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Abstract 
A solution to an important scientific and practical problem is presented optimisation of maritime 
transport development management under conditions of multicriteria and uncertainty of input 
information. The paper presents a methodology for selecting optimal diagnostic and operational 
parameters under multicriteriality conditions and input information uncertainty. The novelty of the 
methodology is the compilation of an efficiency matrix, the rows of which are represented by statistical 
characteristics of vibration signals, columns by criteria of statistical solutions of Laplace, Wald, Hurwitz, 
additive, multiplicative and additive multiplicative convolutions, and its elements by practical results. 
Three cornerstones of the proposed methodology implementation that play a decisive role in the 
development of marine transport technologies are considered. The first is optimization of diagnostic 
parameters during operation of marine plain bearings under variable loads, selection of the optimal one. 
The second is selection of the optimal formulation for construction of port infrastructure facilities with 
optimization of physical, mechanical and thermodynamic properties of materials. The third is 
optimization of transport logistics parameters under uncertainty and unpredictability of route conditions 
at transitions through global transport corridors. The following features of the main characteristics of the 
analyzed information were used as optimization parameters: monotony, rate of change, sensitivity, 
deviation from adaptability, energy. Each discrete characteristic was approximated by a nonlinear 
function in the form of a cubic spline in the pre-destruction section. Optimization of the presented tasks 
makes it possible to manage diagnostic information under uncertainty and risk. 
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1. Introduction 

The active development of world trade is characterized by the emergence of new forms of 
interaction – global transport systems and the emergence of global logistics initiatives. The process 
of globalization is characterized by high complexity and nonlinearity of the configuration of 
logistics systems. The specifics of transportation require a constant exchange of information. The 
functioning of marine transport logistics and transportation is carried out in complex conditions of 
the external environment and multicriteriality and uncertainty of input information. The nature of 
such uncertainty is that the optimization parameters are unclear. Only their external 
manifestations are recorded, and making control decisions under risk conditions is necessary. 
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Normal operation of marine power plants (MPP) depends on the correct functioning of their main 
elements: cylinder-piston group, fuel equipment, gas turbochargers, bearings, etc. The main task of 
identifying and determining the residual life of vehicles during operation is to monitor changes in 
the mechanical properties of materials with the accumulation of damage and to determine the 
parameters of precursors of the occurrence of information signals during equipment destruction. 
Vibration diagnostics is the most effective method for determining the technical condition of 
various rotor-type mechanisms. In diagnostic analytical models, monitoring the condition of 
bearings becomes possible when a database and modern expert diagnostic systems use complex 
algorithms for processing and filtering signals. When monitoring, it is necessary to use 
mathematical models to ensure the accuracy of calculations of the resource of diagnostic objects 
and to establish the date of repair based on the condition of the object. Vibration signals are 
multicomponent, i.e. they are a finite additive set of multi-scale components localized by frequency 
bands of different types of vibrations. Optimization of the management of the development of 
marine transport in conditions of multicriteriality and uncertainty of input information is one of 
the unsolved problems of information theory, solid state mechanics, and physical acoustics. 

The aim work is to develop intelligent maritime transport management systems, new 
approaches to assessing the diagnostic and operational parameters of transportation. 

2. Literature review 

In [1-4], computational algorithms for vibration signal parameters estimated in the frequency 
domain are presented, which characterize potentially dangerous phenomena based on Fourier 
transforms. It is noted that vibration signals of the equipment in operation are subject to the 
influence of complex and variable operating conditions and can be estimated considering the 
frequency-time analysis. 

In [5,6], a mechanism for multimode sampling of vibration signals is presented. The presence of 
equipment malfunctions can be considered as a non-stationary signal, the propagation of which in 
[7] is considered using the Markov model. It is noted that the presented methodologies allow for 
finding the points of initial degradation of the equipment condition earlier. Extraction of features 
and characteristics of rolling bearing vibration signals based on combining and screening 
multiparameter information is described in [8]. The method uses wavelet packet decomposition of 
the rolling bearing vibration signal to combine the asymmetry, kurtosis and permutation values to 
identify information about the nature of the fault. Similar works on merging data from contrast 
learning [9], statistical and nonlinear signal processing methods [10] and forecasting the condition 
of bearings using the principal component method [11] use the correlation of signals from several 
sources to monitor mechanical equipment. 

The [12-15] section presents multifunctional diagnostics of navigation equipment, while the 
[16-19] section presents innovative transformations. 

The presented analysis of publications confirmed the topic's relevance and showed the direction 
of research associated with the search for new information-diagnostic and operational parameters. 

3. Materials and methods 

The materials used were the effectiveness of diagnostics and monitoring of the equipment in 
operation. The methods used were multicriterial analysis, game theory and statistical decisions. 

4. Methodology 

The effectiveness of monitoring directly depends on the rate of defect development and can be 
determined by optimization parameters based on the change in the trajectory of the main 
diagnostic parameter. 



These parameters can be used as rows of the efficiency matrix. The efficiency matrix R has the 
form: 
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where q1…qi – vibration signal characteristics, 

 Π1…Πj – optimization parameters, 
 i – line number, 
 j – column number. 
Relative deviation yij  j-th feature from the optimal value is determined as follows. 
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As cj it is necessary to choose the best values of the analyzed parameters from the point of view of 
the problem being solved - these can be the maximum or minimum from the experimental sample. 
With this approach, formula (2) will convert dimensional quantities into relative ones within the 
scale (0.1). However, with such a choice cj there will necessarily be observed elements of matrix (1) 
coinciding with the value cj, which will lead to yij=0. When using additive convolution, this leads 
to the corresponding feature falling out of the overall assessment of the object, and when using 
multiplicative convolution, to its zeroing. One way to eliminate such situations is to expand the 
upper (for the maximum) or lower (for the minimum) limit of each feature cj in the same 
percentage ratio. Below, the maximum (minimum) values of each of the analyzed parameters cj 

were increased (decreased) by 1%. 
The criteria of statistical decision theory can be used as columns of the efficiency matrix (Table 

1). 
In the presented formulas of Table 1  – pessimism index, which in conventional calculations is 

taken to be equal to 0.5, j – weighting coefficient of the j-th optimization parameter. 
The main stages of constructing a multi-criteria approach to selecting optimal diagnostic 

characteristics for monitoring ship bearings are working with quantitative experimental 
information, mathematical calculations, storing and exchanging information, and interpreting the 
results. 

Table 1 
Criteria of statistical decision theory 

Optimization 
criterion name 
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5. Experiment 

The measurements are taken on the bearing unit housing, namely in its lower part, since the loads 
on the unit are maximum here. The signals from the sensors can be digitized and recorded for 
trend analysis. An accelerometer is used to record vibration levels. A vibration signal lasting 6 s 
was received daily for 50 days in a row. A bearing malfunction occurred, which led to its failure. 

6. Results and discussion 

During post-processing, statistical characteristics of vibration signals in the time and frequency 
domains were determined. In the time domain, 11 statistical characteristics were determined: mean 
value (Mean), standard deviation (Std), skewness, excess (Kurtosis), full swing of oscillations 
(Peak2Peak), root mean square (RMS), crest factor (CrestFactor), shape factor (ShapeFactor), 
impulse factor (ImpulseFactor), marginal factor (MarginFactor), energy (Energy). In the frequency 
domain, 4 statistical characteristics were determined: mean spectral value (SKMean), standard 
spectral deviation (SKStd), spectral skewness (SKSkewness) and spectral excess (SKKurtosis). All of 
the listed statistical characteristics of vibration signals can serve as potential indicators of bearing 
condition degradation (Fig. 1). The filtering and smoothing procedure was applied to the extracted 
statistical characteristics. 
In order to determine the most optimal characteristic for monitoring the condition of a sliding 
bearing, a multi-criteria optimization was carried out using five parameters with different 
weighting factors : 

1. monotony ( = 0.25) 
2. sensitivity ( = 0.25) 
3. rate of linear change ( = 0.20) 
4. deviation from additivity ( = 0.15) 
5. area under the curve ( = 0.15). 

To quantitatively assess the monotonicity of statistical characteristics, the formula was used 



 (3) 

where n – number of measurement points, in our case n = 50. m – the number of controlled 
samples, in our case m = 1,  – i-th characteristic measured on j-th sample, 

. 

 
Figure 1: Evolution of dimensionless statistical characteristics of vibration signals during 
operation of a plain bearing  



To determine the remaining optimization parameters, each discrete statistical characteristic of 
the vibration signal was approximated by a continuous nonlinear function f1 in the form of a cubic 
spline, a linear function f2 obtained by the least squares method, and a linear function f3 on the final 
pre-destruction interval of 40-50 days, also obtained by the least squares method. Fig. 2 shows an 
example of such approximations for excess. The choice of a linear trend for functions f2 and f3 is 
explained by its greatest optimality for monitoring plain bearings. 

After the approximations were carried out, the corresponding optimization parameters were 
determined as follows: 

Sensitivity 

dt
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Figure 2: Approximation of the statistical characteristic of the vibration signal: f1 is a continuous 
nonlinear function in the form of a cubic spline, f2 is a continuous linear function, f3 is a continuous 
linear function in the pre-destruction zone, the dots show the experimental discrete values of the 
statistical characteristic 

The results of calculating the optimization parameters for each statistical characteristic of vibration 
signals are presented in Table 2. 



Table 2.  
Values of optimization parameters for statistical characteristics of vibration signals 

 monotone sensitivity 
rate of 
linear 

change 

deviation 
from 

additivity 

area under 
the curve 

Mean (Mean) 0.1600 0.0159 0.0015 0.4103 46.6570 
Standard deviation (Std) 0.3600 0.0416 0.0319 0.9250 243.3900 
Skewness (Skewness) 0.2600 0.0001 0.0002 0.2798 0.0219 
Kurtosis (Kurtosis) 0.5800 0.0567 0.0286 0.9152 167.6600 
Peak2peak (Peak2Peak) 0.4650 0.9143 0.8115 0.9431 2788.1000 
Root mean square (RMS) 0.1600 0.0387 0.0313 0.9220 246.5500 
Crest factor (crestfactor) 0.3600 0.0289 0.0392 0.9389 280.7100 
Shape factor (shapefactor) 0.5800 0.0020 0.0009 0.8700 62.1400 
Impulse factor (impulsefactor) 0.3600 0.0503 0.0558 0.9408 356.5100 
Marginal factor (marginfactor) 0.2600 0.0023 0.0042 0.6639 90.0130 
Energy (Energy) 0.1600 0.0282 0.0190 0.9132 73.6190 
Mean spectral value (skmean) 0.1600 0.0064 0.0023 0.9255 1.8038 
Standard spectral deviation (skstd) 0.3600 0.0157 0.0059 0.9239 5.5387 
Spectral skewness (skskewness) 0.2600 0.0099 0.0840 0.9197 97.7310 
Spectral kurtosis (skkurtosis) 0.0450 0.0986 0.1847 0.8270 531.9900 
 
Relative deviations calculated using formula (2) yij parameters of statistical characteristics of 
vibration signals from the optimal value, as well as the values of convolutions and criteria are 
presented in Table 3. 

For a final conclusion regarding the optimal statistical characteristic for monitoring, it is 
necessary to take into account the coincidences in different generalizing functions, the degree of 
adequacy of each generalizing function to the problem being solved. The analysis of the results 
presented in Table 4 shows that the additive convolution, multiplicative convolution, additional 
multiplicative convolution, Laplace and Wald criteria clearly indicate the peak factor (Peak2Peak) 
as the most optimal characteristic for monitoring the state of a sliding bearing. 

The most important characteristics of monitoring are: 

 continuity and stability of indicators and parameters. 
 frequency of receiving information, 
 processing and aggregation of collected information, 
 integration of the monitoring function into the system without emergency operation of the 

equipment. 

Vibration monitoring of plain bearings of power plants makes it possible to know their 
condition at any given time and to determine possible problems of further operation in advance. 
The advantages of the considered methodology are the possibility of detecting hidden defects, 
obtaining information about the condition of equipment located in hard-to-reach places, 
monitoring and obtaining information about a defect at the stage of its origin, reducing the risk of 
emergency situations due to untimely detection of defects. In addition, it reduces the time for 
scheduled diagnostics and repairs while increasing the service life of the equipment. The 
introduction of a vibration diagnostics system increases the reliability and trouble-free operation of 
the equipment, creates the ability to predict the condition and plan routine maintenance. 



Table 3 
Matrix of dimensionless values of optimization parameters of statistical characteristics of vibration 
signals, as well as values of convolutions and criteria 



 

a m
s 

m
d 

Mean 0.787 0.982 0.998 0.806 0.983 0.787 0.998 0.910 0.905 0.636 

Std 0.417 0.955 0.961 0.040 0.913 0.040 0.961 0.678 0.481 0.527 

Skewness 0.602 1.000 1.000 1.000 1.000 0.602 1.000 0.900 0.881 0.631 

Kurtosis 0.010 0.938 0.965 0.055 0.940 0.010 0.965 0.579 0.201 0.475 

Peak2Peak 0.223 0.009 0.009 0.014 0.009 0.009 0.223 0.063 0.022 0.063 

RMS 0.787 0.958 0.962 0.045 0.912 0.045 0.962 0.772 0.573 0.577 

CrestFactor 0.417 0.968 0.952 0.020 0.900 0.020 0.968 0.675 0.433 0.526 

ShapeFactor 0.010 0.997 0.999 0.122 0.977 0.010 0.999 0.617 0.233 0.498 

ImpulseFactor 0.417 0.945 0.932 0.017 0.873 0.017 0.945 0.660 0.417 0.517 

MarginFactor 0.602 0.997 0.995 0.429 0.968 0.429 0.997 0.808 0.770 0.591 

Energy 0.787 0.969 0.977 0.058 0.973 0.058 0.977 0.789 0.605 0.585 

SKMean 0.787 0.993 0.997 0.040 0.999 0.040 0.999 0.800 0.580 0.591 

SKStd 0.417 0.983 0.993 0.042 0.998 0.042 0.998 0.704 0.497 0.542 

SKSkewness 0.602 0.989 0.897 0.048 0.965 0.048 0.989 0.729 0.543 0.554 

SKKurtosis 1.000 0.893 0.774 0.186 0.811 0.186 1.000 0.777 0.695 0.579 

  Vald Laplas Bayes       
  0.223 0.009 0.504       

 
Another practical example of the developed methodology for optimizing the management of 

maritime transport in the context of multicriteriality and uncertainty of input information is the 
use of multicriterial analysis in the study of thermodynamic processes in ship repair and transport 
infrastructure [20, 21]. Maritime transport logistics includes not only the processes of cargo 
movement, but also the infrastructure involved: roads, warehouses, loading and unloading 
terminals, berth walls, mooring devices, landing stages and engineering structures. Together, they 
form a single mechanism for carrying out transportation. This paper solves the problem of finding 
a recipe for concrete structures for maritime transport infrastructure a multi-criteria analysis 
system for determining the main characteristics of concrete mixtures for ship repair and transport 
infrastructure in real time has been proposed. Its advantages are scalability and adaptability to 
workloads. The computational basis for the calculations was the digitalization of the technology for 
research and analysis of physical and mechanical properties of concrete mixtures. An algorithm for 
multi-criteria analysis in the study of thermodynamic processes in ship repair has been developed. 
The presented system for applying multi-criteria analysis in the study of thermodynamic processes 
in ship repair and transport infrastructure is a set of statistical expert information, in which the 
qualitative weakly structured side is determined through the weight content of the analyzed 
thermodynamic properties subject to expert assessment, and criterion methods are used to obtain a 
final conclusion. 

The third practical example of optimization of management decisions in conditions of multi-
criteriality and uncertainty of input information is the solution of problems of transport logistics 
aimed at ensuring transportation within the established timeframe with fixed costs. Reasons for 
deviations from the agreed modes of transportation: 



 weather conditions 
 equipment failures 
 operational factors 
 organizational factors 

The optimization parameters of sea transportation are: 

1. vessel loading 
2. delivery duration 
3. transit speed 
4. development of optimal routes taking into account the specifics of cargo 
5. easonal weather conditions 

Conclusions 

1. Optimisation of sea transport development management under multicriteria conditions and 
uncertainty of input information is used in constructing a diagnostic method. A methodology has 
been developed; optimisation parameters have been proposed and studied in detail based on 
changing the trajectory of the main diagnostic feature when it approaches the state of degradation. 
The creation of vibration diagnostic methods involves the initial construction of a physical model, 
followed by diagnostic models, which use deterministic and probabilistic methods. In diagnostic 
analytical models, monitoring the condition of bearings becomes possible when a database and 
modern expert diagnostic systems use complex algorithms for processing and filtering signals. The 
monitoring efficiency depends on the rate of defect development and is determined by optimisation 
parameters based on changing the trajectory of the main diagnostic parameter.  
2. The requirements for using the developed multicriteria analysis methodology to optimise the 
management of sea transport development under multicriteria conditions and the uncertainty of 
input information are formulated and used to construct a diagnostic method. The method of 
developing the parameters of goal functions is based on a rich criterion analysis with the vitalistic 
criteria of Laplace, Hurwitz, and Wald, emphasising the successive vigour and finding of 
experimental values in the form of priority development of goals. The use of multicriteria analysis 
in modelling the parameters of the objective function for ship repair and transport infrastructure 
has demonstrated the advantage of digitalisation of technologies in the analysis of the performance 
of concrete systems, where the final result best combines the results of experimental studies and 
their mathematical operations.  
3. The areas of application of the developed multicriteria analysis methodology are determined. As 
a prospect for further research, the use of multicriteria analysis in optimising the parameters of 
maritime transport logistics is proposed. Taking into account the variations and justification of the 
ranges of change and the reasons for the need to optimise these values, the transportation 
parameters are determined. Using this information makes it possible to compile an efficiency 
matrix and perform the corresponding calculations. 
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