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Abstract 
Text data compression methods are explored. The advantages and disadvantages of different 
combinations of arithmetic and Huffman encoding as entropy methods and Snappy and LZ4 as dictionary 
methods are described. Methods of increasing efficiency of entropy compression methods are suggested. 
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1. Introduction 

Today, big data is stored in various distributed databases and file systems. They allow storing 
different files on different servers with the ability of restoration using duplicates [1]. According to 
[2], big data is the term that does not mean a specific amount of data, but rather its relationality to 
other data. This is the reason for storing the data in such database formats as Parquet, which is 
supported by Apache Hadoop and supports different compression algorithms, such as LZ4 or 
Snappy. 

Binary data compression plays a crucial role in distributed systems by reducing storage costs 
and improving processing efficiency. Unlike specific compression algorithms, the algorithms 
designed to work with binary data treat any information as a sequence of bits or bytes. This means 
any data may be encoded and then decoded without errors or losses, which is useful for the file 
systems and databases that can store different types of files and data. 

Two most popular entropy encoders, which are Huffman optimal encoding and arithmetic 
encoding are widely used in methods like Deflate, Bzip2 and other. Usually they are used in 
combination with dictionary encoders, which include LZ4 and Snappy, mentioned above, and also 
other algorithms with similar idea. These algorithms are designed to avoid entropy coding, but this 
paper investigates how would these algorithms work if combined with different types of data.  

2. Related Works 

Data compression algorithms are divided into two groups: lossy and lossless. According to [3], 
feature-based data compression concept is becoming more popular nowadays. This concept unifies 
lossless, near-lossless and lossy compression with the idea of features – pieces of information that 
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possess high discriminative or predictive value for the human interpretation or machine 
processing. 

In this paper specific lossless compression algorithms are investigated. They can be divided into 
entropy and dictionary types, depending on which approach to data compression they use. Entropy 
encoders usually work with data on the bit level, attempting to reduce the number of bits needed to 
encode a message, while the dictionary ones usually work with bytes, writing them into a 
dictionary-like structure to reference parts of the text later. The dictionary encoders are often 
called the “LZ family” due to similarity to LZ77, the first algorithm that employed this 
approach [4]. 

Data compression algorithms are qualified by compression ratio, compression speed and 
decompression speed. In their turn, these metrics depend on the data's size, the message's mean 
entropy and, in the case of entropy algorithms, the size of the alphabet used in the message. The 
mean entropy of the message is calculated using Shannon entropy [5, 6] (1). 

𝐻(𝑋) = −Σ𝑝(𝑥)logଶ𝑝(𝑥), (1) 

where p(x) – frequency of occurrence of symbol x. 
An alphabet is a set of symbols used in a message [7]. In the case of byte-to-byte encoding of 

binary data, the alphabet always contains from 1 to 256 symbols since bytes take values from 0 to 
255, and messages cannot contain zero symbols. Static alphabets can be used to create models for 
entropy compression algorithms, e.g., adaptive arithmetic coding. 

Shannon’s theorem implies that N i.i.d. random variables each with entropy H(X) can be 
compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; 
conversely if they are compressed into fewer than N H(X) bits it is virtually certain that 
information will be lost. Assuming that symbols in the alphabet of a binary message are not 
distributed independently and identically, there will be symbols that carry more information, if 
their occurrence frequency is lower and vice versa. This enables lossless compression algorithms, 
which reduce this redundancy and assign new codes to the symbols, according to the amount of 
information they carry. If the symbols are distributed identically and do not carry natural 
redundancy, i.e. the alphabet includes symbols from 0 to maximum possible value, which means 
the message is completely random, then such message cannot be compressed. 

Data compression methods may utilize both dictionary and entropy coding [8], or only one of 
them [9, 10]. It is important that, if both methods are applied, entropy coding follows dictionary 
coding, since entropy encoding algorithms tend to make the entropy of the data rise, so the data 
become random and lose all the patterns that may be detected by dictionary coding [11]. 
The purpose of this paper is to investigate how the application of entropy encoding after already 
applied dictionary encoding affects the compression ratio and the time of compression and 
decompression. The tasks to be solved are implementation of the compressors and testing the 
obtained algorithms with different data types that can be stored in regular or distributed file 
systems. One of the materials for testing compression algorithms is Silesia compression 
corpus [12], which is a group of various binary, text, image, executable or other files. Some files 
from this group will be used for testing different approaches in this paper, too. 

3. Methods 

In this work four compression methods will be used for the research and experiments. Two of them 
belong to entropy methods, and two others – to dictionary methods. To demonstrate the 
algorithms we will use a simple text: “The cat sat on the mat, and the cat lied on that hat”. It 
contains repetitions of symbols and consists of only 15 different symbols, which makes a fairly 
small alphabet relative to that containing all the symbols of binary data. 



3.1 Huffman coding 

Huffman coding is a data compression method designed to ensure optimal encoding for each 
separate symbol [13]. Developed based on Shannon-Fano method[14], it consists of three main 
steps: 

1. During the first step the alphabet of the whole message is formed, and the frequencies of 
all the symbols are calculated. These frequencies are then used to construct a Huffman tree, where 
symbols with lower frequencies appear deeper in the tree, and those with higher frequencies are 
closer to the root. Figure 1 depicts the Huffman tree built from the sample text mentioned before. 

 

 

Figure 1: Huffman tree for the sample text 

2. After building the tree the codes are assigned to their corresponding symbols using an 
associative array or other table structure. This allows to access each symbol’s code in O(1) time, 
rather than looking it up in O(log2 n) time for each symbol in the message. 

By traversing the Huffman tree, we assign binary codes to each symbol. The tree is traversed 
breadth-first from the root recursively, each time adding a zero to the code when going to the left 
child, and a one going to the right child. It means that the codes are shorter for the symbols that 
occur more and longer for those that occur less. This also ensures that no code is a prefix of 
another, allowing for unambiguous determination of each symbol during decoding, making it more 
efficient. The codes for each symbol of the sample text are given in Table 1. 

Table 1 
Binary codes of the symbols in example text 

Symbol Code 

Space 01 

h 001 

a 100 

t 111 

e 1011 

n 1010 

m 00000 

, 00001 



l 00010 

i 00011 

c 11000 

o 11001 

d 11010 

T 111110 

s 111111 

 
3. Finally, the text is encoded using the stored codes. It is worth noting that Huffman and 

other entropy encoding algorithms operate with bits, and usually the output bit sequences are 
aligned so their count is a multiple of eight. The encoded example text will result into 20 bytes 
instead of initial 52 bytes, which means compression ratio is 2.6. 

To decode the message encoded with the Huffman algorithm, we need to build the tree used in 
encoding and read the message bit by bit, traversing the obtained tree. When a symbol node is 
found, the decoder writes the symbol into the output and moves the pointer to the root again. This 
process is repeated until the last bit of the message is read. 

The main bottleneck of Huffman compression is that it is computationally hard to make it 
adaptive. This means the output must contain the data needed to build the same Huffman tree used 
during compression. Some methods, such as the Vitter algorithm, allow adaptive Huffman 
encoding [15]. However, it is rarely used in practice since it requires much more computations for 
node swapping [16]. Herewith, each encoded block’s maximum storage overhead can be calculated 
with (2). 

𝐿 + (𝑚𝑎𝑥(𝑏𝑦𝑡𝑒) + 1) ⋅ (𝑐 + 1) = 1 + 256 ⋅ 5 = 1281𝑏𝑦𝑡𝑒𝑠, (2) 

where L – number of bytes to store the length of the alphabet, max(byte) – maximum value of byte 
(255), c – number of bytes to store the number of appearances of a symbol. 

These calculations apply to the corner case when all 256 values of a byte are used in the 
document. Still, using blocks of significant size, e.g., 100 KB or more, reduces the impact of the 
header’s size. 

3.2 Arithmetic coding 

Arithmetic encoding is another data compression method, which encodes messages using an 
interval [0; 1) split into sub-intervals representing each symbol’s frequency. The result of 
arithmetic coding is a number from 0 to 1, which represents the whole message, unlike Huffman 
coding that represents separate symbols. With infinite precision messages of any lengths can 
potentially be encoded into single numbers [17]. 

The process of a non-adaptive arithmetic encoding, like the Huffman encoding, starts with 
collecting the information of the alphabet used in the message and the frequencies of symbols. 
After this step the interval [0; 1) is split into sub-intervals with widths according to the relative 
frequency of each symbol. Figure 2 shows the graphical representation of the interval division for 
the sample text. 

 

 

Figure 2: Representation of the sub-intervals for sample string 



After this we process each symbol, refining the interval. At first we select the whole interval 
[0; 1) and select a number from the interval that represents the symbol. For example, after 
processing the letter “T” we move to [0.938; 1) and select it as the new interval. This new interval is 
split again, and after processing the letter “h” we get [0.945; 0.948) and so on. After encoding each 
symbol we reach the final interval [0.946063123456; 0.946063123478) and pick up a number inside 
these boundaries. For example, we’ll pick a 0.946063123460. This number encodes the whole sample 
text and can be stored in only 4 bytes, which means the compression ratio is 13. 

To decode the message we need to know the intervals for the symbols. Using them we can find 
the letters one by one, since the result number will always fall into the right intervals. For example, 
the number mentioned above fits into [0.938; 1.0) interval, which stands for “T”, then into 
[0.945; 0.948), which stands for “h”, and so on. 

Unlike Huffman encoding, arithmetic encoding is more convenient to enabling adaptive variant 
of encoding. This allows to avoid passing the data about symbols’ frequencies and does not require 
significant complications. For example, the adaptive algorithm has two major differences from the 
algorithm described above: 

1. At first we assume that each symbol is present in the message's alphabet with equal 
frequency. It means that we initialize the initial interval with equal sub-intervals of length (3) 

1

𝑚𝑎𝑥(𝑏𝑦𝑡𝑒) + 1
=

1

256
≈ 0.0039, (3) 

where max(byte) – the maximum value of a byte. 
2. With each encoded symbol, we make its sub-interval wider, assuming that with each 

occurrence, the probability of this symbol appearing in the same message gets bigger. Herewith, 
the frequencies of other symbols decrease proportionally to give a total of 1. 

These amendments allow a simple decoding process: build the same interval with equal 
probabilities sub-intervals and update them with each decoded symbol. Obviously, this doesn’t 
require any data about frequencies of symbols transferred with the encoded data. 

3.3 LZ4 

The LZ4 algorithm is an open-source data compression algorithm. It is designed to be fast, trading 
CPU time for compression ratio. The LZ4 algorithm does not include entropy encoding such as 
Huffman or arithmetic coding, and utilizes the dictionary approach similar to the LZ77 algorithm. 

An LZ4 block contains of sequences, which are suites of literals (not-compressed bytes), 
followed by match copy operations. To encode a message, LZ4 scans input data for repeated 
sequences and replaces them with references to previous occurrences. Literals are directly copied 
without transformation, avoiding additional encoding overhead, their lengths are encoded with 4 
bits before them. Match copies follow the literals, with 2 bytes meaning offset value, and the length 
of the match encoded with 4 bits after literal length. A schematic image of an LZ4 block is in 
Figure 3. 

 

Figure 3: LZ4 block format scheme 



To achieve fast compression and decompression – 577 MB/s and 3716 MB/s respectively for 
lz4 1.10.0, according to lzbench [18] – LZ4 minimizes cache misses by avoiding branching, where 
the simple block format is helpful. Also, this algorithm utilizes hash tables for storing previously 
seen sequences of symbols, which enables looking up for matches in O(1) time. The decompression 
algorithm avoids complex calculations, copying information from literals. Unlike LZ77, the match 
copies do not allow cyclic copying from the literals. 

The encoding of the sample text “The cat sat on the mat, and the cat lied on that hat” would be 
performed in these three steps: 

1. Finding the first literal: “The cat sat on the mat, and”, and encoding its length 27. This 
length is encoded with 1 additional byte after token. 

2. Encoding the match copy after the literal and its length in 4 lower bits of the token: 
“[space]the[space]” with length 5 and offset 13. It is encoded as 1 for the match length. 

3. Encoding another literal: “cat lied on that hat” with length 20 with no match copies 
afterwards. 

After the process of encoding we receive 53 bytes, which means that encoding did not result in 
a compression. This is the result of the small size of the message, and also in some missed matches: 
the words “cat”, “hat” and “on” with surrounding space characters have not been encoded. The 
reason is that LZ4 block format has limitations: the minimum match length is 4, the last 5 bytes are 
always literals, and the last match must start at least 12 bytes before the end of block [9]. 

3.4 Snappy 

Snappy is another open-source compression algorithm utilizing dictionary coding. Like LZ4, it was 
designed for faster encoding and decoding, so it originally does not include entropy coding and is 
oriented to bytes. 

The stream of data encoded with Snappy starts with a preamble, which contains the 
uncompressed length, stored in a special varint type. Varint is a type where for each byte there are 
seven valuable bits and the highest bit is set if there are more bytes to be read. After this preamble 
there come elements of four different types. Every element starts with a tag byte, where two lower 
bits indicate the type and six higher bits – the length of the element[10]. 

1. Literals (00). Uncompressed data, stored directly after the tag byte. 
2. Copies (01-11). References to the previous decompressed data, including literals. They 

consist of offset, which sets the relative position back in the decoded stream, and length, which 
means how many symbols should be copied. Unlike LZ4, Snappy allows lengths bigger than offsets, 
which means copying the symbols in cycles. The offsets for different copy types are stored in one, 
two or four bytes. 

The block format for Snappy is similar to LZ4 (Figure 4), though it has less limitations for match 
length and the encoding of literals than LZ4. It also works with 32 KB blocks, but the format 
does not specify it directly. 

 

 

Figure 4: Snappy block format 



As it comes from the diagram above, the block format for Snappy is simpler than LZ4, which 
potentially gives higher compression ratios due to optimized metadata, but it requires extra 
calculations and additional branching, which slows compression and decompression down. To 
encode the sample message with Snappy algorithm, the encoder would follow these steps: 

1. Encode the uncompressed length in the preamble with one byte 0x34. 
2. Encode the first literal: “The cat sat on the mat, and” with length 27, encoded with one 

byte. 
3. Encode the first match: “[space]the[space]” with one byte for offset and one byte for 

length. 
4. Encode another match: “cat[space]”, also with one byte for offset and for length. 
5. Encode literal “lied” with one byte encoding length. 
6. Encode match “[space]on th” with one byte for offset and for length. 
7. Encode the final literal “at hat” with one byte for length. 
After encoding we will get 43 bytes against original 52, which gives the encoding ratio of 1.21 

even with relatively short text. 

4. Experiment 

To investigate the perspectives of applying entropy encoding algorithms after the dictionary 
algorithms described above, we have implemented optimal Huffman coding and arithmetic coding 
using C# 12 and .NET 8. We also developed a structure for handling bit storing and operations: 
 

public struct CountedBitsArray : ICloneable 
{ 
    /// <summary> 
   /// Count of bits in the last byte in the array. Bits are counted in BE 

(less significant bit after more significant) 
    /// </summary> 
    private byte bitCount = 0; 
    private List<byte> bytes = []; 
    public CountedBitsArray() 
    { 
        bytes.Add(0); 
    } 
    public CountedBitsArray(Span<byte> storedBytes) 
    { 
        bitCount = storedBytes[0]; 
        bytes.AddRange(storedBytes[1..]); 
 } 

    } 
 

This structure is kept simple to avoid redundant operations and branching. It has several 
convenience methods for adding a bit, checking a bit on a specific position or copying another 
BitArray. 

 
/// <summary> 
/// Add bit to the last byte in <paramref name="bytes"/> 
/// </summary> 
public void AddBit(bool value) 
{ 
    if (bitCount == 8) 
    { 
        bytes.Add(0); 
        bitCount = 0; 
    } 
    if (value) // no need to assign 0 since it is already there 
    { 
        var mask = (byte)(1 << bitCount); 



        bytes[^1] |= mask; 
    } 
    bitCount++; 
} 
/// <summary> 
/// Get value of a bit in the specified position, starting from the 

beginning of <paramref name="bytes"/> 
/// </summary> 
public readonly bool IsBitSet(int pos) 
{ 
    // get the required byte 
    var byteNum = pos / 8; 
    if (byteNum >= bytes.Count) return false; 
    // get the required bit in byte 
    var bitNum = pos % 8; 
    // use bit mask 
    return (bytes[byteNum] & 1 << (bitNum)) != 0; 
} 
public void AddBits(int count, bool value) 
{ 
    for (int i = 0; i < count; i++) 
    { 
        AddBit(value); 
    } 
} 
public void AppendBitArray(CountedBitsArray bitsArrayToAppend) 
{ 
    for (int i = 0; i < bitsArrayToAppend.BitsCount; i++) 
    { 
        AddBit(bitsArrayToAppend.IsBitSet(i)); 
    } 
} 
 
The arithmetic encoder was implemented as an integer range coder, which works similarly but 

allows the use of finite-precision data types . To implement such behavior, specific numbers that 
play roles of a “whole”, “half” and “quarter” are introduced, such as: 

ℎ𝑎𝑙𝑓 =
𝑤ℎ𝑜𝑙𝑒

2
, 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 =

𝑤ℎ𝑜𝑙𝑒

4
, 𝑅 ⋅ 𝑤ℎ𝑜𝑙𝑒 ≤ 𝑚𝑎𝑥(int64) 

(4) 

where R – needed level of precision, max(int64) –  maximum value of a 64-bit integer. 
This gives an oppurtunity to simplify the algorithm and use only integer values without the 

need to perform costly division operations. Adaptive arithmetic coding becomes much faster and 
easier to implement. Below a part of encoding function is presented: 

 
var symbolCount = Models[modelNum].Length; 
var symbolFreq = new int[symbolCount]; 
symbolFreq.Populate(1); // every symbol's frequency is initialized as 1 
var symbolFreqAdded = new int[symbolCount]; 
symbolFreqAdded.SumUp(symbolFreq, 0); 
var totalFreq = symbolFreq.Sum(); 
var lowerBound = 0L; 
var upperBound = Whole; 
var splits = 0; 
var result = new CountedBitsArray(); 
foreach (var s in data) 
{ 
    EncodeSymbol(symbolFreq, symbolFreqAdded, ref totalFreq, ref lowerBound, 

ref upperBound, ref splits, ref result, Array.BinarySearch(Models[modelNum], 
s)); 

} 
EncodeSymbol(symbolFreq, symbolFreqAdded, ref totalFreq, ref lowerBound, ref 

upperBound, ref splits, ref result, symbolCount - 1); 
++splits; 



if (lowerBound <= Quarter) 
{ 
    result.AddBit(false); 
    result.AddBits(splits, true); 
} 
else 
{ 
    result.AddBit(true); 
    result.AddBits(splits, false); 
} 
 
The Snappy and LZ4 algorithms are used as ‘black boxes” – their default implementations are 

adopted “as is” and remain unchanged. To launch and direct the algorithms, the default command 
line interfaces (CLI) are used, if present. If a CLI is absent, third-party CLI can be used, which 
does not affect the compression or decompression and serves for the convenience of utilizing the 
algorithms. 

To test the algorithms, files from Silesia compression corpus were used [12]. Their descriptions 
are presented in Table 2. 

Table 2 
Descriptions of the files from Silesia compression corpus used for tests 

Name Type Description Size, bytes 

dickens English text Collected works of Charles Dickens 10,192,446 

mozilla exe Tarred executables of Mozilla 1.0 (Tru64 UNIX edition) 51,220,480 

mr picture Medical magnetic resonanse image 9,970,564 

nci database Chemical database of structures 33,553,445 

sao binary data The SAO star catalog 7,251,944 

xml html Collected XML files 5,345,280 

 
The experiments are performed on a 12-core Intel Core i7-13620H, on 64-bit Windows 10. 

5. Results 

First, the files were compressed with LZ4 and Snappy without further application of Huffman and 
arithmetic coding to measure their performance without any external influence. LZ4 was used with 
different compression levels that tend to increase CPU time but also increase compression ratios. 
The results of compression are presented in Table 3. 

Table 3 
Ratio and approximate time of compression of the test files with LZ4 and Snappy 

Program dickens mozilla mr nci sao xml 

lz4 -1 1.58, 200 ms 1.93, 400 ms 1.83, 180 ms 6.06, 270 ms 1.06, 210 ms 4.35, 240 ms 

lz4 -2 1.9, 330 ms 2.11, 570 ms 2.09, 270 ms 6.71, 290 ms 1.17, 390 ms 5.07, 180 ms 

lz4 -4 2.2, 500 ms 2.28, 590 ms 2.22, 430 ms 8.29, 450 ms 1.25, 430 ms 6.54, 210 ms 

lz4 -6 2.27, 740 ms 2.3, 770 ms 2.31, 820 ms 8.87, 640 ms 1.26, 520 ms 6.83, 150 ms 

lz4 -8 2.29, 1 s 2.32, 860 ms 2.34, 1.53 s 9.07, 1.15 s 1.26, 570 ms 6.92, 390 ms 

lz4 -9 2.29, 1.06 s 2.32, 1.14 s 2.35, 1.82 s 9.11, 1.21 s 1.26, 570 ms 6.93, 370 ms 

snappy 1.61, 130 ms 1.91, 120 ms 1.83, 40 ms 5.44, 70 ms 1.008, 40 ms 4.10, 20 ms 

 
It’s worth noting that LZ4 and Snappy CLI don’t have built-in measurement of time spent for 

compression or decompression, and third-party time measurement was used. It means that the time 



periods mentoned in Table 2 are approximate and serve only for observing the relative time period 
changes. 

The files were also compressed using the implemented Huffman and arithmetic coding 
algorithms with different block sizes. The results are given in Table 4. 

Table 4 
Ratio and approximate time of compression of the test files with Huffman and arithmetic coding 

Program, block size dickens mozilla mr nci sao xml 

Huffman, 32 KB 1.73, 419 ms 1.38, 814 ms 2.12, 470 ms 3.2, 344 ms 1.03, 245 ms 1.59, 138 ms 

Arithmetic32 KB 1.76, 401 ms 1.45, 2.5 s 2.28, 451 ms 3.27, 637 ms 1.08, 357 ms 1.62, 325 ms 

Huffman, 64 KB 1.74, 303 ms 1.39, 592 ms 2.17, 268 ms 3.24, 122 ms 1.05, 607 ms 1.6, 157 ms 

Arithmetic, 64 KB 1.77, 455 ms 1.43, 2 s 2.27, 276 ms 3.28, 454 ms 1.08, 249 ms 1.62, 115 ms 

Huffman, 200 KB 1.75, 786 ms 1.37, 539 ms 2.18, 56 ms 3.27, 101 ms 1.06, 70 ms 1.59, 29 ms 

Arithmetic,200KB 1.77, 358 ms 1.38, 1.9 s 2.23, 213 ms 3.29, 400 ms 1.07, 233 ms 1.6, 138 ms 

Huffman, 500 KB 1.75, 452 ms 1.34, 515 ms 2.16, 45 ms 3.28, 95 ms 1.07, 51 ms 1.57, 40 ms 

Arithmetic, 500 KB 1.77, 500 ms 1.35, 1.9 s 2.18, 288 ms 3.29, 392 ms 1.07, 190 ms 1.58, 154 ms 

 
After these tests the files were compressed in a chain: first with LZ4 or Snappy and then with 

Huffman or arithmetic coding. The mean compression ratios and time of encoding and decoding 
each file are given in Tables 5-7. 

Table 5 
Mean ratio of compression of the files with two applied algorithms 

Methods dickens mozilla mr nci sao xml 

LZ4, Huffman 2.29 2.47 2.57 9.19 1.25 6.7 

LZ4, Arithmetic 2.34 2.52 2.63 9.39 1.27 6.85 

Snappy, Huffman 1.82 2.16 2.22 6.2 1.06 4.42 

Snappy, Arithmetic 1.84 2.2 2.27 6.34 1.08 4.52 

Table 6 
Mean time of compression of the files with two applied algorithms, ms 

Methods dickens mozilla mr nci sao xml 

LZ4, Huffman 563 818 821 623 398 156 

LZ4, Arithmetic 819 1295 904 702 492 304 

Snappy, Huffman 581 960 794 584 517 240 

Snappy, Arithmetic 814 1388 955 744 589 223 

Table 7 
Mean time of decompression of the files with two applied algorithms, ms 

Methods dickens mozilla mr nci sao xml 

LZ4, Huffman 52 201 44 38 52 15 

LZ4, Arithmetic 184 770 172 160 202 79 

Snappy, Huffman 56 199 47 46 62 26 

Snappy, Arithmetic 226 848 202 215 242 98 

 



To compare the performance, the compressed files were also decompressed without the use of 
entropy encoders (Table 8). 

Table 8 
Approximate time of decompression of the test files with LZ4 and Snappy, ms 

Program dickens mozilla mr nci sao xml 

lz4 -1 130 470 120 320 100 150 

lz4 -2 160 450 130 330 100 130 

lz4 -4 140 400 120 240 120 120 

lz4 -6 130 460 150 290 100 150 

lz4 -8 100 460 120 300 100 170 

lz4 -9 130 520 130 300 130 160 

snappy 130 80 90 50 50 60 

 
6. Discussions 

From Tables 3-5 we can see that the usage of entropy coding after the dictionary coding allowed to 
increase the mean compression rates in range from 7 to 17% for different files. The compression 
efficiency depend on the types of files, and binary files without a structure, like “sao” in the test 
corpus, are compressed with lower ratios than binary files that contain a structure, like “nci”, 
which gave the highest compression ratios with both entropy and dictionary coders. XML file, 
named “xml”, was a good target for LZ4 and Snappy, but Huffman and arithmetic encoding gave 
compression ratios almost as low as for the executable and plain text files (“mozilla” and “dickens” 
respectively). The entropy encoding algorithms were slightly better with an image “mr”, but the 
best file to be encoded with entropy encoding was “nci”, too. 

The tests of LZ4 implementations showed that in most cases using compression levels more 
than 4 was not justified, as it made compression slightly slower but did not give much higher 
ratios. Usually LZ4 worked slower than Snappy, but the compression ratios Snappy gave exceeded 
only the first level of LZ4 in simple text files. But using entropy coding after Snappy in most cases 
raised the ratios more than if used after LZ4 of any level. 

In most cases arithmetic coding resulted in higher compression ratios than Huffman coding, but 
the difference was rarely significant. The biggest difference between the ratios of these two 
compression methods was observed during the compression of “mr” file with block size of 32 KB, 
with value of 0.16. Also, arithmetic coding appears to be much slower, and it can be observed the 
best with bigger binary files of higher entropy. The encoding speed of arithmetic compressor is 
affected more from the size of block, too, and using bigger blocks is more expedient with bigger 
files. 

The decompression speed of LZ4 and Snappy depends more on the size of a file, and does not 
depend on the compression level or type of the file. The decompression speed in case of using 
dictionary and entropy coding was affected by entropy coding, which tends to be slower than 
the dictionary one. The arithmetic decoding is also slower than Huffman decoding, like in the case 
of encoding.  

7. Conclusions 

The dictionary encoders, widely used in distributed platforms, can give satisfactory compression 
ratios with structured data, performing operations at high speed. The results obtained show that 
using relatively slow Huffman or arithmetic encoding after fast dictionary encoders can increase 



compression ratios, but require more time for compression and decompression. Combining 
dictionary and entropy encoders allows to mitigate the impact of high entropy of binary files. 

The topic is valuable for further development of various distributed platforms, databases and 
other information storage structures. There are significant results shown that the algorithms’ 
combinations are good for compressing structured databases, but also they can be useful in 
advancing compression ratios in the conditions of limited storage size or Internet traffic. In the 
future, we plan to develop and compare other compression algorithms, including the ones that use 
machine learning: PPM, context mixing [19, 20] etc. The models from the implemented arithmetic 
coding could be expanded and improved with use of these techniques. 

The work has practical value for intelligent systems, as it provides a foundation for integrating 
data compression strategies into the pipeline of intelligent data processing. Modern intelligent 
systems, including recommender systems, distributed knowledge bases, and AI services, heavily 
rely on the storage and transmission of large volumes of structured data. The paper proposes a 
compression strategy that can optimize resource usage under bandwidth or memory constraints. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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