 0
 

(4) 

Here, α is initialized to a small positive value and optimized alongside other network parameters 
[8]. This adaptability allows the model to fine-tune the "leakiness" for each channel or neuron [14]. 

The main advantage of PReLU is its ability to dynamically adjust the negative slope to the data 
distribution, potentially improving accuracy [12]. However, it increases the number of parameters, 
necessitating stronger regularization. In water segmentation, PReLU may prove useful in cases where 
land-water boundaries are highly variable and require distinct sensitivity across channels [10]. 

 

 
Figure 7: Example of UNetPReLU water segmentation result 



Swish 

Swish is considered a smoother alternative to ReLU that can enhance gradient flow in deep networks 
[20]. It is defined as: 

𝑓(𝑥) =  𝑥𝜎(𝑥),   𝜎(𝑥) =
1

(1 + 𝑒ି௫)
 

(5) 

Unlike ReLU, Swish does not sharply zero-out negative values but smoothly attenuates them 
depending on the input magnitude [21]. This prevents neuron inactivation and may allow for better 
feature representation. 

Swish avoids abrupt changes around x = 0, resulting in smoother gradients [4]. It has been shown to 
outperform ReLU in large-scale classification benchmarks such as ImageNet and COCO [22]. However, 
it is computationally more expensive due to the exponential calculations involved. 

In this study, Swish is considered a promising alternative for scenarios where water-land 
boundaries are fuzzy or ill-defined. Its effectiveness, however, remains dependent on dataset size and 
training conditions [11]. 

 
Figure 8: Example of UNetSwish water segmentation result 
 
RReLU 

Randomized Leaky ReLU (RReLU) introduces stochasticity into the negative slope, sampling α from a 
specified range during training [14]. Formally: 

𝑓(𝑥) = ൜
𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0

𝑎𝑥, 𝑓𝑜𝑟 𝑥 < 0
, 𝑎  ∈ [𝑎, 𝑎௫] 

(6) 

where αᵣis a random value. This randomness can act as a regularizer, helping the model avoid 
overfitting or over-reliance on specific activation patterns [8]. However, it may also slow convergence 
if the variation range is too broad [16]. 



 
Figure 9: Example of UNetRReLU water segmentation result 
 

RReLU is potentially beneficial for heterogeneous datasets with varied conditions (e.g., seasonal 
differences, diverse lighting). This study explores whether its built-in variability leads to more 
generalized segmentation performance when compared to deterministic counterparts like Leaky ReLU 
and PReLU. 
 
4. Results 

The table below summarizes the comparative performance of all six activation functions based on four 
key evaluation metrics: F1 score, Precision, Recall, and Intersection over Union (IoU). Among the tested 
functions, Leaky ReLU achieved the highest F1 score (0.7386), along with the best precision (0.8395) 
and overall IoU (0.5856). PReLU ranked second in terms of F1 score (0.7253), showing a balanced 
performance with Precision of 0.7712 and Recall of 0.6845. 
While ELU reached the highest Recall (0.7286), it suffered from low precision (0.5293), which led to the 
lowest overall F1 (0.6132) and IoU (0.4421) scores. ReLU and Swish produced similar mid-range 
results, with ReLU slightly outperforming Swish in Recall (0.7067 vs. 0.7028). 

RReLU demonstrated relatively high precision (0.8261), exceeding that of PReLU, but its lower 
recall (0.6273) placed its F1 score (0.7131) and IoU (0.5541) between those of baseline ReLU and the top-
performing Leaky ReLU. Thus, if the primary goal is to maximize F1 or IoU, Leaky ReLU is the most 
optimal. If recall is prioritized—for instance, to reduce false negatives in water detection—ELU may be 
considered, albeit at the cost of lower precision. 

Table 1 
Evaluation metrics of activation functions 

Activation 
Function 

F1 Score Precision Recall IoU 

ReLU 0.6881 0.6705 0.7067 0.5246 
Leaky ReLU 0.7386 0.8395 0.6594 0.5856 

ELU 0.6132 0.5293 0.7286 0.4421 
PReLU 0.7253 0.7712 0.6845 0.5690 
Swish 0.6792 0.6571 0.7028 0.5142 
RReLU 0.7131 0.8261 0.6273 0.5541 



5. Conclusions 

The results of this comparative experiment confirm that the choice of activation function has a 
substantial impact on the performance of the U-Net model for binary segmentation of water bodies in 
Sentinel-2 satellite imagery. Leaky ReLU demonstrated the best overall results, achieving the highest 
values for F1 score and IoU while maintaining the strongest precision. PReLU followed closely, offering 
a balanced trade-off between precision and recall, though it still Leaky ReLU in all major metrics. 
ELU stood out by achieving the highest recall, but this came at the expense of significant precision 
loss, resulting in the lowest F1 and IoU scores. The standard ReLU and Swish functions delivered 
average performance with no significant advantages over the more adaptive alternatives. RReLU 
offered high precision but somewhat reduced recall, placing its overall results between those of ReLU 
and Leaky ReLU. 

In conclusion, for the segmentation of water surfaces from Sentinel-2 imagery, Leaky ReLU is the 
most effective activation function, offering the best balance between accuracy, completeness, and 
spatial consistency. In scenarios where maximizing recall is critical—such as minimizing omission of 
water pixels—ELU may be considered, albeit with a higher risk of false positives. To further enhance 
segmentation quality, future work should include expanding the training dataset with diverse 
geographic regions, optimizing activation-related hyperparameters, and exploring newer functions 
such as Mish or SELU, particularly in the context of multispectral Sentinel-2 data. 
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