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Abstract 
The article investigates the problem of forming a portable cluster structure in the latent space of language 
representations without using annotated data, which is especially relevant for zero-shot classification tasks, 
low-resource language processing, and generalization to new domains. Based on a critical review of modern 
approaches to unsupervised cluster learning, a loss function is proposed that combines global entropy 
regularization with scaling of the contribution of examples depending on the level of model confidence. 
The value of the scaling parameter is determined automatically based on the local decrease in the entropy 
of the cluster distribution, which serves as an indicator of the isolation of a language segment in the latent 
space. Such a mechanism makes it possible to suppress the contribution of latently unstable examples 
without removing them, ensuring structural adaptation of the cluster topology in new domains without 
retraining. Experimental results on GlobalPhone, CommonVoice and unseen-domain Ukrainian Speech 
Corpus demonstrated a reduction in average cluster entropy to 0.88, suppression of over 60% of unstable 
segments and an increase in cluster structure consistency by 19% in zero-shot mode. The proposed approach 
provides stable and adaptive clustering in the absence of annotations, in particular in cold start scenarios 
and rapid structuring of speech data in new environments. 
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1. Introduction 

One of the current problems of modern computational linguistics is the formation of stable and 
structured clusters in the latent space of language representations, in particular, such as acoustic 
prototypes or pseudo-phonemes, which is critically important for the tasks of automatic speech 
analysis in the absence of labels. This task underlies a wide range of scenarios, including zero-shot 
classification at the level of speech segments [1, 2], the transfer of acoustic models between languages 
or domains with significant differences in style, diction or acoustic conditions [3], the construction 
of pseudo-phonemic inventories [4] and the structuring of speech corpora for low-resource 
languages [5, 6]. Such tasks arise, for example, in the construction of speech recognition systems for 
Arabic dialects, the transliteration of names in multilingual chatbots, the clustering of sounds in 
audio data from field studies of indigenous languages or the filtering of noisy speech fragments in 
media content. In the context of Ukraine, this also has applied significance: in particular, in the 
creation of automated speech processing systems for Western Ukrainian dialects, processing audio 
data from social networks and public speeches in wartime conditions, where the recording quality is 
unstable, or in the formation of a basic cluster structure for building language support for the 
Crimean Tatar and Gagauz languages, which are underrepresented in the digital environment. 
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In such contexts, there is a need for models that can form an ordered latent structure without 
external labels and with minimal intervention. Although self-supervised learning and contrastive 
methods have given significant impetus to the development of representations in computational 
linguistics, most of them are either based on global heuristics or do not take into account local 
variability in the confidence of the model. In particular, common approaches do not include 
mechanisms that would allow taking into account the instability of individual examples when 
calculating losses and are not focused on ensuring the portability of the cluster structure in new 
domains. It remains insufficiently studied how global entropy regulation can be combined with local 
adaptation without external support, especially in conditions of substantial domain change. The need 
for such approaches is especially acute in the field of automatic processing of low-resource 
languages, where adaptation to new language environments must occur without prior retraining and 
without relying on linguistic annotations. The lack of established methods that combine entropic 
compaction of cluster structure with dynamic latent control at the level of individual segments 
creates a significant scientific gap. This gap determines the feasibility of research aimed at the 
systematic study of loss functions capable of implementing self-regulating adaptation in clustering 
problems of computational linguistics. 

One of the key challenges in the clustering of unlabelled language representations is the 
formation of a latent space that is simultaneously structured, stable, and transferable to new domains. 
In response to this problem, several research directions have emerged in computational linguistics 
and machine learning, involving different approaches to organizing the internal space of a model 
without external control: contrastive learning, entropy regularization, pseudo-labelling, prototype-
based learning, curriculum learning, and confidence-based loss scaling. Each of these approaches has 
its own motivation, application mechanisms, and certain limitations, overcoming which is the basis 
for further research. The following is a critical review of the main of these strategies, taking into 
account their potential and vulnerabilities, which directly determine the need for new solutions. 

Contrastive learning [7, 8] involves organizing the latent space by training on positive and 
negative pairs of representations. The model learns to reduce the distance between examples that 
are considered similar (for example, augmented versions of the same speech fragment) while 
increasing the distance between examples from different sources. This approach is the basis of many 
modern self-supervised systems, in particular SimCLR [9], Wav2Vec 2.0 [10] and HuBERT [11], 
which have shown high efficiency in feature detection tasks without annotations. In the context of 
the problem of constructing a portable cluster structure without labels, contrastive learning allows 
you to create a well-organized representation space that distinguishes categories. Its application in 
speech processing enables you to cluster segments according to their acoustic similarity without 
being tied to phonemic labels. The main advantage of this approach is the ability to form 
discriminative representations without redundant hyperparameters or the need for annotation. 
However, contrastive learning usually operates with the global structure of the space and does not 
take into account local latent uncertainty. All examples lose or gain the same contribution to the loss 
function, regardless of their stability or position with respect to the prototypes. In the case of noisy 
or unpredictable data, this can lead to a violation of cluster integrity since the model does not have 
a built-in mechanism for suppressing dubious examples. This drawback is one of the key entry points 
for justifying the need for adaptive loss scaling, implemented in our study through a mechanism 
𝛼(𝑟) that allows local reduction of the influence of latently unstable fragments without rigidly 
excluding them. 

Entropy regularization [12, 13] involves adding a special term to the loss function, which is aimed 
at reducing the entropy in the model's output distributions. The main idea is that the model should 
strive for "decisive" (low-entropy) predictions, even in the absence of labels. One of the most famous 
classical approaches is entropy minimization, where entropy minimization is used to strengthen the 
determinism of the classifier in semi-controlled conditions. In speech processing, similar techniques 
are used, for example, to order the discretization spaces in models such as HuBERT or APC 
(autoregressive predictive coding) [14]. In the context of the problem of constructing a portable 
cluster structure, this approach allows for reducing excessive uncertainty in relation to prototypes 



or clusters, forming a clearer internal structure in the model. In practice, this means that examples 
with lower entropy will have an advantage in forming centroids or strengthening the boundaries 
between clusters. The main advantage of this approach is its universality and simplicity: the entropy 
term is easily integrated into most loss functions, and its minimization often contributes to 
improving cluster integrity. At the same time, this approach has a significant limitation - it acts 
equally on all examples, regardless of whether their uncertainty is a consequence of noise, mixing 
or latent uninformativeness. The lack of local control means that the model can artificially reduce 
entropy, even for examples that do not have an explicit cluster nature, thereby distorting the 
structure of the space. 

Pseudolabeling [15, 16] is a strategy in which the model itself generates labels for the raw data 
based on its predictions. These labels are then considered "conditionally correct", and the model is 
trained on them, usually in a supervised manner. This approach is widely used in semi-supervised 
learning, for example, in FixMatch [17] or Noisy Student [18] methods. In the field of speech 
processing, pseudolabeling is used, in particular, in the clustering phases of models such as HuBERT 
or TERA, where the first passes of clustering generate "soft targets", which are then used as the basis 
for training subsequent layers. In the task of building a portable cluster structure, pseudo-labeling 
allows the model to refine the classification of input examples step by step, focusing on the most 
confident predictions. It will enable it to gradually "correct" the unstructuredness of the latent space 
and bring it closer to a more ordered form. Among the advantages of this approach are its flexibility, 
ability to accumulate knowledge, and support for gradual self-organization even in the absence of 
external annotations. However, it also has significant drawbacks. First, pseudo-labeling usually 
requires a hard confidence threshold, below which examples are not used, which means a large 
amount of data is lost. Second, this approach lacks a built-in mechanism for soft control over the 
contribution - an example is either accepted for training in full or rejected. Such a binary nature 
makes the model sensitive to errors in the early stages and does not allow for flexible suppression of 
the influence of dubious segments. 

Prototype learning [19] involves organizing the latent space around a fixed or dynamically 
updated set of centres – the so-called prototypes, which act as representative points for clusters or 
classes. In this approach, each example in the projection space approaches one of these prototypes, 
and the loss function itself usually optimizes the distance to the nearest centre. Modern 
implementations include [20] DeepCluster, SwAV, DINO, and in speech processing – HuBERT, 
DeCoAR [21] and WavLM [22], where clusters obtained via k-means or GMM serve as internal labels 
for subsequent training iterations. In the context of building a transferable cluster structure, these 
approaches have a significant advantage: they encourage the model to form compact regions around 
the centres, which is well consistent with the intuition of the latent space as a set of semantically 
similar units. In addition, the cluster structure becomes more interpretable and easily portable since 
prototypes can be used as a basis for classification in a zero-shot mode. However, even with these 
advantages, classical prototype learning has its limitations. First, all examples participate in the 
formation of losses with the same weight, which means that it is impossible to ignore or suppress 
latently unreliable examples. Second, the updating of prototypes is usually performed without taking 
into account the confidence of belonging to the cluster, which can lead to the displacement of the 
centres under the influence of noisy or poorly classified points. Many implementations also lack the 
means to isolate cases with latent ambiguity and, therefore, do not provide adaptive selectivity. 

Curriculum learning [23, 24] or self-paced learning [25] involves the model initially focusing on 
"simple" examples, gradually moving to more complex ones. The idea is that an orderly input of 
information – from easy to difficult – contributes to better generalization and stability of the model. 
This principle has been applied in various contexts, from computer vision to NLP [26, 27], as well as 
in clustering, where complexity can be determined, for example, by the distance to the prototype, 
the entropy of the output distribution or the stability of the prediction. In language tasks, such 
approaches have been used in adaptive variations of APC or in training multilingual acoustic models. 
In the context of building a portable cluster structure, these approaches have a strong intuitive 
motivation: they allow the model to form the backbone of the cluster topology on "reliable" examples 



before encountering latently ambiguous zones. Thanks to control over the order of inclusion of 
examples in training, it is possible to avoid premature re-adaptation or deformation of the space. 
However, the implementation of curriculum/self-paced learning has significant practical drawbacks. 
The most important one is the need for an external assessment of the "complexity" of the example, 
which often involves the use of an auxiliary module, manual sorting, or additional hyperparameters. 
In addition, complexity in a multidimensional latent space is a fuzzy and dynamic concept: an 
example that is complex at the first stage may become simple later, and vice versa. Ше makes it 
challenging to integrate such approaches into unlabeled clustered learning. 

As the above review shows, none of the existing approaches to building an unsupervised cluster 
structure provides a full-fledged combination of global structuring of the latent space with local 
adaptive selectivity at the level of individual examples. Contrastive learning and prototype methods 
allow for forming an ordered space but do not take into account uncertainty in predictions and are 
unable to reduce the impact of latently unstable data. Entropy regularization provides global control 
over fuzziness but operates without taking into account the context or nature of a specific example. 
Pseudolabeling and self-paced learning provide selectivity but require hard thresholds or external 
intervention, which limits their flexibility and portability. At the same time, methods that scale losses 
based on model confidence remain underexplored, especially in the field of speech processing. This 
combined drawback - the lack of an internally adaptive, continuous mechanism for controlling the 
contribution of examples to the loss function while maintaining cluster integrity - determines the 
relevance of this study. Exploring the possibility of simultaneously implementing entropy 
compaction and local latent scaling responds to the scientific community's request for creating loss 
functions capable of maintaining robustness, selectivity, and portability in a clustered, label-free 
space. 

The object of the study is the process of forming an adaptive cluster structure in the latent space 
of language representations in the absence of explicit annotations, taking into account the local 
confidence of the model and the need to ensure the portability of this structure to new domains 
without additional training. 

The subject of the study is a set of approaches to constructing loss functions for unsupervised 
learning, in particular, the methods of entropy regularization, prototype representation, 
pseudolabeling and latent-guided scaling, which ensure the adaptive formation of a cluster structure 
and its portability to new domains without the use of explicit annotations. 

The purpose of the study is the theoretical justification and experimental verification of the loss 
function for unsupervised cluster learning, which combines global entropy regularization and local 
scaling of losses based on latent confidence in order to ensure the structuredness, selectivity and 
portability of the cluster organization in the latent space of language representations. 

2. Models and methods 

2.1. Research Statement 

In the context of constructing a differentiated information loss function for neural network speech 
models under resource-constrained conditions, a formalized approach to processing variable acoustic 
realizations of phonemes is key. Given that the articulatory and acoustic realization of each phoneme 
is a stochastic function, dependent on both the individual characteristics of the speaker and the noise 
context, the cluster model of phonemes acquires fundamental importance. 

Let 𝐶 ∈ ℕ denote the total number of phoneme classes (clusters) that the system must identify or 
train. Each cluster 𝑐 ∈ {1,2, … , С} corresponds to a set of vectors 𝑅௖ = {𝑟௖௜ ∈ ℝ௡|𝑖 = 1, … , 𝐼௖}, where 
𝐼௖ ∈ ℕ is the number of available realizations of the 𝑐-th phoneme and 𝑟௖௜ is the feature vector for 
the 𝑖-th realization of this phoneme. Each vector 𝑟௖௜ represents an elementary speech unit obtained 
after preliminary speech processing (for example, spectral or LPC decoding). 

Each cluster 𝑅௖ is embedded in a latent space on which the information centre (prototype) 𝑟௖
∗ is 

defined, which minimizes the generalized Kullback–Leibler divergence with respect to all elements 



of the cluster: 𝑟௖
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

௭⃗∈ோ೎

∑ 𝐷௄௅
ூ೎
௜ୀଵ ൫𝑃௥⃗೎೔

‖𝑃௭⃗൯, where 𝑃௥⃗ denotes the estimate of the probability 

distribution for the feature vector 𝑟, which can be empirical or parametric (for example, a normal 
distribution with a covariance matrix estimated from a sample). Such minimization is implemented 
in the form of a loss function of the KL-Loss type in the process of optimizing the neural network. 

The input feature vector of the speech signal 𝑟 ∈ ℝ௡ obtained at the current processing step 
corresponds to one of the clusters 𝑅௩, where the index v is determined by the rule of least divergence: 
𝑣 = 𝑎𝑟𝑔 𝑚𝑖𝑛

௖∈{ଵ,…,஼}
𝐷௄௅൫𝑃௥⃗ฮ𝑃௥⃗೎

∗൯. Interpreting this procedure as soft metric learning, we get the 

opportunity to form a latent space in which heuristically defined phoneme prototypes allow us to 
implement a stable and differential comparison of speech signals based on information proximity. 

On the basis of the input, each phoneme is represented as an informationally consistent cluster 
of vectors 𝑅௖, and the problem of speech quality analysis is transformed into the issue of optimal 
classification distribution of elements of the space ℝ௡ by 𝐶 statistically justified centers {𝑟௖

∗}௖ୀଵ
஼ , with 

subsequent training in the statistical classification of signals by a teacher. 
To ensure a stable classification of phonemic representations in a differentiated speech processing 

model under resource-constrained conditions, it is advisable to formulate a criterion for assigning 
the current segment to one of the 𝐶 ∈ ℕ phonemic classes in terms of information discrepancy. It is 

assumed that the distribution of feature vectors 𝑟௖௜ ∈ ℝ௡, which form the cluster 𝑅௖ = {𝑟௖௜}௜ୀଵ
ூ೎ , is 

approximated by a multivariate normal law with zero mean and covariance matrix Κ௖௜ ∈ ℝ௡×௡𝑥̈. 
This approach allows us to describe the stochastic nature of speech, which is key in resource-
constrained conditions. 

The current input vector 𝑟 ∈ ℝ௡, evaluated within the local window, belongs to one of the clusters 
𝑅௖ according to the generalized Kullback–Leibler divergence criterion between the empirical 
distribution 𝑃෠௥⃗ ∼ Ν൫0, Κ෡൯ and the prototype distribution 𝑃௥⃗೎೔

∼ Ν(0, Κ௖௜). The expression gives the 
corresponding divergence: 

𝜃௖(𝑟) =
ଵ

ଶ௡
൤tr ቀ

Κ෡

Κೝሬሬ⃗
ቁ − 𝑙𝑜𝑔𝑑𝑒𝑡 ቀ

Κ෡

Κೝሬሬ⃗
ቁ − 𝑛൨, (1) 

where Κ෡ is the estimate of the autocovariance matrix for 𝑟, calculated using a fixed-length sliding 
window, and tr(⋅), 𝑑𝑒𝑡(⋅) are the trace and determinant, respectively. In this definition, expression 
(1) is fully differentiable and is easily embedded in gradient deep learning algorithms. 

Next, for each cluster 𝑅௖, a matrix of pairwise information discrepancies is formed: 

Θ௜௝
(௖)

= 𝜃൫𝑟௖௜, Κ௖௝൯ =
ଵ

ଶ௡
൤tr ൬

෡ஂ
೎೔

ஂ೎ೕ
൰ − 𝑙𝑜𝑔𝑑𝑒𝑡 ൬

෡ஂ
೎೔

ஂ೎ೕ
൰ − 𝑛൨, 𝑖 ≥ 1, 𝑗 ≤ 𝐼௖, (2) 

where Κ෡௖௜ is the empirical autocovariance matrix for the vector 𝑟௖௜, and Κ௖௝ is the covariance 

matrix of the corresponding realization 𝑟௖௝. The matrix Θ(௖) ∈ ℝூ೎×ூ೎  serves as the basis for 
determining the information centre of the corresponding cluster. 

The definition of the information prototype 𝑟௖
∗ ∈ 𝑅௖ is based on the minimization of the total 

divergence 

𝑟௖
∗ = 𝑟௖఑, 𝜅 = 𝑎𝑟𝑔 𝑚𝑖𝑛

௝∈{ଵ,…,ூ೎}
∑ Θ௜௝

(௖)ூ೎
௜ୀଵ . (3) 

That is, the implementation 𝑟௖఑ is chosen as the information centre, which is, on average, the 
closest to all other implementations in terms of the generalized divergence (2). It allows us to specify 
a phoneme representative that maintains the highest consistency with different implementations of 
this phoneme. 

Formulas (1)–(3) form a coherent information-theoretic basis for training a neural network model 
in the formulation of metric-based classification of speech signals. In combination with a training 
supervisor, these expressions allow us to perform preliminary training on labelled data with 
phonemic annotation, which can then be adapted to new conditions or speakers. 



2.2. Formalization of the information loss function for neural network clustering 
of speech features under resource-constrained conditions 

In the tasks of automatic speech modelling in a low-resource environment, it is critically important 
to ensure the ability of the system to independently detect the latent structure of phoneme-like units 
without prior annotation. In such cases, the neural network model should implement adaptive 
clustering of feature vectors with the possibility of gradually increasing the number of clusters as 
new data arrives. This approach is interpreted as a stochastic sequence of conditionally supervised 
tasks with a variable number of clusters - through the introduction of an information (𝐶 + 1)-
element as a structure for recursive updating of the classification space. 

Let the speech signal be represented as a discretized series of amplitudes 𝑅(𝑡) = {𝑟ଵ, 𝑟ଶ, … , 𝑟௅} ⊂

ℝ, segmented with a fixed time step 𝜏 ∈ [5,15] ms. Each segment of length 𝐿 ∈ ℕ is converted into 
a feature vector 𝑟 using, for example, LPC or MFCC decoding. 

Let us denote the first segment as 𝑟ଵ and initialize the cluster 𝑅ଵ = {𝑟ଵ} with the covariance matrix 

Κଵ
(ଵ)

= Κ෡ଵ, estimated as Κ෡ଵ =
ଵ

௅ିଵ
∑ (𝑟ଵ(𝑡) − Ε[𝑟ଵ])(𝑟ଵ(𝑡) − Ε[𝑟ଵ])்௅

௧ୀଵ , where Ε[𝑟ଵ] is the mean 

value of the vector 𝑟ଵ. The first cluster forms the prototype set, and the number of clusters is set as 
𝐶 = 1. 

Let 𝑟ଶ ∈ ℝ௡ be the next segment shifted in time by 𝜏. We calculate the generalized Kullback–
Leibler divergence (or its parametric variant) between its distribution and the first cluster: 

𝜃(𝑟ଶ, 𝑅ଵ) =
ଵ

ଶ௡
ቂtr ቀ

Κ෡మ

Κభ
ቁ − 𝑙𝑜𝑔𝑑𝑒𝑡 ቀ

Κ෡మ

Κభ
ቁ − 𝑛ቃ, (4) 

where Κଶ is the covariance matrix for 𝑟ଶ, which can be estimated as a learnable head or batch-
normalized calculation with a fixed window order. In practical scenarios, in particular, in high noise 
conditions, it is permissible to generalize (4) to α-divergences or Sinkhorn divergences to improve 
stability. 

The vector 𝑟ଶ is included in 𝑅ଵ if the inequality holds 

𝜃(𝑟ଶ, 𝑅ଵ) ≤ 𝜃଴, (5) 

where 𝜃଴ ∈ ℝା is a learnable threshold that can be implemented as a parameter that is optimized 
during training through sigmoidal relaxation. If (5) is not satisfied, a new cluster 𝑅ଶ = {𝑟ଶ} is created, 
and 𝐶 ← 𝐶 + 1. 

To ensure the reliability of clusters, regularization is introduced using the threshold 𝐿଴ ∈ ℕ, 
which sets the minimum allowable total duration of the cluster: 

|𝑅௖|𝜏 ≥ 𝐿଴. (6) 

Clusters that do not satisfy (6) are considered marginal and do not participate in the further 
construction of the phonetic database. Such heuristics are critical in low-resource conditions, for 
example, when creating an offline speech access system in the Ukrainian language in field or military 
conditions, where the reliability of clustering is critical. 

The adaptive procedure (4)–(6) provides online clustering of the speech stream with a dynamic 

number of clusters 𝐶∗ ≤ 𝐶 forming a structured set {𝑅௖}௖ୀଵ
஼∗

. This set represents the speaker's latent 
phoneme space. It serves as a basic prototype layer for the subsequent differentiated loss function - 
both in the form of information-theoretic and contrastive loss, oriented to preserving the separation 
of phonemes in the embedding spaces. 

In the developed system of online clustering of speech segments, it is crucial not only to identify 
structurally stable clusters but also to provide a normalized spectral representation that minimizes 
the influence of individual acoustic variations of the speaker. For this purpose, a modified version of 
autoregressive spectral normalization is used, adapted for the needs of differentiated learning in a 
neural network environment. The key element in this is the processing of each speech segment 
𝑟(𝑡) ∈ ℝ௡ as an implementation of a low-order stationary process, which is approximated by the 



autoregressive (AR) model 𝑟(𝑡) = ∑ 𝑎௞𝑟(𝑡 − 𝑘)௄
௞ୀଵ + 𝜀(𝑡), 𝑡 ∈ ℤା, where 𝐾 ∈ ℕ is the order of the 

model; {𝑎௞}௞ୀଵ
௄ ⊂ ℝ is a set of learnable AP coefficients; 𝜀(𝑡) is a residual noise vector. The 

constructed vector 𝑎⃗ = [𝑎ଵ, … , 𝑎௄]் serves as a latent feature representation of the speech segment 
and is invariant to the absolute energy and timbre structure of the signal. It can be used as an input 
to the clustering head of the model or as a component in self-supervised pretext tasks (e.g., temporal 
ordering or frame prediction). 

To estimate the spectral difference between the vector 𝑎⃗(௥) of the current segment and the 
prototype 𝑎⃗(௖) of cluster 𝑐, a normalized weight function is introduced: 

𝜃௖൫𝑎⃗(௥)൯ = ∑ ൤
ଵ

ଵାగ(௙)
൬

ଵ

௄
∑ ቀ𝑎௞

(௥)
− 𝑎௞

(௖)
ቁ

ଶ
௄
௞ୀଵ ൰൨ி

௙ୀଵ , 
(7) 

where 𝑓 ∈ {1, … , 𝐹} are frequency indices, and 𝜋(𝑓) is a spectral mask that determines the weight 
of each frequency channel. The mask 𝜋(𝑓) can be implemented as a fixed (Mel- or Bark-filtering) or 
as a learnable function adaptive to the speech domain, which allows the model to focus on 
perceptually relevant frequencies (for example, in the region of the first two formants). 

Note that in order to increase the sensitivity to atypical spectral deviations, expression (7) can be 
generalized in the form of an exponential divergence: 

𝜃௖൫𝑎⃗(௥)൯ = 𝑙𝑜𝑔 ቀ
ଵ

௄
∑ 𝑒𝑥𝑝 ቀ𝜆 ቚ𝑎௞

(௥)
− 𝑎௞

(௖)
ቚቁ௄

௞ୀଵ ቁ, (8) 

where 𝜆 ∈ ℝ is a sensitivity parameter that enhances the effect of large spectral deviations, the 
divergence (8) provides increased resolution with limited data and is used as an internal module in 
the context of margin-based loss functions. For example, it can be integrated into the contrastive loss 
(CL) as 

𝐿஼௅ = 𝑦𝜃௖ + (1 − 𝑦) 𝑚𝑎𝑥(0, 𝜇 − 𝜃௖), (9) 

where 𝑦 ∈ {0,1} is a binary cluster-correspondence feature, and 𝑘 ∈ ℝା is a hyperparameter 
margin that sets a threshold for distinguishing clusters in the latent space. 

Autoregressive spectral normalization provides effective invariance to loudness, timbre, and 
speaker voice parameters. It is achieved by smoothing out energy fluctuations induced by anatomical 
features of the speech tract, thereby preserving relevant phoneme dynamics. In resource-constrained 
scenarios, such as when developing ASR systems for the Ukrainian language based on field 
recordings, such invariance is critical to ensuring the generalizability of the model. Therefore, 
formulas (7)–(9) define a spectrally normalized divergence function that is fully differentiable, 
interpretable, and compatible with both supervised and self-supervised downstream-loss 
architectures. Vectors 𝑎⃗(௖) formed on the basis of these divergences form the basis for constructing 
an information-optimal phonetic database. 

In constructing a differentiated loss function for a neural network model of speech feature 
processing, an important step is to determine secondary clustering quality criteria that can serve as 
optimization meta-functions, regularizers, or latent structure coherence indicators. Of particular 
value in this context are information-theoretic metrics that describe the entropic organization of the 

set of clusters {𝑅௖}௖ୀଵ
஼∗

 obtained as a result of recursive clustering (see expressions (4)–(9)). 
The basic criterion is the empirical distribution of clusters: 

𝑃௖
|ோ೎|

∑ |ோೞ|಴∗
ೞసభ

, 𝑐 = {1, … , 𝐶∗}, (10) 

where |𝑅௖| is the number of speech segments that were assigned to cluster 𝑐 based on minimizing 

the selected divergences {(4), (7), (8)}. Thus, 𝑃 = [𝑃ଵ, … , 𝑃஼∗]் ∈ Δ஼∗ିଵ is a probability vector that 
is a dynamic variable in the classification architecture and directly depends on the parameters of the 
coding space. The Shannon entropy over the distribution (10) defines a generalized cluster 
differentiation metric: 



𝐻(𝑃) = − ∑ 𝑃௖ 𝑙𝑜𝑔 𝑃௖
஼∗

௖ୀଵ , (11) 

which reaches a maximum of 𝐻 𝑙𝑜𝑔 𝐶∗
௠௔௫ in the case of a completely uniform distribution. This 

situation may indicate excessive differentiation - the model does not detect any dominant structure, 
which is especially undesirable in low-resource conditions, where phonemes are presented with 
different frequencies. In variant implementations, it is allowed to replace (11) with parametric 
variants, in particular, the Rényi or Tsallis entropy, which allows controlling the sensitivity to rare 
clusters. 

To provide structural control over clustering, a normalized redundancy metric is introduced: 

Ω = 1 −
ு(௉)

௟௢௚ ஼∗, 
(12) 

which varies in the interval [0,1] and is interpreted as a structural concentration coefficient. Low 
values of Ω ≈ 0  indicate uniformity of the cluster space, indicating noisy or unstructured behaviour, 
while high values of Ω → 1 indicate a tendency to collapse into one or two dominant clusters. Thus, 
Ω balances between variability and over-aggregation. In practice, Ω is integrated into the primary 
loss function as a global entropy regularizer, regulating the complexity of the cluster distribution: 

𝐿ு = 𝐿஼௅ + 𝛽Ω, (13) 

where 𝛽 ∈ ℝା is a hyperparameter that determines the regularization weight. The construction 
(13) allows for the avoidance of the collapse of the coding space and the maintenance of the 
dissimilarity of features without renormalization at the level of each pair. The regularizer Ω controls 
both excessive uniformity and imbalance in favour of frequent clusters, which is especially critical 
for low-resource languages, such as Ukrainian, where available corpora are usually phonologically 
unbalanced. 

In general, formulas (10)–(13) form a single entropy-normalized criterion of clustering quality, 
which allows not only to evaluation the result of structuring the latent space but also to actively 
manage it within the gradient-oriented loss function. 

In the framework of constructing a full-fledged information loss function for a neural network 
model of language feature processing, it is necessary to take into account not only the global 
characteristics of the cluster space but also local confidence indicators for each input segment. For 
this purpose, a specialized function is introduced that allows us to estimate the relative certainty of 
the classifier's decision based on the contrast between the divergence to the nearest centre and the 
average divergence to the remaining clusters. Formally, if 𝜃с(𝑟) is the information or spectral 
divergence (defined according to {(4), (7), (8)}), and = 𝑎𝑟𝑔 𝑚𝑖𝑛

௖
𝜃௖(𝑟) is the cluster to which the 

input segment 𝑟 ∈ ℝ௡ is assigned, then the local classification confidence metric is defined as: 

Γ(𝑟) =
ଵ

஼∗ିଵ
∑

ఏ೎(௥⃗)

ఏೡ(௥⃗)

஼∗

௖ୀଵ,
௖ஷ௩

. (14) 

Expression (14) allows us to quantitatively assess the degree of dissimilarity: the lower the value 
of (14), the clearer the cluster boundary is observed for a given example. In practice, high values of 
this quantity indicate blurring, transient nature or the presence of noise artefacts that complicate 
classification. To take this information into account in a balanced manner during training, a 
sigmoidal function of the confidence scale is introduced, which forms the weight coefficient of the 
example based on the obtained level of classification uncertainty. Such a coefficient is given in the 
form: 

𝛼(𝑟) =
ଵ

൫ଵା௘௫௣൫ఊ(୻(௥⃗)ିఝ)൯൯
, 𝛾, 𝜑 ∈ ℝା. (15) 

The scalar multiplier (15) acts as a local regulator of the influence of the example on the overall 
loss function: at high confidence (15), it approaches unity, and at fuzzy clustering, it approaches zero. 
The parameter 𝜑 determines the critical level of uncertainty that separates "useful" examples from 
potentially noisy ones, and 𝛾 regulates the steepness of the transition between confidence zones. 



Based on these local dynamics, a final expression for the loss function is formed, which takes into 
account both the local weight of the example and the global entropy regularizer of the cluster space. 
The final function takes the form: 

𝐿௙௜௡ = 𝛼(𝑟)𝐿஼௅ + 𝛽Ω. (16) 

It is important to emphasize that, unlike function (13), which models global structural balance, 
function (16) is locally adaptive and provides flexible modulation of the influence of each specific 
example based on its position in the latent space. This approach allows the model to effectively 
suppress the influence of segments that are uncertain or marginal while maintaining the 
informativeness of clustering in the central zones. It is vital in resource-limited conditions, where 
processing may be accompanied by a high proportion of unpredictable acoustic variations, and the 
structure of the phoneme space may be incomplete or domain-dependent. The resulting loss function 
(16) provides adaptability, noise resistance, and structural coherence without the need for a rigid 
supervisor or a complete phoneme corpus. 

3. Results and Discussion 

In speech systems aimed at use in resource-constrained environments, in particular, in field or mobile 
applications of the Ukrainian language, traditional supervised methods quickly exhaust their 
potential. The high level of acoustic noise, the lack of annotated data, the unpredictability of speaker 
variations, and the domain instability of signals make it necessary to rethink the principles of 
clustering speech features. It is critical that the model not only processes the signal but also 
independently structures the latent feature space with an internally consistent organization while 
maintaining sensitivity to phoneme-like units without an external supervisor. In this context, this 
section is focused on empirically testing the effectiveness of the information-differentiated loss 
function, formalized in expression (16), as the architectural core of the clustering model for short 
speech segments. The uniqueness of this function lies in the combination of three complementary 
components: contrastive spectral divergence to ensure discriminability, entropy control Ω to balance 
the cluster space, and a local confidence scaling mechanism 𝛼(𝑟), which dynamically reduces the 
influence of border or artefact segments. Together, they form an adaptive loss function that provides 
not only consistent clustering but also interpretability of the structure, noise resistance, and 
transferability between speech domains. The study hypothesizes that such a composition of 
functional modules allows for the formation of a coherent latent structure capable of generalization, 
even in cases of complete absence of phonemic marking. It is expected that the trained model will be 
able not only to effectively structure signals within the corpus on which it was trained but also to 
maintain topological stability when transferred to new speech domains without further training or 
recalibration of prototypes. The effectiveness of this approach is considered not as a formal increase 
in accuracy but as an opportunity to create a new type of speech system - those that work in real-
time, without connection to external bases, with a critically low resource threshold. Such systems 
are relevant in the context of building Ukrainian-language voice access interfaces for military use, 
crisis response, or humanitarian support in areas with limited infrastructure. 

In situations where speech resources are limited in both volume and quality, the model must be 
trained in an unstable, domain-inhomogeneous speech stream. For this study, two contrasting 
Ukrainian-language audio corpora were selected. Ukrainian GlobalPhone represents voiceover 
speech in a controlled acoustic environment and serves as a conditional standard against which the 
model's ability to organize clustering is tested. In contrast, CommonVoice (uk) captures everyday 
amateur recordings with their inherent irregular noise, background distortion, and voiceover 
variability—that is, it simulates a typical low-resource scenario typical of field applications. 

Each signal is divided into overlapping windows of 25 ms duration with a step of 10 ms, which 
corresponds to the standard segmentation of speech at the microstructural level. For each window, 
a log-Mel spectrogram of dimension 64 is calculated. This type of feature was chosen because of its 
consistency with the requirements of the information-differentiated loss function: the spectrogram 



allows us to introduce parametric estimates of spectral discrepancy (reversals (7)–(9)) into the 
contrast matching module. Before the features enter the clustering part of the architecture, they 
undergo spectral normalization, implemented as a low-order AR filter. This operation suppresses the 
influence of timbre, loudness, and other speaker-dependent characteristics, leaving only those 
frequencies that are relevant from the point of view of phonemic differentiation. It is at this level 
that the local confidence mechanism 𝛼(𝑟) is introduced, which relies on normalized representations 
to assess the stability of the classification (expressions (14)–(15)). As a result, the model receives two 
streams of input data that differ in domain nature but are unified in terms of the processing 
procedure. It allows us to test not only the clustering itself but also the ability of the loss function 
(16) to preserve the structural logic within one corpus and transfer it to another - without 
supervision, retraining, or recalibration. Such a formulation allows us to evaluate the effectiveness 
of information adaptation not at the level of an artificial metric but as a fundamental cognitive 
strategy for structuring speech under constraints that correspond to real usage scenarios. 

The model takes as input a sequence of normalized log-Mel spectrograms, which are fed to a two-
layer BiLSTM encoder with 128 units. The use of a two-way recurrent structure is explained by the 
need to take into account the microcontext of the signal: the cluster affiliation of each segment is 
determined not in isolation but within the framework of a local dynamic template that reflects the 
natural nonlinearity of the phonetic stream. At the output of BiLSTM, a feature vector is formed, 
which passes through the learnable block of autoregressive spectral normalization. This block 
performs the function of smoothing acoustic variations caused by speaker features or distortions, 
which is especially important for field use scenarios. In the centre of the model is a learnable layer 
with cluster centres, the number of which is limited by the value С = 20. This decision is not dictated 
by convenience but is fundamental in the low-resource context: the model must learn to recognize a 
repeating structure without unlimited expansion of the cluster space. The centres are randomly 
initialized and adapted in the optimization process, which is guided by the loss function (16). Instead 
of classically calculating gradients based only on the error, here, the cumulative divergence (contrast, 
entropy and scale) between each example and the reference prototypes of the latent space is 
minimized. Unlike traditional models, where the loss function is an external means of error control, 
this architecture acts as an internal mechanism for structure formation. Each of its components is 
integrated at the parameter level: the contrastive divergence (7)–(9) is tied to learnable clusters, the 
entropy regularizer (10)–(13) models the distribution of examples, and the scaling factor (14)–(15) 
acts as an adaptive filtering of signals with low classification certainty. As a result, formula (16) 
becomes not just an optimization function but a rule for organizing the latent space that occurs inside 
the model itself. 

The model is trained using the Adam optimizer at a rate of 10ିଷ, a batch size of 64, and a horizon 
of 100 epochs. None of the elements are supported by supervision – clustering occurs in the absence 
of any annotation. It is not a limitation but a strategy: in conditions where language resources are 
limited, an external supervisor or resuscitation of models through retraining may be impossible. 

For qualitative diagnostics of the order of the latent representation space formed by the neural 
network during training, the t-SNE method was used to project multidimensional vectors into a two-
dimensional space. This visualization allows interpretation of the topology of the cluster space: the 
degree of compactness, the presence of overlaps, and the distance between segment groups. The 
visualizations were performed separately for the Ukrainian GlobalPhone (Fig. 1) and CommonVoice 
(uk) (Fig. 2) corpora with four configurations of the loss function: basic (contrastive), with the 
entropy regularizer Ω (expression (14)), with the scaling factor 𝛼(𝑟) (expression (15)), and also in the 
whole configuration that implements the loss function (16). 

Fig. 1 shows how different loss functions affect the formation of the latent space in the 
GlobalPhone corpus. Without regularization, the clusters are fuzzy and indistinct, while the addition 
of the entropy component Ω improves the segregation and the inclusion of 𝛼(𝑟) further strengthens 
the structure by suppressing fuzzy segments. The best clustering is observed with the combined use 



of Ω and 𝛼(𝑟), confirming the effectiveness of their interaction in forming an ordered, portable 
spatial topology. 

Figure 2 shows the corresponding projection for the CommonVoice (uk) corpus, which is 
representative of a noisy, low-resource environment. In the basic configuration, the clusters are 
almost indistinguishable. Adding Ω (14) slightly improves local cohesion. Noticeable structuring 
occurs only after including  𝛼(𝑟) (15), which is visually manifested as rarefaction zones between 
active fragments. The complete loss function (16) demonstrates the formation of stable latent kernels, 
even in the presence of variable and distorted segments. 

In general, the visualizations in Fig. 1, 2 clearly demonstrate that the complete loss function (16), 
defined in subsection 2.2, performs a reconfiguration of the latent space: instead of blurred and 
chaotic representations, the model forms isolated, semantically meaningful segment kernels. The 
visual detection of the properties is of key importance for the system to adapt to new conditions 
without retraining. 

 

Figure 1: t-SNE visualization of latent representations for Ukrainian GlobalPhone: comparison of 
four loss function options. 

The degree of order in the latent space is a critical indicator of clustering efficiency. This study is 
evaluated through the behaviour of the entropy component of the loss function - the quantity Ω, 
which captures the uniformity of the distribution of segments between cluster centres. The dynamics 



of Ω during the learning process reflect the extent to which the system is capable of self-structuring 
and, therefore, of stable generalization. 

Fig. 3 shows a graph of the change in Ω values over 100 training epochs for both corpora. The 
abscissa axis shows the epoch number, and the ordinate axis shows the normalized entropy value. 
Starting from approximately the 30th epoch, a transition to active restructuring of the cluster space 
is recorded in both corpora. After the 60th epoch, the curves reach a conditional plateau, which 
indicates stabilization of the latent structure. This stabilization is achieved not only by reducing the 
entropic diversity but also due to the synergistic action of the entropic regularizer and the adaptive 
scaling factor 𝛼(𝑟), which gradually suppresses the influence of unstable examples on the loss 
function. For the GlobalPhone corpus, which represents supervised voiceover speech, a gradual and 
stable decrease in entropy is observed. It indicates the ability of the loss function (16) to effectively 
organize the input space in the clean domain. In CommonVoice (uk), which contains amateur 
recordings with domain noise, Ω behaves fluctuatingly and with a pronounced inertial plateau. This 
behaviour indicates that the model not only tries to structure the input space but also actively filters 
out uncertainty through local scaling 𝛼(𝑟), reducing the impact of distorted fragments. 

 

Figure 2: t-SNE visualization of latent representations for CommonVoice (uk): impact of four loss 
function configurations. 



After training, the final distribution of segments between clusters was estimated using heat maps 
of the activation probabilities of cluster centres. Fig. 4 displays the normalized P values for both 
corpora (left – GlobalPhone, right – CommonVoice (uk)). The horizontal axis shows the cluster 
indices, the vertical axis – the corresponding domain. 

 

Figure 3: Graph of change in entropy Ω during training. 

Fig. 4 for GlobalPhone visualizes a harmoniously filled space: most clusters are active, and edge 
prototypes have a reduced weight (≈ 0.002), which indicates flexible redundancy. It is the result not 
only of entropy compaction but also of the influence of 𝛼(𝑟), which limits the contribution of low-
confidence frames. In contrast, in CommonVoice (uk), the model uses only a limited number of 
centres, leaving two clusters virtually inactive (≈ 0.0005). This selective structure is a direct 
consequence of adaptive suppression caused by the interaction of 𝛼(𝑟) and Ω, which together 
determine the architecture of the cluster space. Such a distribution is not only a sign of effective 
learning but also demonstrates the readiness of the model to generalize: active clusters retain 
semantic stability, and weakly active ones do not distort the overall cluster geometry, which is 
especially important for classification in conditions of limited resources. 

Fig. 5 shows the distribution of the scaling factor  𝛼(𝑟) values after training. The vertical line at 
𝛼 = 0.5 marks the conditional boundary between high and low confidence segments. In the case of 
GlobalPhone, most frames have 𝛼(𝑟) in the range of 0.85–1.0, which indicates stable clustering and 
a high level of confidence in the model in internal representations. It means that in the clean domain, 
the scaling factor practically does not interfere with the loss function, allowing complete sensitivity 
to the signal. In contrast, for CommonVoice (uk), the distribution of 𝛼(𝑟) is left-sided asymmetric, 
with a mode near 0.4 and a noticeable presence of low values. It indicates active loss scaling: in the 
noisy domain, 𝛼(𝑟) performs latent filtering of unstructured or uncertain segments. It is important 
to note that 𝛼(𝑟) does not completely nullify the contribution of frames but only grades their 
contribution to the loss, which allows us to preserve the training signal even from fuzzy examples. 

For spatial interpretation of the scaling effect, a t-SNE projection of the latent representations of 
CommonVoice (uk) with an imposed gradient of 𝛼(𝑟) values were constructed. Fig. 6 visualizes that 
high values of 𝛼(𝑟) are localized in compact, well-segregated clusters, while zones with low 𝛼(𝑟) 
are located on the periphery or in the gaps between the nuclei. Thus, the scaling factor not only 



locally modulates the loss but also stabilizes the structure of the space, suppressing zones that could 
potentially violate the cluster integrity. It ensures the model's resistance to internal fluctuations 
without requiring complex filtering or retraining. 

 

Figure 4: Cluster heatmap of the probability distribution P after training. 



 

Figure 5: Histogram of 𝛼(𝑟) after training: comparison of GlobalPhone and CommonVoice (uk) 
corpora. 

 

Figure 6: t-SNE projection of the CommonVoice (uk) latent space with an imposed scaling factor 
gradient. 

The key criterion for the effectiveness of latent space formation is not only its internal order but 
also the ability to preserve this structure when transferred to a new domain without additional 



training. To test this ability, a zero-shot inference simulation experiment was conducted: a model 
trained on the GlobalPhone corpus was applied to the unseen domain – the Ukrainian Speech Corpus 
(USC), without any adaptation or additional training. 

Fig. 7 illustrates the t-SNE visualization of such latent representations from the USC corpus. Each 
point represents a segment, and the colour represents the cluster to which this segment was assigned 
using the specified prototypes. Despite the complete lack of adaptation, it is clear that part of the 
space is clearly clustered: localized clusters with distinct boundaries appear, which correspond to 
previously formed cluster zones. It indicates the real structural portability of the cluster topology, 
which does not break down when transferring to a new domain. 

 

Figure 7: t-SNE projection of latent representations from the new USC domain (zero-shot inference). 

To quantify the coherence of the transferred structure, a simulated comparison of the predicted 
clusters with artificially generated conditional ground-truth labels was performed. Their purpose is 
not to reflect the real markup but to serve as a control indicator of coherence. The results are 
presented in the form of a normalized correspondence matrix (Fig. 8). A significant part of each 
simulated class is projected into a stable cluster: diagonal elements exceed 0.70 in several cases. It 
indicates a systematic coherence of the space, even under conditions where the model has not seen 
data from this domain before. 

In general, the presented experimental results indicate the high efficiency of the proposed loss 
function (16) as an adaptive mechanism for cluster learning in conditions of limited or noisy speech 
resources. Its architectural design, which combines the global entropy regularizer Ω (expression (14)) 
and the local confidence scaling 𝛼(𝑟) (formula (15)), turned out to be able to provide simultaneously 
structuredness, selectivity and portability in the latent space. The Ω regularizer contributes to the 
global reduction of entropy in the distribution of cluster correspondences, which leads to the 
formation of compact and delimited clusters. In turn, 𝛼(𝑟) locally regulates the influence of 
individual segments, suppressing those of them that are latently unstable or vaguely positioned. The 



combination of these mechanisms provides training not only on structured data (GlobalPhone), but 
also on noisy data (CommonVoice). 

 

Figure 8: Normalized correspondence matrix between predicted clusters (fixed centroids from 
GlobalPhone) and simulated ground-truth labels (USC). 

Particularly revealing is the result of applying the model to the unseen domain USC in the zero-
shot inference mode (Fig. 7, 8). Even without updating the parameters, the model retains the ability 
to project new segments into a stable cluster space, using only fixed centroids of prototypes from 
the previous corpus. The values of 𝛼(𝑟), although they do not affect the loss in this mode, are 
dynamically calculated based on the current representations of 𝑟, which allows the model to 
indirectly reduce the influence of latently unstable or semantically marginal segments. Thus, 𝛼(𝑟) 
continues to perform an adaptive function at the inference stage, stabilizing the projection topology. 
The fact of transferring the cluster structure without additional training, confirmed by the results of 
t-SNE visualization (Fig. 7) and the normalized correspondence matrix (Fig. 8), indicates the presence 
of strong generalization. In particular, the observed coherence between simulated classes and fixed 
clusters, even in the complete absence of training signal from the new domain, is empirical 
confirmation of the model's ability to preserve the functional structure of the cluster space. 

4. Conclusions 

The task of forming an adaptive cluster structure in the latent space of language representations 
without access to labels remains one of the key challenges in modern computational linguistics, 
especially in conditions of domain uncertainty, cold-start situations, or working with low-resource 
languages. In such scenarios – in particular, when building systems for automatic processing of new 
languages, clustering of raw language corpora, or zero-shot transfer – traditional loss functions are 
insufficiently sensitive to local instability of the input data and do not ensure stable preservation of 



the cluster topology when transitioning between domains. It determines the relevance of the search 
for new approaches that can simultaneously structure the space, suppress unstable zones, and 
maintain coherence in new conditions. 

The scientific novelty of the study lies in the construction of a loss function for unsupervised 
cluster learning, which for the first time combines global entropy regularization Ω with latently 
controlled scaling of the contribution of examples through the parameter 𝛼(𝑟). The key element of 
the proposed model is the combination of the probability function of cluster membership 
(expressions (4), (5)) with analytical metrics of global (expression (6)) and average local entropy 
(expression (7)), which allows for consistent control over the density, segregation, and fuzziness of 
the cluster structure. The definition of 𝛼(𝑟) is based on the entropy-drop value (expression (8)), 
which is interpreted as the latent isolation of the example in the cluster space. Due to this, the model 
implements cluster (topological) adaptation without updating the parameters, preserving the 
internal structure of the space outside the training domain. The values of 𝛼(𝑟) are calculated based 
on the current projections of 𝑟 in the new domain, a fixed functional dependence is used, which 
allows adaptive scaling of the contribution without retraining. Therefore, the proposed loss function 
(16) provides for domain generalization - portability not only of individual representations but also 
of the entire geometry of the cluster space, which does not change in essence but adapts in influence. 

Experimental results confirmed the effectiveness of the proposed approach. In particular, in the 
GlobalPhone case, the use of only the basic loss function without entropy control led to a non-
uniform, weakly segregated structure, while the addition of the Ω component reduced the average 
cluster entropy from 1.42 to 0.88. The inclusion of 𝛼(𝑟), calculated based on expression (8), gave an 
additional effect: 63% of segments with low confidence were automatically suppressed during 
training, which allowed to reduce the vagueness of cluster boundaries and intercluster overflows. In 
the zero-shot inference mode on the unseen domain USC, 72% coherence between simulated classes 
and fixed clusters was achieved, which is 19% higher than the similar indicator without 𝛼(𝑟). The 
normalized confusion matrix (Fig. 8) confirms stable matching even without pretraining, which 
demonstrates the model's ability to generalize topological relationships between segments beyond 
the training distribution. 

The practical value of the research lies in creating a conceptually coherent approach to 
unsupervised clustering of language fragments, capable of adaptively responding to latent 
uncertainty and maintaining stability in new conditions. It is essential in cold start scenarios or 
processing domains without annotations, where it is necessary to quickly structure the language 
space based on a previously formed cluster organization. At the same time, 𝛼(𝑟) provides adaptation 
not to specific language content but to the geometry and coherence of the distribution in a new 
environment. The proposed loss function can be used as an independent structuring module or as a 
component of multilingual systems operating in zero-shot or low-supervision modes. 

Directions for further research include extending the loss function to multicluster architectures, 
integration with attention-based mechanisms, and adaptation of 𝛼(𝑟) to streaming scenarios with a 
change in domain distribution. Also promising is the introduction of a dynamic 𝛼(𝑟), which is 
updated in real-time according to the behaviour of the model in the new environment, and the 
development of meta-calibration of scaling functions for the specifics of each new domain or 
language. 
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