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Abstract 
Adaptive nonlinear neo-fuzzy bagging metamodel and its fast online learning procedure are proposed 
intended for optimal combining of the results of different computational intelligence systems that 
simultaneously solve the same problem. It is assumed that the data is processed by the members of the 
ensemble and by the metamodel online in real time. The proposed metamodel is intended for solving a wide 
class of Data Stream Mining problems under the conditions of data non-stationarity, and when the 
processing speed is of the utter importance. Simulation based on the short-term electric load forecasting 
problem confirmed theoretical results. The metamodel demonstrated significant improvement over the 
results of the member models. 
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1. Introduction 

Recently, computational intelligence has emerged as a powerful tool across various fields, 
particularly in Data Mining. It encompasses a variety of systems such as artificial neural networks, 
fuzzy systems, neuro-fuzzy systems, and neo-fuzzy systems. These systems are employed to tackle 
an extensive array of tasks. Just to mention a few: 

 Pattern Recognition: Computational intelligence is widely used in image recognition, where 
systems can identify features and classify images with high accuracy. 

 Time Series Processing: These systems excel in forecasting future trends based on historical 
data, which is crucial in financial markets, weather prediction, and economic planning. 

 Natural Language Processing (NLP): From sentiment analysis to machine translation, these 
systems process human language effectively, enhancing communication technologies. 

 Diagnostics and Fault Detection: In healthcare and engineering sectors, computational 
intelligence aids in identifying anomalies and predicting potential failures in machinery or 
patient health conditions. 

One of the key strengths of computational intelligence systems lies in their universal 
approximating capabilities. These properties enable them to model complex relationships within data 
effectively. Furthermore, their ability to learn by adjusting parameters based on training data makes 
them highly adaptable to various tasks. 
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On the other hand, every task can be addressed using various computational intelligence systems, 
each with distinct architectures, training principles, data requirements, and operational speeds, 
which leads to different data processing results. For instance: 

 Artificial Neural Networks (ANNs): Known for their high accuracy, especially deep neural 
networks, they require vast volumes of training samples (which may not always be feasible 
due to data scarcity) and computational resources, i.e. a lot of time and computing power for 
their training in multi-epoch mode. 

 Fuzzy Systems: These systems are known for their ability to handle imprecise or incomplete 
data, making them suitable for real-world problems where data may be uncertain. 

 Neuro-Fuzzy Systems: Combining the strengths of neural networks and fuzzy logic, these 
systems offer both learning capabilities and robustness to noisy data. 

Selecting the appropriate computational intelligence system for a given problem is an intricate 
task that lacks a formal solution, primarily relying on the empirical knowledge of researchers and 
occasional intuition. This process is not trivial due to the vast array of systems available, each with 
its own strengths and weaknesses. To address this challenge, one promising approach is bagging [1], 
where an ensemble of different systems [2, 3] is employed. These systems operate concurrently but 
independently to solve the same problem. Their outputs are then combined through a metamodel – 
a higher-level model that integrates these signals into an optimal solution. Typically, this integration 
is achieved through a linear combination of individual system outputs. 

However, nonlinear approaches to bagging have been largely overlooked, with only limited 
research available in this domain [4]. Most existing solutions operate in batch mode, processing data 
offline, which can be restrictive in dynamic environments where real-time decision-making is 
crucial. Adaptive systems such as [5, 6] that function online offer a potential solution to this 
limitation, capable of responding and adapting as new data arrives. 

The aggregation of system outputs poses another challenge. While linear combinations have been 
extensively studied [7-9], achieving optimal adaptive combinations remains an open area for 
research. Introduction of adaptive fast-acting nonlinear metamodels could significantly enhance the 
quality of results, yet such innovations are still in their infancy and not widely adopted. 

In light of these considerations, we propose a novel approach using the neo-fuzzy methodology 
[10-12], tailored to meet the demands of adaptive nonlinear bagging. This method is designed for 
real-time environments where both adaptability and nonlinearity are essential. By modifying the 
neo-fuzzy framework specifically for this purpose, we aim to bridge existing gaps in system selection 
and integration, offering a more robust solution to complex problems. 

In summary, while choosing the right computational intelligence system remains challenging due 
reliance on experience and intuition, innovative approaches like bagging ensembles and adaptive 
metamodels offer promising pathways. The exploration of nonlinear solutions, particularly through 
neo-fuzzy approaches, holds the potential to advance our ability to effectively combine diverse 
systems for improved problem-solving in dynamic environments. 

2. Architecture of the adaptive neo-fuzzy bagging metamodel 

The architecture of the adaptive neo-fuzzy bagging metamodel is illustrated in Figure 1. This system 
represents an enhanced version of the traditional neo-fuzzy neuron [10-12], which is distinguished 
by its strong approximation capabilities and the ability to adjust its parameters dynamically, or 
“online.” At the core of this architecture lies a layer composed of nonlinear synapses, which serve as 
the primary element within the neo-fuzzy neuron. These synapses essentially perform an operation 
known as the F-transform [13], i.e. it is a universal approximator. 

The metamodel receives input signals from 𝑞 ensemble members that work simultaneously to 
solve the same problem. Each member provides its output in the form of a time sequence: 



𝑦ොଵ(𝑘), … , 𝑦ො௣(𝑘), … , 𝑦ො௤(𝑘), where 𝑘 represents the discrete time index 𝑘 = 1,2, … These sequences 

are organized into a vector format denoted as 𝑦ො(𝑘) = ቀ𝑦ොଵ(𝑘), … , 𝑦ො௣(𝑘), … , 𝑦ො௤(𝑘)ቁ
்

, which is then 

passed to the layer of nonlinear synapses. 

 

Figure 1: Adaptive neo-fuzzy bagging metamodel 

Each nonlinear synapse, shown in Figure 2, consists of 𝑛 nonlinear membership functions 

𝜇௟௣ ቀ𝑦ො௣(𝑘)ቁ, where 𝑙 = 1,2, … , 𝑛 and 𝑝 represents different ensemble members. These membership 

functions adhere to the Ruspini unity partition conditions. Additionally, each nonlinear synapse 
features 𝑛 tunable synaptic weights 𝑤௟௣, which are determined through a learning process tailored 
to optimize performance. 

At the output of each of the nonlinear synapses 𝑁𝑆௣ a signal is formed 

𝑢௣(𝑘) = ෍ 𝑤௟௣𝜇௟௣ ቀ𝑦ො௣(𝑘)ቁ

௡

௟ୀଵ

= 𝑤௣
்𝜇௣ ቀ𝑦ො௣(𝑘)ቁ, (1) 

where 𝑤௣ = ൫𝑤ଵ௣, … , 𝑤௟௣, … , 𝑤௡௣൯
்
, 𝜇௣ ቀ𝑦ො௣(𝑘)ቁ = ቀ𝜇ଵ௣ ቀ𝑦ො௣(𝑘)ቁ , … , 𝜇௟௣ ቀ𝑦ො௣(𝑘)ቁ , … , 

𝜇௡௣ ቀ𝑦ො௣(𝑘)ቁ൰
்

, ∀𝑝 = 1, … , 𝑞. 

Triangular functions in the following form are most often used as membership functions in 
nonlinear synapses. 

𝜇௟௣ ቀ𝑦ො௣(𝑘)ቁ =

⎩
⎪
⎨

⎪
⎧

𝑦ො௣(𝑘) − 𝑐௟ିଵ,௣

𝑐௟,௣ − 𝑐௟ିଵ,௣
, if 𝑦ො௣(𝑘) ∈ ൣ𝑐௟ିଵ,௣, 𝑐௟,௣൧,

𝑐௟ାଵ,௣ − 𝑦ො௣(𝑘)

𝑐௟ାଵ,௣ − 𝑐௟,௣
, if 𝑦ො௣(𝑘) ∈ ൣ𝑐௟,௣, 𝑐௟ାଵ,௣൧,

0 otherwise,

  (2) 

where 𝑐௟ିଵ,௣, 𝑐௟,௣, 𝑐௟ାଵ,௣ are coordinates of the membership functions centers, which are usually 
distributed evenly along the coordinate axes. 

One significant benefit of utilizing triangular functions within fuzzy logic systems lies in their 
efficiency during the learning process. When processing incoming observations – denoted as 𝑦ො௣(𝑘)  
– these triangular functions ensure that only two neighboring membership functions are activated 
at any given time. This means that, rather than recalculating or adjusting all relevant weights across 
the system, which would be computationally intensive, only a specific subset of synaptic weights 
needs to be updated. 

By having only two neighboring functions triggered at each step of the learning process, we 
minimize the number of adjustments required – specifically, adjusting 2𝑞 synaptic weights per 

𝑦ොଵ(𝑘) 

𝑦ො௣(𝑘) 

𝑦ො௤(𝑘) 

𝑤ଵ
∗ 𝑁𝑆ଵ 

𝑦ො∗(𝑘) 𝑁𝑆௣ 

𝑁𝑆௤ 

𝑤௣
∗ 

𝑤௤
∗ 

𝑢ଵ(𝑘) 

𝑢௣(𝑘) 

𝑢௤(𝑘) 

𝑦ොଵ
∗(𝑘)

𝑦ො௣
∗(𝑘) 

𝑦ො௤
∗(𝑘)



moment. This targeted approach not only reduces computational load but also enhances efficiency, 
making real-time processing more feasible. Moreover, this property contributes to scalability since 
it limits the complexity that can arise as data volume increases. 

In essence, the use of triangular functions streamlines the learning process by confining 
adjustments to a localized set of weights and membership functions, thereby optimizing performance 
in dynamic or large-scale applications. This efficiency is crucial for maintaining responsiveness and 
accuracy in systems where resources are constrained or rapid data processing is necessary. 

 

Figure 2: Nonlinear synapse 

If approximation accuracy is your primary concern, then using B-splines [14] as membership 
functions can be highly effective within neo-fuzzy systems [15]. This approach has demonstrated its 
ability to deliver robust performance across a wide range of applications. However, it’s important to 
note that when implementing this method at each time step 𝑘, 𝑛𝑞 synaptic weights of the neo-fuzzy 
neuron are adjusted simultaneously. The decision to use B-splines hinges on their unique properties 
as smooth basis functions capable of capturing intricate patterns in data while maintaining flexibility. 
This makes them particularly suitable for scenarios where high precision is required, such as in 
complex or nonlinear systems. However, it’s worth considering that adjusting all 𝑛𝑞 weights at once 
can increase computational demands, which may impact real-time performance if not carefully 
managed. 

The output signals of nonlinear synapses 𝑁𝑆௣ – 𝑢ଵ(𝑘), … , 𝑢௣(𝑘), … , 𝑢௤(𝑘) are fed to an 
additional layer of tuned weights 𝑤ଵ

∗, … , 𝑤௣
∗, … , 𝑤௤

∗ (which is absent in the standard neo-fuzzy 
neuron), that are present in most known bagging systems and are subject to unbiasedness 
constraints: 

෍ 𝑤௣
∗

௤

௣ୀଵ

= 𝐼௤
்𝑤∗ = 1, (3) 

where 𝐼௤
் – (𝑞 × 1) vector formed by ones. 

Signals 𝑢௣(𝑘) after passing through synaptic weights 𝑤௣
∗ are combined in the output adder, 

forming the optimal output signal 

𝑦ො∗(𝑘) = ෍ 𝑤௣
∗𝑢௣(𝑘)

௤

௣ୀଵ

= 𝑢்(𝑘)𝑤∗, (4) 

where 𝑤∗ = ൫𝑤ଵ
∗, … , 𝑤௣

∗, … , 𝑤௤
∗൯

்
, 𝑢(𝑘) = ቀ𝑢ଵ(𝑘), … , 𝑢௣(𝑘), … , 𝑢௤(𝑘)ቁ

்
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Thus, in the process of its training, two sets of parameters are configured in the proposed 
metamodel: (𝑞 × 1) vector 𝑤∗ and 𝑞 (𝑛 + 1) vectors of parameters of nonlinear synapses 𝑤௣, 𝑝 =

1,2, … , 𝑞. 

3. Adaptive neo-fuzzy bagging metamodel learning 

When the signal 𝑦ො(𝑘) is fed to the metamodel, the following signals are formed at the outputs of 
nonlinear synapses 

𝑢௣(𝑘) = 𝑤௣
்(𝑘 − 1)𝜇௣ ቀ𝑦ො௣(𝑘)ቁ, (5) 

which, after passing through the set of weights 𝑤௣
∗, are combined in the output adder in the form 

𝑦ො∗(𝑘) = 𝑢்(𝑘)𝑤∗(𝑘 − 1), (6) 

where 𝑤௣(𝑘 − 1),  𝑤∗(𝑘 − 1) – estimates obtained based on 𝑘 − 1 previous observations. 
Adaptive metamodel learning can be implemented based on errors backpropagation. First, the 

parameter vector 𝑤∗ is tuned, and then all the parameter vectors of nonlinear synapses 𝑤௣, 𝑝 =

1,2, … , 𝑞 are tuned. 
A standard quadratic learning criterion can be used to tune the vector 𝑤∗ 

𝐸∗(𝑘) =
1

2
൫𝑦(𝑘) − 𝑦ො∗(𝑘)൯

ଶ
=

1

2
(𝑦(𝑘) − 𝑢்(𝑘)𝑤∗)ଶ (7) 

subject to the unbiasedness constraints 

𝐼௤
்𝑤∗ = 1, (8) 

where 𝑦(𝑘) – external reference signal, also used for all ensemble members training. 
To solve the problem, quadratic programming can be used to find the saddle point of the Lagrange 

function 

𝐿(𝑤∗, 𝜆) =
1

2
(𝑦(𝑘) − 𝑢்(𝑘)𝑤∗)ଶ + 𝜆൫𝐼௤

்𝑤∗ − 1൯, (9) 

where 𝜆 is an undefined Lagrangian multiple, which in this case is also a tuned parameter. 
To find a saddle point, it is convenient to use the Arrow-Hurwitz algorithm, which in this case 

takes the form 

൜
𝑤∗(𝑘) = 𝑤∗(𝑘 − 1) − 𝜂௪(𝑘)∇௪∗𝐿(𝑤∗, 𝜆),

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂ఒ(𝑘) 𝜕𝐿(𝑤∗, 𝜆) 𝜕⁄ 𝜆,
 (10) 

or 

ቊ
𝑤∗(𝑘) = 𝑤∗(𝑘 − 1) + 𝜂௪(𝑘)൫𝑒(𝑘)𝑢(𝑘) − 𝜆(𝑘 − 1)𝐼௤൯,

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂ఒ(𝑘)൫𝐼௤
்𝑤∗(𝑘) − 1൯,

 (11) 

where 𝑒(𝑘) = 𝑦(𝑘) − 𝑢்(𝑘)𝑤∗(𝑘 − 1) – learning error, 𝜂௪(𝑘), 𝜂ఒ(𝑘) – search step parameters 
that determine the convergence rate of the search process.  

The process of tuning the parameter vector 𝑤∗ can be optimized for speed by appropriately 
choosing the step 𝜂௪(𝑘). By specifying this step in the form [16] 

𝜂௪(𝑘) =
𝑒(𝑘)

𝑒(𝑘)‖𝑢(𝑘)‖ଶ − 𝜆(𝑘 − 1)𝐼௤
்𝑢(𝑘)

, (12) 

we get the optimal learning procedure in terms of speed 



൞
𝑤∗(𝑘) = 𝑤∗(𝑘 − 1) +

𝑒(𝑘)൫𝑒(𝑘)𝑢(𝑘) − 𝜆(𝑘 − 1)𝐼௤൯

𝑒(𝑘)‖𝑢(𝑘)‖ଶ − 𝜆(𝑘 − 1)𝐼௤
்𝑢(𝑘)

,

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂ఒ(𝑘)൫𝐼௤
்𝑤∗(𝑘) − 1൯.

 (13) 

It is easy to see that in the absence of unbiasedness constraints, this procedure completely 
coincides with the optimal one-step Kaczmarz-Widrow-Hoff algorithm [17, 18].  

After adjusting the output parameters vector 𝑤∗(𝑘), we can proceed to adjusting the nonlinear 
synapses parameters based again on the quadratic criterion 

𝐸(𝑘) =
1

2
൫𝑦(𝑘) − 𝑢்(𝑘)𝑤∗(𝑘)൯

ଶ
=

1

2
ቌ𝑦(𝑘) − ෍ 𝑤௣

∗(𝑘)𝑢௣(𝑘)

௤

௣ୀଵ

ቍ

ଶ

=

=
1

2
ቌ𝑦(𝑘) − ෍ 𝑤௣

∗(𝑘)𝑤௣
்𝜇௣ ቀ𝑦ො௣(𝑘)ቁ

௤

௣ୀଵ

ቍ

ଶ

,

 (14) 

in this case, during the learning process, 𝑛𝑞 parameters of nonlinear synapses 𝑁𝑆௣, 𝑝 = 1,2, … , 𝑞 
must be determined. 

Introducing (𝑛𝑞 × 1) vector of tuned parameters of all nonlinear synapses 𝑤(𝑘) =

ቀ𝑤ଵଵ(𝑘), … , 𝑤௟ଵ(𝑘), … , 𝑤௡ଵ(𝑘), 𝑤ଵଶ(𝑘), … , 𝑤௡ଶ(𝑘), … , 𝑤௟௣(𝑘), 𝑤௡௤(𝑘)ቁ
்

 and a modified vector 

formed by all membership functions and adjusted output weights 𝜇∗൫𝑦ො(𝑘)൯ =

൫𝑤ଵ
∗(𝑘)𝜇ଵଵ൫𝑦ොଵ(𝑘)൯, … , 𝑤ଵ

∗(𝑘)𝜇௡ଵ൫𝑦ොଵ(𝑘)൯, 𝑤ଶ
∗(𝑘)𝜇ଵଶ൫𝑦ොଶ(𝑘)൯, … , 𝑤ଶ

∗(𝑘)𝜇௡ଶ൫𝑦ොଶ(𝑘)൯, … , 

𝑤௣
∗(𝑘)𝜇௟௣ ቀ𝑦ො௣(𝑘)ቁ , … , 𝑤௤

∗(𝑘)𝜇௡௤ ቀ𝑦ො௤(𝑘)ቁ൰
்

, it is easy to write the transform implemented by the 

metamodel with the adjusted parameters vector 𝑤∗(𝑘) in the form  

𝑦ො∗(𝑘) = 𝑤்(𝑘 − 1)𝜇∗൫𝑦ො(𝑘)൯. (15) 

To adjust the parameters vector 𝑤(𝑘), the same optimal Kaczmarz-Widrow-Hoff algorithm can 
be used in the form 

𝑤(𝑘) = 𝑤(𝑘 − 1) +
𝑦(𝑘) − 𝑤்(𝑘 − 1)𝜇∗൫𝑦ො(𝑘)൯

ฮ𝜇∗൫𝑦ො(𝑘)൯ฮ
ଶ 𝜇∗൫𝑦ො(𝑘)൯ (16) 

or its modification with additional smoothing properties, which has proven effective in training 
neo-fuzzy neurons [19] 

ቐ
𝑤(𝑘) = 𝑤(𝑘 − 1) + 𝑟ିଵ(𝑘) ቀ𝑦(𝑘) − 𝑤்(𝑘 − 1)𝜇∗൫𝑦ො(𝑘)൯ቁ 𝜇∗൫𝑦ො(𝑘)൯,

𝛼(𝑘) = 𝛼𝑟(𝑘 − 1) + ฮ𝜇∗൫𝑦ො(𝑘)൯ฮ
ଶ

, 0 ≤ 𝛼 ≤ 1,
 (17) 

where 𝛼 is a smoothing parameter defining a compromise between the filtering and tracking 
properties of the learning algorithm. 

The proposed training procedure for the adaptive neo-fuzzy nonlinear bagging metamodel is 
designed for online information processing when data is received by the system in real time. 

4. Simulation results 

We applied the proposed bagging approach to the short-term electric load forecasting problem 
(STLF), specifically focusing on 1-step ahead forecasting of daily electric load in one of Ukraine’s 
regional power systems. To see, why bagging is the approach of choice to solve STLF problems, let’s 
start with a short overview of STLF itself. 



4.1. Overview of short-term electric load forecasting 

Electric load forecasting is a critical task for utility companies, enabling them to manage electricity 
generation and distribution efficiently. Among various forecasting horizons, one-day ahead (one-
step) forecasting stands out as particularly challenging due to its dynamic nature and the need for 
real-time accuracy. 

Here are the most common challenges inherent to short-term electric load forecasting. 

4.1.1. Data complexity 

The first challenge lies in the sheer volume and diversity of data that must be processed to generate 
accurate forecasts. Historical consumption patterns provide a foundation for predictions, but this 
dataset is augmented by numerous other variables like weather conditions, economic indicators, 
calendar events, grid conditions, etc. The integration of these diverse data points is essential for 
accurate predictions but presents a significant challenge due to their different measurement scales, 
varying nature, and potential inconsistencies. 

4.1.2. Dynamic nature of demand 

Electricity demand fluctuates continuously, shaped by human activities such as turning on 
appliances, working schedules, and leisure time consumption patterns. This dynamic behavior makes 
it difficult to predict with high precision even just one day ahead. Difficulties arise from time-of-day 
variations, weekday vs. weekend pattern differences, and seasonal changes. 

4.1.3. Nonlinear relationships 

The relationship between various factors influencing electricity demand is often nonlinear and 
complex. Traditional statistical models, which rely on linear relationships, may struggle to capture 
these nuances effectively. The impact of temperature on load isn’t always directly proportional; there 
can be saturation points beyond which further changes in temperature don’t significantly affect 
demand [20]. The combined effect of weather and economic conditions might not be merely additive 
but could interact in more complex ways. There are other sources of nonlinearity as well. 

This complexity necessitates the use of advanced modeling techniques capable of handling 
nonlinear relationships, such as machine learning algorithms like Artificial Neural Networks and 
Support Vector Machines. 

4.1.4. External uncertainties 

External factors beyond immediate control can disrupt even the most sophisticated forecasting 
models. These include, but are not limited to sudden weather changes, unforeseen events (e.g. 
sporting events, strikes, or other unexpected occurrences), technical problems in the grid, etc. 

These uncertainties require forecasting models to be robust and adaptable, capable of 
incorporating real-time adjustments as new information becomes available. 

4.1.5. Computational demands 

The need for real-time processing and high-frequency updates imposes significant computational 
demands. To keep forecasts accurate, data must be processed quickly enough to reflect the latest 
conditions. Advanced models require substantial computational resources for training and updating 
as new data comes in. 

This challenge is compounded by the need for scalability, ensuring that forecasting systems can 
handle increased data loads without compromising performance or accuracy. 



4.1.6. Model selection and validation 

Selecting the right forecasting model is a significant challenge due to the dynamic nature of load 
data. Different models perform better under various conditions, requiring careful selection based on 
historical performance and expected future scenarios. Ensuring that chosen models remain effective 
over time requires ongoing validation and adjustment as patterns evolve. 

4.1.7. Strategies to address the challenges 

To overcome these challenges, experts employ a variety of strategies, including but not limited to:  

 The use of various classes of models – from linear regression to deep neural networks to find 
a better match to a particular forecasting task. 

 Online data processing – using real-time data feeds to update forecast as new information is 
received. 

 Ensemble forecasting – combining predictions from multiple models leverages diverse 
strengths and reduces reliance on any single model’s potential biases. This is the focus of this 
paper. 

Hence, short term electric load forecasting is a multifaceted challenge requiring advanced 
techniques, robust computational infrastructure, careful model selection and tuning, dynamic data 
processing capabilities, and ongoing validation. The complexity stems from the intricate interplay of 
numerous variables, the nonlinear relationships between factors influencing demand, and the need 
for real-time accuracy. Applying bagging approaches can help cope with at least some of the 
mentioned challenges. 

4.2. Test problem details 

The original time series consisted of 𝑁 = 337 samples. We generated six forecast series (𝑞 = 6), 
each with 337 samples, using six different independent computational intelligence models. In this 
setup, we treated the time series as a data stream, meaning that both forecasting and metamodel 
operations were performed in an online mode. This approach ensured that the entire dataset was 
processed sequentially – sample by sample (𝑘 = 1,2, . . . , 𝑁) – without requiring multiple passes or 
divisions into training, validation, and test sets. 

The original time series (see Figure 3) exhibited several distinct trends corresponding to different 
seasons, periodic patterns (primarily weekly), sudden changes, and outliers. The presence of these 
features made the forecasting task particularly challenging. Additionally, there was a significant 
random component in the data because electric load in large power systems depends on numerous 
external factors, many of which are inherently unpredictable or chaotic – for example, weather 
conditions [20]. This randomness contributed to the nonstationary nature of the time series, meaning 
its statistical properties changed over time. Furthermore, the series contained noise and was highly 
variable, making it a difficult target for forecasting models. 

Given these characteristics – non-stationarity, noise, and complexity – the performance of any 
single forecasting model or method is unlikely to be consistently superior across the entire dataset. 
In other words, different models tend to perform better on specific parts of the series but 
underperform on others. This variability highlights a common challenge in time series forecasting: 
no single model or method dominates in all situations. It is precisely this kind of scenario where 
ensemble methods like bagging come into play. 

By leveraging the strengths of multiple models through bagging, we aimed to improve overall 
forecasting accuracy by combining their predictions. The idea was to minimize errors that might 
arise from relying on a single model and instead capture more robust insights by aggregating results 
from diverse perspectives within the ensemble. This approach has shown promise in addressing the 



inherent limitations of individual forecasting methods while providing a more balanced and accurate 
prediction across the entire time series. 
 

 

Figure 3: Daily electric load time series 
 
In our simulation, we utilize six specialized STLF models within an ensemble framework. Each of 

these models has unique inputs and distinct structural differences, which collectively contribute to 
a diverse predictive capability. Some models focus on historical weather patterns as inputs, while 
others prioritize calendar events like holidays that affect electricity usage. The diverse structures 
ensure that each model interprets and processes these inputs differently – some may use linear 
regression techniques, while others employ neural networks capable of identifying complex patterns. 

Deploying six specialized STLF models with varied inputs and structures allows us to 
comprehensively capture the multifaceted nature of electric load data. This strategic diversity 
ensures that our ensemble can account for a wide array of factors influencing demand across 
different parts of the time series. 

Figure 4 illustrates the time series data and forecasts for the past 30 days. While long-term trends 
are reasonably captured by all models, the variability in the data within shorter timeframes is difficult 
for every forecasting method used. As a result, none of the models demonstrate a significant 
advantage over the others. 

We utilized the proposed metamodel to derive an optimal combination 𝑦ො∗(𝑘) of the six forecasts 
from the ensemble member models. By visually inspecting the plot, it becomes evident that the 
combined forecast 𝑦ො∗(𝑘) closely aligns with the actual data series 𝑦(𝑘). This proximity is further 
corroborated by an in-depth error comparison presented in Table 1.  

To evaluate the accuracy of our predictions, we employed the Mean Absolute Percentage Error 
(MAPE) criterion. Widely recognized in short-term electric load forecasting research, MAPE is a 
robust metric that quantifies forecast errors as a percentage of actual values, which makes a clear 
physical sense. The best performing ensemble member model achieved a MAPE of 4.858%. Through 
the application of the nonlinear bagging procedure, the MAPE was reduced to 3.3751%. This 
represents an approximate reduction by a factor of 1.44 times compared to the original best model’s 
performance alone. 

Table 1 
1-day ahead forecasting errors for all models and the metamodel output 

Forecasts #1 #2 #3 #4 #5 #6 Metamodel 
MAPE 6.8171% 7.5066% 4.8580% 5.0311% 4.8827% 5.1015% 3.3751% 



 

Figure 4: Forecasting results: true electric load (solid blue line), 6 independent 1-day ahead forecasts 
(dotted color lines), and the metamodel forecast (dashed black line). 

5. Conclusions 

In this study, we introduced an innovative bagging method based on an adaptive nonlinear neo-
fuzzy metamodel. This system is designed to integrate the results from multiple computational 
intelligence systems working towards solving similar tasks, such as approximating values or making 
forecasts. 

Our approach processes data in real-time and is particularly suited for environments where data 
conditions change rapidly over time (non-stationarity). This adaptability is crucial because many 
real-world applications, such as electric load forecasting, involve dynamic factors influencing 
demand. The speed of processing is also vital; ensuring timely decisions are made based on current 
data. 

We validated our metamodel through a simulation involving short-term electric load forecasting. 
Utilizing an ensemble of six independent forecasting models to predict electricity consumption, we 
compared their results with those generated by our proposed metamodel. The outcomes 
demonstrated that our method outperformed the individual models, decreasing the MAPE error by 
a factor of 1.44 times relative to the best model in the ensemble. 

Looking ahead, we aim to enhance this metamodel’s structure by increasing its flexibility. This 
will enable it to more effectively adapt to various types of relationships in data, particularly nonlinear 
ones, which are common in complex real-world scenarios like electricity demand forecasting. By 
doing so, we expect the metamodel to become even more robust and versatile in handling diverse 
and dynamic data environments. 
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