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Abstract 
The article investigates an approach to improving the architectures of two-level heterogeneous ensembles 
of models for solving machine learning problems. An improved ensemble architecture is proposed. In 
which the boosting method is used at the first level of ensemble learning to gradually improve the 
solutions of the base models. At the second level, the stacking method is used to aggregate the solutions 
of the base models using a metamodel. The base models used were a model based on multiple linear 
regression, a decision tree model, a random forest model, a support vector model, a KNN model, a model 
based on an artificial neural network, and a multivariate adaptive regression spline model. These models 
are divided into two groups: undertrained and over trained. The experimental part of the study was 
carried out on solving the problem of predicting the electricity generation indicators of hybrid power 
plants based on environmental indicators. The use of the improved architecture of a two-level 
heterogeneous ensemble demonstrated an increase in forecast accuracy compared to other ensemble 
architects and solutions based on any of the base models. The proposed approach is effective in solving 
machine learning problems. 
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1. Introduction 

The use of ensemble models to solve machine learning problems has become a leading trend in 
recent years. The ensemble approach allows combining several weak models to form a strong 
model in order to improve the accuracy of solving machine learning problems. Combining 
uncorrelated predictions obtained using different alternative base models can improve the 
performance of the models and demonstrate a reduction in the overall error. Ensemble methods are 
designed to reduce bias or variance by aggregating the forecast values of the base (weak) models. 

By combining the strengths of different base models, ensemble learning can identify more 
complex patterns and compensate for the weaknesses of individual models. This factor has led to 
increased accuracy of predictions with real-time data. Such ensemble methods can increase 
accuracy, reduce errors, and provide more reliable predictions by combining the power of different 
algorithms. This works especially well in complex cases where a single model would be too 
difficult to detect all the significant patterns present in the data. 

Ensemble approaches are now being used in industries such as healthcare, finance, ecology, and 
cybersecurity to solve complex problems. As these industries generate vast amounts of data, 
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requiring more sophisticated analysis than ever before, ensemble modeling has become essential to 
driving innovation. For example, in healthcare, ensemble models can help combine analytical data 
from multiple sources and models to identify disease risks, optimize treatment programs, and 
accelerate drug discovery. Therefore, the more sources of information that are combined, the better 
the outcome in many industries. 

Ensemble methods can be divided into two groups: homogeneous and heterogeneous 
ensembles. Homogeneous ensembles are formed by aggregating models of the same type to solve 
machine learning problems. Heterogeneous ensembles are of particular interest. They are formed 
by aggregating predictions obtained using different types of models. Their application allows for a 
significant and comprehensive reduction in the overall error in solving a machine learning 
problem. 

Problem statement. To investigate the features of the process of building two-level 
heterogeneous ensembles of models. To develop an improved architecture of heterogeneous 
ensembles of models to reduce the overall error of solving machine learning problems. To 
experimentally confirm the effectiveness of the improved architecture of a two-level heterogeneous 
ensemble of models on the example of solving a forecasting problem.  

2. Related Works 

Ensemble learning is the process of aggregating several different models that solve machine 
learning problems to obtain results that are better than those obtained by the algorithms when 
used independently. Ensemble methods are often used to obtain solutions to various machine 
learning problems. First of all, these are classification and prediction problems [1-3]. 

The main principles of ensemble learning are presented in [4]. To increase the efficiency of 
solving machine learning problems, ensemble learning takes advantage of several base models. In 
[5], the authors present results showing that using ensembles of models yields more accurate 
results than individual machine learning models. The work also shows that ensemble classifiers 
outperform individual ensemble learning models and are more reliable. 

Individual base models used in solving machine learning problems have high variance and high 
bias, which affects the overall accuracy of predictions [6,7]. Finding a compromise between 
variance and bias allows you to increase the accuracy of predictive solutions. The variance and bias 
errors caused by individual machine learning models can be reduced using ensemble methods, for 
example, bagging reduces variance without increasing bias, and boosting reduces bias [8,9]. The 
boosting algorithm allows for successively improving the solutions of several alternative base 
models. The specifics of its use are presented in detail in [10]. 

There are two types of approaches to ensemble learning: parallel fitting of several alternative 
models and sequential improvement of the solutions of these methods. The parallel method trains 
different base models separately and then combine their solutions, sometimes using a metamodel. 
This approach is implemented by bagging and stacking methods. Bagging, in the form of a random 
forest, is popular and is used in various projects [8,11]. Sequential ensemble models are trained 
sequentially so that each model learns to correct the error made by the previous model. In [12], it 
was determined that the accuracy of each base model is an important factor in the effectiveness of 
ensemble learning. Any machine learning algorithm is considered effective only when it has an 
effective generalization strategy on previously unstudied examples. Therefore, by combining the 
capabilities of many base models and approaches, ensemble learning is used to improve both the 
accuracy and the solution efficiency of the overall machine learning model. 

A comprehensive approach to reducing the overall error in machine learning problems is 
implemented by using two-level heterogeneous ensembles. At one of the levels in such ensembles, 
the stacking method is used [13]. Stacking uses parallel training of several alternative models to 
aggregate the predictions of several members of the ensemble. The stacking procedure involves the 
use of several level 0 models as baselines and the meta-training procedure, which is a strategy that 
instructs another model to add predictions using the baseline models. In [13], a level 1 model is 



used. The main idea behind stacking is that baseline (level 0) models are trained using a training 
dataset. The input and output pairs of the new dataset are then used for training and meta-training 
by combining their expected target labeling with real labels on the hidden data [14]. 

Using the results of additional machine learning algorithms, meta-learning algorithms are 
trained to produce predictions that are more accurate than those generated by other base classifiers 
[15]. The stacking method is effective because it combines the advantages of many weak models to 
provide a result that is superior to that produced by ensemble models. In this case, many base 
algorithms are used, as well as an initial data set. This allows stacking to create unique models that 
solve the prediction problem in a new way. 

The main difficulty in creating heterogeneous ensembles is determining the optimal way to 
combine the predictions of different models in the ensemble. There are two ways to build a 
heterogeneous ensemble. In the first method, a fixed number of different models are combined. The 
second method is to create a group of models with different parameters, and then select the best 
subset to include in the final ensemble. 

In [16], the issues of creating an adaptive heterogeneous ensemble for solving machine learning 
problems are considered. In [17], the authors proposed a static heterogeneous ensemble 
architecture. When creating an ensemble, 5 different basic classifiers are combined: the support 
vector machine (SVM), the multilayer perceptron (MLP), logistic regression, the K-nearest 
neighbors’ method, and a decision tree. The parameters and architecture of individual classifiers 
are determined using 10-fold cross-validation. The proposed approach is effective in solving 
classification problems. 

The authors of [18] proposed a combination of several optimized methods: deep neural 
networks, SVM, ada-boost, and Gaussian processes. The ensemble is generated using a simple sum-
of-classifiers rule. However, the problem of determining the number of classifiers of each type was 
not considered. In addition, the optimal composition of the ensemble depends on the problem being 
solved. In [16–18], a possible way to overcome this problem was also proposed. It consists of 
creating a library of classifiers and then selecting a subset for the final ensemble. 

In [19], a library of 2000 different methods trained with a wide range of different parameters is 
built. From this library of models, an iterative greedy selection algorithm is applied to build a final 
ensemble. The procedure starts with an empty ensemble. Then, at each iteration, the model that 
maximizes the performance metric is included in the ensemble until all models are in the library. 
The ensemble with the best performance in the validation set is selected as the final combination. 

In [20], the authors propose a greedy selection method from a library consisting of 200 
classifiers: 40 neural networks, 60 nearest-neighbor classifiers, 80 SVMs, and 20 decision trees. For 
each type of classifier, a parameter grid was defined, and one model was trained for each node in 
the grid. In this approach, the ensemble grows gradually, selecting one classifier from the library at 
a time. At each step, the selection is made from the perspective of both individual accuracy and 
complementarity with the rest of the classifiers in the ensemble. In the classification problems 
studied, such heterogeneous ensembles turned out to be more accurate. 

In [21,22], a genetic algorithm was considered for selecting the optimal structure of a 
heterogeneous ensemble from 20 different base models. These selection methods have been widely 
applied to homogeneous ensembles. Examples are presented in [23, 24]. In [25], to build an efficient 
heterogeneous combination, the authors remove the low-performing base elements so that only the 
optimal classifiers remain in the ensemble. The efficiency of the classifier is determined by 
measuring the area under the ROC curve. In another study [26], the authors used a differential 
evolution algorithm to optimize the weights of various base models in a heterogeneous ensemble. 

Thus, the task of improving the architecture of a heterogeneous ensemble in order to improve 
the quality of predictive solutions is complex and relevant. It requires new approaches and 
additional research. 



3. Material and methods  

One of the approaches to improving the quality of results when solving machine learning problems 
is the use of ensemble learning. This approach allows you to reduce the errors of solving problems 
by gradually reducing the bias and variance. Studies have shown that it is most effective to use a 
multi-level heterogeneous combination of different ensemble methods based on bagging, boosting 
and stacking [2]. 

It is known that the error of machine learning algorithms consists of three components: noise, 
bias, and variance [1,3]: 

𝐸𝑟𝑟𝑜𝑟(𝑥) = 𝐵𝑖𝑎𝑠(𝑥)ଶ + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) + 𝑁𝑜𝑖𝑠𝑒(𝑥), (1) 

where 𝐵𝑖𝑎𝑠 — is a systematic error that any machine learning algorithm is expected to make due 
to, for example, the choice of model structure, insufficient amount of training data, 
unrepresentative data for training the model;  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 measures the sensitivity of the algorithm 
to a specific training set and/or selected hyperparameters; 𝑁𝑜𝑖𝑠𝑒 — This is a random error in the 
data that cannot be avoided, for example, due to data entry errors, previously corrupted input data, 
etc. 

When choosing the best base model for a machine learning problem, it is necessary to pay 
attention to obtaining a compromise between bias and variance because undertrained models have 
a large bias value, and over trained models have a large variance value. These shortcomings lead to 
an increase in the overall error. The technique of building a two-level architecture of the ensemble 
of models, that is, aggregating solutions from different base models to create a single generalized 
model with a smaller error value, is a technique that can find a compromise between the values of 
bias and variance of individual base models. Thus, a two-level ensemble architecture can help 
reduce both bias and variance, excluding the noise component of the error. 

When selecting a combination of ensemble methods and forming the architecture of a 
heterogeneous ensemble, the following features should be considered:  

 combining the results of several base models reduces the risk of choosing an ineffective 
(weak) model; 

 several uncorrelated models, grouped into an ensemble, provide a more accurate solution 
than any of the individual base machine learning models; 

 ensemble methods tend to improve the generalized accuracy of only a set of individual 
models, and all this only happens in a certain domain; 

  a set of base machine learning models with similar training results may have different 
generalization results; 

 if the initial data set is too large, then one model may not cope with the solution of the 
problem. In this case, it is necessary to train different base models on different data 
samples; 

 if the initial data set is too small, then resampling methods should be used. 

Let us define the relationship between error, bias, and variance. Let us have random variables — 
𝑋, 𝑌, 𝑌, describing the distribution of values for instances x; their real f(x) and predicted values h(x). 
The value h(X) is an estimate of the true function f(X), generated by some model 𝑀, but is 
unknown. 

When constructing any process model, we assume that the observed values 𝑦 ∈ 𝑌  are 
generated by the function 𝑓(𝑋) plus a random normally distributed error, 𝜀: 

𝑌 = 𝑓(𝑥) +  𝜀.  

The mean squared error that we expect for the entire data distribution is defined as follows: 



𝑀𝑆𝐸 = 𝐸[(ℎ(𝑋) − 𝑓(𝑋))ଶ] = 𝐸[(𝑌 − 𝑓(𝑋))ଶ]. (2) 

Let us define the components of error: bias and variance. Bias is the difference between the 
mean values determined by the model and the actual values. Bias shows how much the “average” 
model differs from the actual relationship between the variables (Fig. 1). It can be represented as: 

𝐵𝑖𝑎𝑠ଶ(ℎ, 𝑓) = (𝐸[ℎ(𝑋)] − 𝑓(𝑋))ଶ = 𝐸ଶ[ℎ(𝑋)] + 𝑓(𝑋)ଶ − 2𝐸[ℎ(𝑋)]𝑓(𝑋). 

Variance is the expected variability of a model around its mean. Variance shows how much the 
model changes, for example with different hyperparameters or data samples (Fig. 1). It can be 
represented as: 

𝑉𝑎𝑟(ℎ) = 𝐸[(ℎ(𝑋) − 𝐸[ℎ(𝑋)]ଶ]. 
Substitute the defined expressions for the bias and dispersion into expression (2) and obtain the 

following dependence: 

𝑀𝑆𝐸 = 𝐸[(ℎ(𝑋) − 𝑓(𝑋))ଶ] = 𝐸[(ℎ(𝑋) + 𝐸[ℎ(𝑥)] − 𝐸[(ℎ(𝑋) − 𝑓(𝑋)])ଶ] = ⋯ 

… = ൫𝐸[ℎ(𝑋)] − 𝑓(𝑋)൯
ଶ

+ 𝐸 ቂ൫ℎ(𝑋) − 𝑓(𝑋)൯
ଶ

ቃ = ൫𝐸൫𝑌൯ − 𝑌൯
ଶ

+ 𝐸 ቂ൫𝑌 − 𝑌൯
ଶ

ቃ + 𝜀 = 

= 𝐵𝑖𝑎𝑠ଶ + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑒𝑟𝑟𝑜𝑟. 

 
Figure 1: The relationship between bias and variance in model fitting  

By combining several alternative and uncorrelated solutions to a machine learning problem into 
an ensemble structure, the variance is usually reduced, and therefore the error rate is reduced. 

𝑉𝑎𝑟(𝐸𝑛𝑠𝑎𝑚𝑏𝑙𝑒(ℎ(𝑥, 𝐷))) =
∑ 𝑉𝑎𝑟(ℎ(𝑥, 𝐷))

𝑚
, 

 

where ℎ(𝑥, 𝐷) — the predicted value obtained using the i-th model for training from the ensemble 
of models that is formed. 

The use of ensembles of models contributes to the fact that for most cases the variance of the 
ensemble of models is usually lower than in the case of using a single base model, even if it is 
complex. 



4. Experimental part 

4.1. Data analysis and pre-processing   

As an example of the application of the ensemble approach, the task of predicting the electricity 
generation indicators of hybrid power plants based on environmental indicators [27] is considered. 
The task is to predict the electricity generation of a combined cycle plant based on environmental 
indicators collected using a system of sensors located near the power plant. Thus, the data set 
formed on the basis of sensor indicators was obtained from actual observations. The data set 
presents 9568 observations collected over 6 years (2006–2011). At the same time, full load in the 
combined cycle mode was for 674 days. 

The result of the study is the amount of electricity generation (PE 420.26 − 495.76 MW), which 
is taken as the target variable. The input data are ambient temperature (AT in the range from 
1.81◦C to 37.11◦C), ambient pressure (AP in the range from 992.89 − 1033.30 millibars) and relative 
humidity (RH in the range from 25.56% to 100.16%). The dataset consists of numerical features. The 
data does not require additional processing. The structure of the dataset is presented in Figure 2. 

 
Figure 2: Dataset structure 

The data analysis and pre-processing stage includes the following procedures: identification and 
processing of missing values, identification and processing of outliers and anomalous values, 
identification of duplicates, checking for correlation in the data, normalization and feature 
selection [28,29]. 

After checking for missing values and identifying anomalies, a correlation check was performed 
on the data. For this purpose, a correlation matrix and a scatter matrix were created. A graphical 
version of the correlation matrix is shown in Fig. 3. 

Analysis of the correlation matrix shows: 

1. Temperature and exhaust vacuum have a strong positive correlation of 0.84, which means 
that an increase in temperature is usually accompanied by an increase in exhaust vacuum. 

2. Temperature and output power have a strong negative correlation of -0.95, which means 
that as the ambient temperature increases, the output power decreases. 

3. Exhaust vacuum and power output have a strong negative correlation of -0.87, which 
indicates that if the exhaust vacuum is high, the power output is very low, and vice versa. 

Duplicates (82 values) that were detected were removed. To increase the speed of training, data 
normalization was performed using the min-max method. Normalization transformed the features 
into the range [0, 1], which eliminated the differences between the scales [30]. 

After the dataset was prepared and reduced to a single range, cross-validation was performed to 
select the features to determine the best model with the corresponding important features. To 
evaluate the accuracy of the model using cross-validation on the sample, the MSE calculation 
method was used. First, the model characteristics were selected, then the errors were calculated for 
each cross-validation block. The result of feature selection demonstrated that the best model 
includes all 4 predictors. The errors of all models are very low, which is a good indicator. 



  
Figure 3: Graphical version of the correlation matrix 

4.2. Building and training basic regression models  

The first step in the modelling phase is to divide the dataset into training and testing. For the 
training sample, 90% of the rows of the cleaned dataset were selected, which were intended for 
training the basic predictive models. The remainder, which is 10% of the rows, was used for testing 
the models. The basic predictive models considered were a regression model based on multiple 
linear regression, a decision tree model, a random forest regression model, a support vector 
regression model, a KNN regression model, a regression model based on an artificial neural 
network, and a multidimensional adaptive regression spline model. For each model, a structure was 
selected and parameters were found, at which the models had the best quality indicators of 
predictions on the test data sample. Table 1 presents the values of the quality metrics after training 
and testing each of the basic regression models. 

Table 1 
Quality metrics of basic predictive models  

No. Model type R2 RMSE MAE MAPE % 
1 Regression model based on MLR 0.94 3.51 2.56 0.84 
2 Regression model based on DR 0.89 4.18 3.41 1.02 
3 Regression model based on RF 0.96 3.39 2.46 0.53 
4 Regression model based on SVM 0.95 3.48 2.54 0.64 
5 Regression model based on KNN 0.91 3.77 2.89 0.93 
6 Regression model based on ANN  0.90 3. 96 3.19 0.96 

7 
Multivariate adaptive regression 
splines (MARS) 

0.95 3.45 2.51 0.59 

So, the basic models showed good results on this data set. The random forest model performed 
best. The regression model based on the decision tree and the regression model based on the 
artificial neural network showed the worst results. 

 



4.3. Formation of a two-level ensemble architecture based on basic models  

Initial version. One effective approach to building heterogeneous ensemble architectures uses 
boosting or stacking for undertrained models and bagging for over trained base models [31,32]. 
This approach is aimed at minimizing bias in models with low variance and high bias, as well as 
reducing variance in models with high variance and low bias. This combination option was 
implemented programmatically to evaluate the effectiveness of this approach in the problem of 
regression forecasting the amount of electrical energy generated in one hour by a combined cycle 
power plant. 

To form the initial variant of combining the basic regression models into a two-level 
heterogeneous ensemble architecture, it was decided to combine the undertrained models at the 
first level, and the over trained ones at the second level. To divide the basic models into two 
groups, the bias and variance values for each basic model were analysed. Thus, a regression model 
based on an artificial neural network and a decision tree were selected for the first level, and a 
regression model based on multiple linear regression, a regression model based on KNN, a 
regression model based on the support vector method, a regression model based on a random 
forest, and a multidimensional adaptive regression spline model were selected for the second level. 
The architecture of the initial variant of combining the basic regression models is presented by the 
stacking method at the first level and the bagging method at the second level (Fig. 4). A control 
scheme with cross-validation was used to configure the stacking. Based on the predictions of the 
basic undertrained models, a metamodel is created using a generalized linear model. The results of 
the ensemble learning from the first level, stacking, were used to predict on the test dataset. The 
obtained predictions were added to the predictions of the base models of the second level, which 
included the retrained models. The ensemble learning scheme based on bagging with the use of 
cross-validation was programmatically configured.  

To assess the effectiveness of ensemble learning, the quality indicators of models and forecasts 
were calculated: RMSE, MAE, MAPE and R2. The results of the initial version of combining the 
basic models into a two-level heterogeneous ensemble architecture are presented in Table 2. 

 

 
Figure 4: The initial version of the combination of basic regression models into a two-level 
heterogeneous ensemble architecture  



Table 2 
Results of the initial version of combining basic regression models into a two-level heterogeneous 
ensemble architecture  

No. Model type 
Model 
quality 

Forecast quality 

R2 RMSE MAE MAPE % 

1 
Regression model based on ANN  0.90 3. 96 3.19 0.96 
Regression model based on DR 0.89 4.18 3.41 1.02 

2 

Resulting stacking layer 0.93  3.91 2.90 0.91 
Regression model based on MLR 0.94 3.51 2.56 0.84 
Regression model based on KNN 0.91 3.77 2.89 0.93 
Regression model based on SVM 0.95 3.48 2.54 0.64 
Regression model based on RF 0.96 3.39 2.46 0.53 
Multivariate adaptive regression 
splines (MARS) 

0.95 3.45 2.51 0.59 

Resulting bagging layer 0.95  3.40 2.48  0.60 

 
At the first level, using stacking, it was possible to increase the accuracy of forecasts to 0.93, 

which is 4% more compared to individual baseline models, such as ANN and decision tree (with R2 
= 0.90 and 0.89). 

At the second level, bagging combined the forecasts of the first level of stacking and retrained 
models, which allowed to achieve overall accuracy in forecasting. Contrary to this, a separate 
baseline regression model based on random forest outperformed the results of bagging. The reason 
for such results is the specificity of the task of regression forecasting the amount of electricity 
generated in one hour by a combined cycle power plant and the features of the data set as a whole. 

Improved version. When forming an improved version of the ensemble architecture, an 
unconventional approach was chosen, which involves the use of undertrained models at the first 
level aggregated by the boosting method and over trained models at the second level aggregated by 
the stacking method (Fig. 5). This decision is due to the hypothesis that undertrained models, due 
to less specificity in data fitting, can more effectively capture general trends and reduce the risk of 
overtraining. 

 
Figure 5: An improved version of the combination of basic regression models into a two-level 
heterogeneous ensemble architecture 



The boosting method used at the first level allows to increase the stability of a heterogeneous 
ensemble by combining the results of several weakly correlated models. At the second level, the 
retrained base models and the boosting results are aggregated using stacking. This provides more 
accurate forecasting, because stacking uses the results of the initial forecasting for further training 
of the models, which allows them to deepen their knowledge of the dependencies in the data. 

The obtained training results of the second layer, stacking, are used to predict the value of the 
output variable on the test data set. To assess the accuracy of the obtained forecasts, the main 
indicators such as RMSE, MAE, MAPE and the coefficient of determination R2 are calculated. The 
results on the quality indicators of models and forecasts are summarized in Table 3. 

At the first level, where boosting was used, the prediction accuracy increased to 0.91, compared 
to 0.89 and 0.90 for individual models (ANN and decision tree). At the second level, when stacking 
was used, an improvement in performance was achieved compared to the results of individual base 
models: R2 = 0.97, RMSE = 3.37, MAE = 2.44, MAPE = 0.52%, which confirms the high efficiency of 
model combination. Thus, the improved two-level ensemble architecture exceeds the efficiency of 
individual models in prediction accuracy. 

Table 3 
Results of an improved version of combining basic regression models into a two-level 
heterogeneous ensemble architecture 

No. Model type 
Model 
quality 

Forecast quality 

R2 RMSE MAE MAPE % 

1 
Regression model based on ANN  0.90 3. 96 3.19 0.96 
Regression model based on DR 0.89 4.18 3.41 1.02 

2 

Resulting boosting layer 0.91  3.81 2.95 0.95 
Regression model based on MLR 0.94 3.51 2.56 0.84 
Regression model based on KNN 0.91 3.77 2.89 0.93 
Regression model based on SVM 0.95 3.48 2.54 0.64 
Regression model based on RF 0.96 3.39 2.46 0.53 
Multivariate adaptive regression 
splines (MARS) 

0.95 3.45 2.51 0.59 

Resulting stacking layer 0.97  3.37 2.44  0.52 

 
This variant of ensemble combination worked particularly effectively due to the specificity of 

the data set and the nature of the dependencies in it, as well as the features of the regression 
problem. The data set contains a variety of interdependencies between variables, which creates 
complex but significant patterns that need to be properly detected and taken into account for 
accurate construction of the regression model. Undertrained models, such as decision trees and 
KNN, are not powerful enough to reveal these dependencies individually, but combining them 
through boosting helps to better generalize the main, stable patterns in the data, without being 
prone to overtraining. 

Over trained models, thanks to their processing algorithms, can better adapt to the complex 
nonlinear dependencies that are present in the data set, but are prone to fitting to the training data. 
Stacking helps to effectively combine their predictions, smoothing out the errors caused by 
overtraining and increasing the generalization ability of the ensemble on the test data. 

Therefore, it is the specificity of the data, which has a combination of both stable and complex 
nonlinear dependencies, as well as the requirements of the regression problem, that justify the 
effectiveness of this combination of bagging for undertrained models and stacking for over trained 
ones. This approach allows to reveal significant relationships in the data and ensures the accuracy 
of predictions by better generalizing to new data. 



5. Conclusions 

The paper investigated an approach to improving ensemble architectures for solving machine 
learning problems. When choosing a combination of ensemble methods and forming a 
heterogeneous ensemble architecture, features that affect the construction of ensembles were 
identified. An improved ensemble architecture was developed. In which the boosting method is 
used at the first level of ensemble learning to gradually improve the solutions of basic models. At 
the second level, the stacking method is used to aggregate the solutions of basic models using a 
metamodel. In the experimental part of the study, the problem of predicting electricity generation 
indicators was solved. The basic models selected were a model based on multiple linear regression, 
a decision tree model, a random forest model, a support vector model, a KNN model, a model based 
on an artificial neural network, and a spline model of multivariate adaptive regression. These 
models were divided into undertrained and over trained groups. On the models of the first group, 
ensemble methods reduced the variance, and on the models of the second group, they reduced the 
bias. Thus, the forecasting results were improved by reducing the overall error. This made it 
possible to increase the forecast accuracy in the improved architecture of a two-level 
heterogeneous ensemble compared to other ensemble architects and solutions based on any of the 
basic models. The proposed approach is effective in solving machine learning problems. 
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