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Abstract 
The study is devoted to determining the most efficient YOLO-based architecture for the task of aircraft 
detection in high-resolution aerial imagery. A comparative analysis was conducted across YOLO models v8 
through v11 under three experimental conditions: using pre-trained (raw) models, fine-tuning the models 
on a domain-specific dataset, and fine-tuning models to a dataset enhanced through a proposed image 
preprocessing method. The evaluation considered both accuracy and inference performance metrics. The 
proposed methodology reduced the false negative rate from 19.5% to 3.2% at a confidence threshold of 0.75, 
underscoring its effectiveness in enhancing target visibility under challenging imaging conditions such as 
low contrast or background clutter. 
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1. Introduction 

Accurately detecting objects in imagery represents a cornerstone of contemporary computer vision, 
with far-reaching implications for surveillance, defense, and autonomous systems [1]. In aerospace, 
precisely identifying aircraft in aerial imagery is fundamental to performing mission-critical 
operations such as air traffic control, border surveillance, and search-and-rescue efforts. Aircraft 
detection in high-resolution remote sensing imagery introduces specific challenges requiring 
dedicated evaluation strategies [2]. Unlike general-purpose datasets, aerial imagery often contains 
densely populated scenes, varying viewing angles, and non-uniform illumination conditions, all of 
which can degrade the performance of detectors trained on conventional benchmarks.  

Recent advancements in deep learning-based object detection models have significantly improved 
the capabilities of visual recognition systems. Among these, the You Only Look Once (YOLO) family 
of architectures has emerged as a leading approach due to its superior real-time inference 
performance and high detection accuracy. The YOLO framework has undergone continuous 
evolution—from the original YOLOv1 to the most recent YOLOv11—with each version introducing 
architectural refinements and achieving improved results across widely used benchmarks such as 
COCO and PASCAL VOC [3]. However, the direct applicability of these models to domain-specific 
tasks, such as aircraft detection in remote sensing imagery, remains non-trivial. It is primarily due 
to the unique characteristics of aerial data, including significant variations in object scale, visually 
complex and cluttered backgrounds, low spatial resolution, and partial occlusions. These factors can 
affect the detection accuracy of different YOLO versions and must be carefully considered when 
selecting a model for operational use in aerospace contexts. 
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2. Related works 

Aircraft detection in aerial and satellite imagery has received growing attention in remote sensing 
and computer vision, mainly due to its strategic significance in civilian and defense-related contexts. 
Traditional approaches relied on handcrafted features and classical machine learning techniques, 
such as support vector machines, Haar-like features, or HOG descriptors. However, these methods 
typically struggle to generalize across varying imaging conditions and object appearances. 

With the emergence of deep learning, convolutional neural networks have revolutionized object 
detection, enabling the automatic extraction of hierarchical features directly from raw image data. 
Region-based detectors, such as Faster R-CNN, and single-shot detectors, such as SSD and YOLO, 
have demonstrated superior accuracy and speed across diverse visual tasks. Among these, YOLO 
models have gained traction due to their unified detection pipeline, which allows for real-time 
inference without compromising accuracy. Numerous studies have employed different YOLO 
versions for object detection tasks, demonstrating their effectiveness in terms of speed and accuracy. 
In aircraft detection, YOLO-based models have been adopted to address challenges such as cluttered 
backgrounds, occlusion, and visually similar non-target objects. 

In the study [3], the authors compared the YOLOv7, YOLOv8, and RT-DETR models for military 
aircraft detection tasks. Their findings indicate that YOLOv8 achieved the highest mAP at 94.0%, 
outperforming YOLOv7 and RT-DETR, which achieved mAP values of 90.2% and 92.7%, respectively. 
However, RT-DETR demonstrated better performance in terms of Recall, reaching 90.4%, compared 
to 88.1% for YOLOv8 and 82.7% for YOLOv7. 

U-YOLO is an enhanced detection architecture [4] for vehicle detection in high-resolution remote 
sensing imagery. The proposed model demonstrated improved detection accuracy, yielding an 
increase ranging from 4.94% to 6.89% relative to the baseline YOLO model, depending on the specific 
dataset used. Furthermore, compared to conventional object detection frameworks such as RFBNet, 
M2Det, and SSD300, the U-YOLO model achieved performance gains ranging from 6.84% to 12.41%. 
To improve fine-grained aircraft recognition quality, authors proposed an efficient detection model 
called FGA-YOLO [5]. Extensive experimental evaluations conducted on MAR20 and FAIR1M 
aircraft recognition datasets demonstrate that the proposed method enhances the accuracy of fine-
grained aircraft classification. YOLO-based models can be adapted and optimized for use with 
Synthetic Aperture Radar (SAR) data. In the paper [6], the authors presented YOLO-SAATD (SAR 
Airport and Aircraft Target Detector), specifically designed to detect airport facilities and aircraft 
targets in SAR data efficiently. The proposed model demonstrated notable performance 
improvements, achieving a 1–2% increase in mAP50 and a 15% enhancement in detection frame rate 
when evaluated on the SAR-AIRPort-1.0 and SAR-AirCraft-1.0 benchmark datasets. 

Techniques and innovations developed for ship detection in satellite imagery can be adapted for 
aircraft detection tasks, owing to the similar operational conditions and challenges encountered in 
satellite-based object detection, such as small target size, low contrast, complex backgrounds, and 
varying illumination. In the study [7], authors achieved an accuracy of more than 84% in semantic 
segmentations for ships on satellite imagery using a two-step approach: building a classifier based 
on XCeption and using a baseline U-Net model with Resnet18 as an encoder for exact segmentation. 

Despite the availability of a wide range of advanced technologies and object detection models, 
aircraft detection in high-resolution satellite imagery continues to present significant challenges, 
including low contrast between aircraft and background, small object size, complex scene 
composition, and visually similar non-target objects. While existing YOLO-based methods have 
demonstrated promising speed and detection accuracy results, they often rely on high-quality image 
inputs and perform suboptimally under adverse visual conditions. 

The aim of this research is to determine the most effective YOLO-based architecture for the task 
of aircraft detection in high-resolution aerial imagery. To this end, a systematic comparative analysis 
involves four recent YOLO versions: YOLOv8 through YOLOv11—evaluated across key performance 
metrics, including detection accuracy, inference speed, and robustness under diverse imaging 
conditions. Beyond baseline assessment, the study introduces an enhanced preprocessing pipeline 



integrating histogram equalization and bilateral filtering. This preprocessing strategy aims to 
improve image contrast and edge preservation, thereby enhancing the overall quality of input data 
and potentially increasing detection performance across all evaluated models. 

3. Proposed methodology 

To enhance the confidence and reliability of aircraft detection in remote sensing imagery, we propose 
the methodology shown in Figure 1. 

 
Figure 1: Diagram of the proposed methodology. 

 
The proposed methodology is structured into six sequential stages. 
The first stage consists of digital image and dataset acquisition. In this study we used the Military 

Aircraft Recognition dataset [8] that is publicly available on the Kaggle platform. The dataset 
contains 3842 high-resolution remote sensing images containing a total of 22341 annotated aircraft 
instances with 20 distinct aircraft types. The images in the dataset have a wide range of visual 
conditions, including variations in lighting, contrast, and image clarity. The dataset has been divided 
into three parts: 70% for training, 20% for validation and 10% for testing. 



The second stage of the proposed methodology involves applying preprocessing techniques 
specifically designed to enhance the visual quality of the input data, thereby improving object 
detection performance, particularly in low-contrast or noisy conditions [9]. Preprocessing 
constitutes a component of the overall approach and comprises two primary operations: histogram 
equalization and bilateral filtering. This combination aims to increase the visibility of target objects 
by enhancing contrast while simultaneously reducing background noise through edge-preserving 
smoothing, ultimately facilitating more accurate detection results [10, 11]. The initial preprocessing 
stage entails applying histogram equalization to each input image to enhance global contrast. This 
technique expands the dynamic range of intensity values, thereby improving the separability of 
salient features and facilitating more effective execution of subsequent tasks such as object detection 
and classification. By redistributing pixel intensity values across the entire available dynamic range, 
histogram equalization enhances the contrast between aircraft and background elements, especially 
in low-contrast scenes where aircraft may otherwise be difficult to discern. This method is well-
established in image processing because it can improve feature visibility by modifying the intensity 
distribution such that the resulting histogram approximates a uniform distribution [12]. The 
transformation function utilized in histogram equalization is derived from the original image 
histogram's cumulative distribution function (CDF). Following histogram equalization, bilateral 
filtering, as defined in Equation 1, is applied to reduce image noise while preserving important edge 
information. Bilateral filtering is a non-linear, edge-preserving, noise-reducing smoothing technique 
extensively utilized in computer vision and image processing [13]. Unlike conventional linear filters, 
such as Gaussian blur, which uniformly smooth the image and tend to degrade edge sharpness, the 
bilateral filter incorporates both spatial proximity and intensity similarity to compute the filtered 
pixel value. It reduces noise without compromising critical structural details such as edges and 
contours. 

𝐼௙௜௟௧௘௥௘ௗ(𝑥) =
1

𝑊௣
෍ 𝐼(𝑥௜)𝑓௥(‖𝐼(𝑥௜) − 𝐼(𝑥)‖)𝑔௦(‖𝑥௜ − 𝑥‖)

௫೔∈ஐ
 , 

 (1) 

𝑊௣ = ෍ 𝑓௥(‖𝐼(𝑥௜) − 𝐼(𝑥)‖)𝑔௦(‖𝑥௜ − 𝑥‖) ,
௫೔∈ஐ

 

where 𝐼௙௜௟௧௘௥௘ௗ is the filtered image, I is the original input image, x are the coordinates of the 
current pixel to be filtered, Ω is the window centered in x, so 𝑥௜ ∈ Ω in another pixel, 𝑓௥ is the range 
kernel for smoothing differences in intensities, 𝑔௦ is the spatial (or domain) kernel for smoothing 
differences in coordinates [14]. 

Figure 2 provides a visual illustration of the qualitative improvements achieved through the 
proposed preprocessing approach, which combines histogram equalization and bilateral filtering 
applied to raw aerial imagery. Figure 2a depicts the original image, which typically exhibits common 
challenges characteristic of remote sensing data, including suboptimal contrast, haze, and subtle 
illumination variations. These factors can obscure fine details of aircraft and reduce edge 
distinctness, particularly against complex or shadowed backgrounds. In contrast, Figure 2b shows 
the image after histogram equalization, demonstrating a marked enhancement in overall contrast. 
This global contrast adjustment redistributes intensity values across the full dynamic range, 
rendering previously faint features more discernible. However, while histogram equalization 
improves contrast, it may also amplify noise or introduce undesirable artifacts. Figure 2c presents 
the result after bilateral filtering, which effectively smooths homogeneous regions while preserving 
critical edge and structural information. This edge-preserving smoothing is essential for aircraft 
detection, as it sharpens aircraft contours without blurring their distinct shapes or causing them to 
merge with the background. Collectively, the combined preprocessing steps yield a perceptibly 
clearer and more defined aerial scene, wherein aircraft outlines become more prominent and 
distinguishable from the surrounding environment. Its enhanced visual clarity constitutes a 
foundational improvement that may contribute to better detection performance by YOLO models in 
subsequent processing stages. 
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Figure 2: Remote sensing image: a) original; b) histogram equalized; c) bilateral filter.  
 
The third stage involves training various YOLO models on original and preprocessed datasets. 

Since its inception, the YOLO object detection framework has undergone substantial architectural 
evolution, with successive versions introducing innovations to enhance detection accuracy, 
computational efficiency, and task versatility. YOLOv8, released by Ultralytics in 2023, represents a 
significant advancement by adopting an anchor-free detection paradigm, simplifying the 
architecture, and improving performance in detecting small-scale objects. It supports a unified 
framework for multiple vision tasks, including object detection, instance segmentation, and 
classification, and extends applicability to object tracking, pose estimation, and oriented bounding 
boxes [15]. 

YOLOv9 (2024) further introduces the Programmable Gradient Information mechanism and the 
Generalized Efficient Layer Aggregation Network, addressing information bottlenecks and 
improving lightweight model performance without sacrificing inference speed [16]. YOLOv10, also 
from 2024, implements a non-maximum suppression (NMS)-free training paradigm that enables end-
to-end deployment and reduces computational costs. Additional architectural enhancements, such 
as spatial-channel decoupled down sampling and large-kernel convolutions, contribute to increased 
accuracy and efficiency, while a dual assignment strategy lowers latency for real-time detection [17]. 

The latest iteration, YOLOv11, continues this trajectory by integrating novel components, 
including the C3k2 block, Spatial Pyramid Pooling-Fast, and a Convolutional Block with Parallel 
Spatial Attention. These advances substantially improve feature extraction and object localization, 
enhancing performance across various vision tasks such as oriented object detection and instance-
level segmentation [18, 19]. 

The fourth stage evaluates model performance using a comprehensive set of metrics. The metrics 
computed include Precision, Recall, mAP50, and mAP50-95 to quantify detection accuracy. In 
addition to these accuracy-oriented measures, efficiency metrics such as Frames Per Second and 
Latency were assessed to characterize the models’ real-time inference capability and response time, 
respectively. Confusion matrices were constructed to provide deeper insights into classification 
performance, enabling detailed visualization of true positives, false positives, false negatives, and 
true negatives. The evaluation also includes a comparative analysis of models trained on 
preprocessed versus non-preprocessed datasets, thereby elucidating the impact of the preprocessing 
pipeline on detection performance, particularly in challenging conditions characterized by low 
contrast or image noise. 

Finally, the optimal YOLO model architecture was selected based on a thorough trade-off analysis 
considering detection accuracy, inference speed, and robustness to low-contrast imagery. The chosen 
model represents the best overall compromise between Precision, Recall, computational efficiency, 
and reliability, thus constituting the most effective approach for accurate and efficient aircraft 
detection in high-resolution remote sensing imagery. 



4. Experiment 

4.1. Description of the experiment 

The experiment aimed to evaluate and compare the performance of four YOLO model versions – 
YOLOv8, YOLOv9, YOLOv10, and YOLOv11 – on the task of aircraft detection using aerial imagery 
and compare them in the following states: not fine-tuned, fine-tuned, fine-tuned on the dataset with 
the proposed method applied. To conduct the experiment, the software was created in the Python 
programming language, using Ultralytics YOLO library for model training. The experiment was 
conducted on the following setup: CPU AMD Ryzen 5600X, GPU: MSI RTX 3080 Gaming X Trio, 
RAM: 32GB. 

4.2. Metrics 

The mean Average Precision (mAP) metric is employed for comprehensive assessment as YOLO-
based models evaluate performance based on object classification and localization accuracy. The 
mAP metric integrates Precision and Recall over a range of confidence thresholds and is computed 
at varying Intersections over Union (IoU) thresholds. These thresholds define the minimum overlap 
required between the predicted and ground truth bounding boxes for a detection to be considered a 
True Positive. Varying the IoU threshold affects the classification of detections as True Positives or 
False Positives, thereby influencing the resulting Precision and Recall values. Precision is defined as 
the ratio of True Positive detections to the total number of positive detections made by the model at 
a given IoU threshold and is computed according to Equation 2: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , 

(2) 

where TP is true positive, FP is false positive. 
As defined by Equation 3, Recall represents the proportion of True Positive detections identified 

by the model relative to the total number of ground truth instances. It quantifies the model’s ability 
to detect all relevant objects at a given threshold correctly: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 

(3) 

where TP is true positive, FN is false negative. 
The general formulation for calculating mAP is provided in Equation 4: 

𝑚𝐴𝑃 =
1

𝑁
෍ 𝐴𝑃௜

ே

௡ୀଵ

 , 
(4) 

where N is the total number of object classes, and APi denotes the Average Precision for the i-th 
class. 

This metric reflects the meaning of the precision-recall integrals computed for each class, 
providing a single detection accuracy measure across multiple categories. 

Specifying the IoU thresholds used in mAP calculations with numeric suffixes is customary. For 
instance, mAP50-95 indicates that the mAP was computed by averaging AP values over IoU 
thresholds ranging from 0.50 to 0.95 in increments of 0.05. In contrast, mAP50 refers to the AP value 
calculated at a single IoU threshold of 0.5. 

The Average Precision (AP) for a given object class is computed by first ranking all predicted 
bounding boxes in descending order according to their confidence scores. Following this, Precision 
and Recall values are calculated at each detection threshold. The AP is then obtained by computing 
the area under the precision-recall (P–R) curve, which is estimated through numerical integration 
over all Recall levels. This process is formally expressed in Equation 5: 



𝐴𝑃 = න 𝑝(𝑟)𝑑𝑟

ଵ

௥ୀ଴

 , 
(5) 

where p(r) represents the Precision as a function of Recall. 
To assess the inference performance of each model, two key metrics were employed: Frames Per 

Second (FPS) and Latency. FPS measures the number of image frames that a model can process within 
one second, providing an indicator of real-time processing capability. In contrast, Latency quantifies 
the time required by the model to process a single image, typically expressed in milliseconds. 
Together, these metrics offer a comprehensive evaluation of the computational efficiency and 
responsiveness of each YOLO variant during inference. 

In the fields of machine learning and computer vision, the confusion matrix is a fundamental tool 
for evaluating the performance of classification models [20]. It provides a comprehensive 
visualization of classification outcomes by quantifying the number of correct and incorrect 
predictions across all categories. Specifically, it reports the count of true positives, which are 
correctly identified positive instances, and true negatives, which are correctly identified negative 
instances. False positives correspond to negative samples that are incorrectly classified as positive, 
while false negatives denote positive samples that are mistakenly classified as negative. By capturing 
these four key components, the confusion matrix facilitates a detailed assessment of a model's 
predictive accuracy and error distribution. 

5. Results and discussion 

The performance of the non-fine-tuned YOLO models on the aircraft detection task, shown in 
Table 1, demonstrates strong baseline capabilities. Specifically, the models achieved high Precision 
values ranging from 0.90 to 0.96 and Recall values between 0.89 and 0.94. The mAP50 scores exceeded 
0.94 across all models, indicating effective localization of aircraft in most cases. The models exhibited 
competitive performance in inference efficiency, with frame rates between 75 and 87 FPS and 
Latency values ranging from 5.67 to 7.92 milliseconds per image, depending on the model. 

However, the mAP50-95 metric provides a more comprehensive evaluation of detection accuracy 
across varying IoU thresholds — remained comparatively low, ranging from 0.65 to 0.69. It suggests 
that while the models identify object presence and location well, their ability to generalize across 
stricter localization criteria without fine-tuning is limited. 

According to Table 2, the experimental results indicate minimal variation in detection accuracy 
across the evaluated fine-tuned YOLO models when applied to the aircraft detection task. 
Specifically, the mAP50 remains nearly identical across all versions, suggesting comparable 
performance in terms of basic object localization. 

Table 1 
Performance Metrics of not Fine-Tuned YOLO Models 

Model Parameters Precision Recall mAP50 mAP50-95 FPS Latency 
(ms/img) 

YOLOv8m 25.8M 0.904415 0.894466 0.947656 0.664185 86.29 6.33 
YOLOv9m 20.1M 0.958055 0.929658 0.978657 0.675673 75.83 7.92 
YOLOv10m 16.5M 0.963751 0.944347 0.984384 0.689463 80.04 7.02 
YOLOv11m 20.1M 0.955961 0.930024 0.980038 0.654377 87.85 5.67 

Table 2 
Performance Metrics of Fine-Tuned YOLO Models 

Model Parameters Precision Recall mAP50 mAP50-95 FPS Latency 
(ms/img) 

YOLOv8m 25.8M 0.994690 0.989565 0.994677 0.799413 86.31 6.34 



YOLOv9m 20.1M 0.995392 0.990256 0.994679 0.800972 56.76 10.93 
YOLOv10m 16.5M 0.994222 0.984797 0.994462 0.806911 80.60 7.62 
YOLOv11m 20.1M 0.994453 0.991707 0.994639 0.812434 87.82 5.66 

 
In terms of inference efficiency, YOLOv11m outperformed all other models. It achieved the lowest 

Latency at 5.66 milliseconds per image and the highest throughput with 87.82 FPS. The next best-
performing model in this regard was YOLOv8m, with a Latency of 6.34 milliseconds per image and 
86.31 FPS. Visual comparison charts for performance metrics are shown in Figure . 

 

 
a) 

 
b) 

Figure 3: Fine-tuned models metrics comparison: a) FPS; b) latency. 
 
An additional aspect considered in the evaluation was the number of trainable parameters directly 

impacting model size and deployment feasibility. The models exhibited noticeable differences: 
YOLOv8m contains 25.8 million parameters, YOLOv9m and YOLOv11m each have 20.1 million, while 
YOLOv10m is the most lightweight, with only 16.5 million parameters. YOLOv10m maintains 
competitive performance despite its lower parameter count, suggesting an efficient architectural 
design. Confusion matrices for the evaluated fine-tuned YOLO models are presented in Figure 4, 
computed using a confidence threshold of 0.25 and an IoU threshold of 0.45. These results 
demonstrate that YOLOv11m offers improved accuracy under stricter evaluation criteria and 
superior computational efficiency while maintaining average trainable parameter numbers across 
models. 
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Figure 4: Confusion matrix for fine-tuned models: a) YOLOv8m; b) YOLOv9m; c) YOLOv10m; 
d) YOLOv11m. 

A visual comparison of detection outputs from the evaluated YOLO models is presented in 
Figure 5, using a test image characterized by moderate contrast between aircraft and background. 
Notably, the plane in the scene exhibits color tones similar to the surrounding environment, which 
poses a challenge for object-background discrimination. The image also contains multiple buildings 
of varying shapes and sizes, potentially leading to false positive detections due to their structural 
similarity to aircraft. 

All models demonstrate high confidence scores for correctly detected aircraft, particularly larger 
objects. However, performance degrades for smaller aircraft, with reduced confidence levels and, in 
some cases, missed detections. Specifically, the confidence scores for a small aircraft in the scene 
were 0.78 for YOLOv8, 0.68 for YOLOv9, and 0.47 for YOLOv10. YOLOv11 failed to detect the small 
aircraft, indicating a limitation in its sensitivity to small-scale targets under low-contrast conditions. 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5: Fine-tuned models aircraft recognition comparison on the image fragment with 
moderate contrast: a) YOLOv8m; b) YOLOv9m; c) YOLOv10m; d) YOLOv11m. 

 
The models demonstrated moderate detection performance in another test image, which features 

low contrast between the aircraft and the background and contains six aircraft (Figure 6). All models 
successfully detected at least four aircraft, though with varying levels of confidence and accuracy. 

YOLOv8 detected all six aircraft. However, two detections were associated with low confidence 
scores of 0.26 and 0.67, respectively. YOLOv9 correctly identified four aircraft, one with a confidence 
score of 0.63. YOLOv10 achieved the most consistent performance in this scenario, detecting all six 
aircraft with confidence scores exceeding 0.70. YOLOv11 detected three aircraft with high confidence 
values (greater than 0.84), identified a fourth aircraft with a lower confidence of 0.44, failed to detect 
one aircraft, and produced one false positive detection with a confidence score of 0.42. 

 



a) 
 

b) 

  

c) d) 

  

Figure 6: Fine-tuned models aircraft recognition comparison on the test image with low 
contrast: a) YOLOv8m; b) YOLOv9m; c) YOLOv10m; d) YOLOv11m. 

  

 
Table 3 presents the performance metrics of the fine-tuned YOLO models evaluated on the dataset 

preprocessed using the proposed method. The results indicate that Precision, Recall, and mAP50 
values remain comparable to those obtained from the same models fine-tuned on the original, non-
preprocessed dataset (as shown in Table 2). Similarly, the inference speed metrics, namely FPS and 
Latency, exhibit negligible differences, confirming that the preprocessing pipeline does not introduce 
computational overhead. 

Table 3 
Performance Metrics of Fine-Tuned YOLO Models on Preprocessed Images 

Model Parameters Precision Recall mAP50 mAP50-95 FPS Latency 
(ms/img) 

YOLOv8m 25.8M 0.992688 0.985180 0.994364 0.782252 86.45 6.30 
YOLOv9m 20.1M 0.993128 0.988755 0.994658 0.785548 75.79 7.94 
YOLOv10m 16.5M 0.963750 0.944347 0.984384 0.689463 86.24 6.96 
YOLOv11m 20.1M 0.993315 0.985812 0.994526 0.786554 88.12 6.21 

Although a slight decrease is observed in the mAP50-95 metric, indicating a modest reduction in 
bounding box localization accuracy under stricter IoU thresholds, this is offset by an improvement 
in the confidence levels of the detected objects. 

As shown in Figure 7, the proposed technology significantly reduces the number of false negative 
detection results on higher confidence levels. From 2364 (19.5%) to 449 (3.2%). 
 



 
a) 

 
b) 

Figure 7: YOLOv11m confusion matrix with confidence ≥ 0.75: a) original dataset; b) dataset with 
the proposed preprocessing method. 

 
All evaluated YOLO models demonstrated consistently high Precision, with the lowest recorded 

value of 0.964 for YOLOv10 and the highest of 0.993 for YOLOv11. Similarly, Recall values remained 
robust across models, ranging from 0.944 (YOLOv10) to 0.989 (YOLOv9). The mAP50 exhibited a 
comparable trend, with values spanning from 0.984 (YOLOv10) to 0.995 (YOLOv9). For the stricter 
mAP50-95 metric, YOLOv10 again yielded the lowest score at 0.689, while YOLOv11 achieved the 
highest at 0.787. 

Regarding performance, YOLOv9 was identified as the slowest model, with a frame rate of 75.79 
FPS and Latency of 7.94 ms/image. YOLOv8, YOLOv10, and YOLOv11 demonstrated comparable 
performance results, with YOLOv11 emerging as the most efficient, delivering 88.12 FPS and 6.21 
ms/image latency. 

In conclusion, based on accuracy and performance metrics, YOLOv11 is the most effective 
architecture for aircraft detection in high-resolution remote sensing imagery. However, YOLOv10 
and YOLOv8 also yielded competitive results, and due to their widespread adoption and the 
availability of extensive modifications and enhancements made by other researchers, these models 
may provide practical benefits in scenarios where adaptability and extensibility are prioritized. 

6. Conclusions 

This study conducted a systematic comparative evaluation of four recent YOLO architectures 
(YOLOv8 through YOLOv11) to identify the most effective solution for aircraft detection in high-
resolution satellite imagery. To enhance detection performance under challenging visual conditions, 
the proposed methodology incorporated a preprocessing stage combining histogram equalization 
and bilateral filtering. This approach was specifically designed to improve global contrast and 
suppress background noise while preserving critical edge details, thereby enhancing the quality of 
the input data provided to the detection models. 

This study conducted a systematic comparative evaluation of four recent YOLO architectures 
(YOLOv8 through YOLOv11) to identify the most effective solution for aircraft detection in high-
resolution satellite imagery. To enhance detection performance under challenging visual conditions, 
the proposed methodology incorporated a preprocessing stage combining histogram equalization 
and bilateral filtering. This approach was specifically designed to improve global contrast and 
suppress background noise while preserving critical edge details, thereby enhancing the quality of 
the input data provided to the detection models. The effectiveness of this preprocessing strategy was 
validated through a comparative analysis of model performance on original versus preprocessed 
datasets. Notably, it resulted in a substantial reduction in the false negative rate—from 19.5% to 3.2% 
at a confidence threshold of 0.75—demonstrating its significant contribution to improved object 



visibility in low-contrast or cluttered scenes. Among the evaluated models, YOLOv11 demonstrated 
the best overall performance. It achieved the highest Precision (0.993), the second-highest Recall 
(0.9858), and the best mAP50-95 (0.7866) score, reflecting strong performance in both localization 
and classification tasks. Furthermore, with a frame rate of 88.12 FPS and latency of 6.21 ms/image, 
YOLOv11 meets the requirements for real-time inference, making it highly suitable for operational 
use. The results confirm that integrating a preprocessing stage with the YOLOv11 architecture 
provides a robust and efficient framework for accurate aircraft detection in high-resolution aerial 
imagery, particularly under suboptimal imaging conditions. 
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