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Abstract 
The research is devoted to studying the video game recommendation process based on the consideration of 
user preferences and video game characteristics to improve the efficiency of selection by implementing 
intelligent recommendation generation algorithms. 
While there are many recommendation algorithms and techniques, most of them fall into the following 
broad categories: collaborative filtering, content filtering, and contextual filtering. Collaborative filtering 
algorithms recommend items based on information about the preferences of many users, and build a model 
based on a user's past behavior, such as items previously purchased or ratings given to those items, as well 
as similar decisions by other users. Content filtering uses attributes or features of an object to recommend 
other objects that are similar to the user's preferences. It is based on the similarity of the characteristics of 
the item and the user, taking into account information about the user and the items he or she has interacted 
with, and models the probability of a new interaction. Hybrid recommender systems combine the 
advantages of the above types to create a more comprehensive recommender system. Contextual filtering 
uses the sequence of contextual user actions to predict the likelihood of the next action. 
In this article, three different recommender system algorithms, one content-based and two collaborative 
filtering algorithms (one with the ALS algorithm and the other with the EM and SVD algorithms), were 
proposed and studied to generate video game selection suggestions. To test the effectiveness of the 
algorithms, we used datasets of users and video game characteristics available on Kaggle. The 
recommendation system with the ALS algorithm provides the best recommendations based on the 
evaluation, so it was implemented in the prototype. The recommender application can significantly improve 
users' gaming experience, making the process of choosing games more personalized and efficient. 
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1. Introduction 

The video game industry is currently experiencing rapid development and transformation. Each year, 
it becomes increasingly dynamic and diverse, providing players with endless options for 
entertainment and interactive experiences. In this context, the importance of recommender systems 
for video games has grown significantly in today’s information society [1-5]. 

One of the main challenges facing the video game industry is the large number of games available. 
According to statistics, today, the number of games on Steam, one of the largest platforms for PC 
gaming, exceeds 30 thousand. At the same time, the number of games available in other stores and 
on other platforms is also impressive in its diversity and number. This is compounded by an 
overwhelming number of new releases, updates, and remasters, which makes the process of choosing 
a video game extremely difficult for a player. Selecting a game that is interesting to the user can be 
time-consuming and requires significant effort from players. 

 

ISW-2025: Intelligent Systems Workshop at 9th International Conference on Computational Linguistics and Intelligent 
Systems (CoLInS-2025), May 15–16, 2025, Kharkiv, Ukraine 
∗ Corresponding author. 
† These authors contributed equally. 

 oleh.m.veres@lpnu.ua (O. Veres); pavlo.g.ilchuk@lpnu.ua (P. Ilchuk); olha.o.kots@lpnu.ua (O. Kots); 
yurii.o.veres@lpnu.ua (Yu. Veres) 

 0000-0001-9149-4752 (O. Veres); 0000-0003-4636-2309 (P. Ilchuk); 0000-0001-7123-3635 (O. Kots); 0009-0007-7750-7159 
(Yu. Veres) 

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



Recommender systems are designed to simplify the process of selecting video games by providing 
personalized recommendations that align with players' interests and preferences. To generate 
tailored suggestions, these systems analyze player activity data, including game history, interests, 
genres, ratings, and reviews. By doing so, they not only make it easier for players to discover new 
games but also enhance their gaming experience by making the selection process more informative 
and personalized. 

The relevance of research in recommender systems for video game selection is particularly 
evident given the growth of the video game industry and the rapid expansion of its player base. 
These systems have become essential tools for consumers who utilize video games for entertainment 
and recreation. Research in this area holds significant practical importance, as it improves the 
gaming experience for millions of players worldwide and supports the ongoing development of the 
video game industry. 

2. Analysis of the current state and prospects in the field of research 

The utilization of recommender systems in the entertainment industry is crucial for several reasons: 

 Content personalization. Recommender systems allow users to receive individualized content 
that best suits their interests and preferences. This increases the user's enjoyment of 
entertainment content as they get access to what interests them the most. 

 Convenience and time-saving. Thanks to recommendation systems, users do not need to spend 
time searching for entertainment content from a large number of games, movies, music, etc. 
The systems automatically suggest options that match their tastes, saving time and effort. 

 Enhance user retention. Recommender systems encourage users to spend more time on a 
platform. When users receive personalized and engaging content, they are more likely to 
remain and continue using the services. 

 Improvement in profitability. Recommender systems can enhance sales and user spending on 
entertainment, as users are more likely to purchase or consume content that aligns with their 
interests. 

 Exploring new opportunities. Recommender systems assist users in discovering new genres, 
authors, games, movies, music bands, and more that they may not have otherwise considered. 
This contributes to broadening their interests and cultivating new hobbies. 

 Content analysis and improvement. Recommender systems provide valuable insights to 
platform operators and content creators about which content is popular among users. This 
information helps them analyze and enhance the quality of the content they offer. 

2.1. Recommender systems types 

Many algorithms and recommendation methods available today can be categorized into three main 
types: collaborative filtering, content filtering, and contextual filtering [1-5].  

Collaborative filtering algorithms recommend items based on the preferences of many users. 
This approach takes advantage of the similarities in user behavior. Recommending algorithms can 
predict future interactions between users and items by analyzing past interactions. These systems 
build a model using a user's past behaviors, such as previously purchased items or ratings given to 
them, as well as the choices made by similar users [1]. The underlying idea is that if several people 
have made similar decisions or purchases in the past, there is a high likelihood that they will make 
similar choices in the future, such as selecting movies. 

Content filtering, in contrast, utilizes the attributes or features of an object to recommend 
similar objects based on user preferences. This approach relies on the similarity of characteristics 
between the items and the user, considering information such as the user's age and average movie 
reviews. It then models the probability of a new interaction based on this data [6-8]. 



Hybrid recommender systems integrate the strengths of various types to build a more effective 
recommender system. 

Contextual filtering involves incorporating user context into recommendations. This method 
utilizes the sequence of user actions and the current situation to predict the likelihood of the next 
action [6,9-13]. 

2.2. E-commerce Recommendation Models 

Here are the most commonly used approaches for generating recommendations by e-commerce 
companies: 

Popularity-based Recommendations. These involve showcasing products that are currently 
bestsellers. For instance, "Among Us" surged in popularity in 2020 and reached the top of the Steam 
bestseller list. This category also includes long-standing popular games, like "Counter-Strike: Global 
Offensive.” Popularity-based recommendations are primarily aimed at new users of the website. 

Quality-based Recommendations. This model displays games with a large number of positive 
reviews and ratings. While it recommends them to users, it may not always be the best approach, as 
individual tastes can vary greatly. Additionally, a game may be perceived as "overrated" due to its 
popularity. Newer games often lack sufficient reviews, even if they align well with a user's 
preferences. 

Content-based Recommendations. This model suggests products based on their similarity to other 
products. It utilizes product descriptions, content, and an understanding of the user's consumption 
history. For instance, players who enjoy Overwatch and Counter-Strike: Global Offensive may be 
recommended Valorant, as it shares similar characteristics with both of these games [14].  

Collaborative Filtering. In a more specific context, collaborative filtering is a method used to 
automatically predict a user's interests by gathering preferences from many users (collaboration). 
The system generates recommendations based solely on the rating information provided by different 
users or items. 

Hybrid recommender systems, which combine multiple models, are the most effective choice for 
delivering personalized recommendations to customers. For example, Netflix utilizes collaborative 
filtering to make recommendations by analyzing the viewing and search habits of similar users. 
Additionally, it employs content-based filtering to suggest items that share characteristics with 
content the user has highly rated. 

Metadata is essential for understanding your products effectively. It helps you organize and 
categorize your product database more efficiently. High-quality, complete metadata provides 
personalization algorithms with better data to learn from. 

2.3. Matrix Factorization for Recommendations 

Matrix factorization (MF) methods form the foundation of many widely-used algorithms, including 
word embedding and topic modeling. They have emerged as the primary approach in collaborative 
filtering for recommendations. MF can be utilized to calculate the similarity between user ratings or 
interactions, which helps in providing personalized recommendations [15,16].  

Matrix factorization using the Alternative Least Squares (ALS) algorithm approximates the sparse 
user-item rating matrix (u-by-i) as the product of two dense matrices: the user factor matrix and the 
item factor matrix. The user factor matrix is of size u × f, while the item factor matrix is of size f × i, 
where u is the number of users, i is the number of items, and f is the number of hidden features. 
These factor matrices represent the hidden features that the algorithm aims to identify. One matrix 
captures the characteristics of each user, while the other describes the hidden attributes of each item. 
The ALS algorithm iteratively learns (f) numerical factors for both users and items, which represent 
their respective features [17]. In each iteration, the algorithm alternately fixes one factor matrix and 
optimizes the other, continuing this process until convergence is reached. 

The Alternating Least Squares (ALS) algorithm is a widely used method for factorizing matrices, 
particularly in the field of recommender systems. The fundamental concept of the algorithm involves 



finding the factorization matrices iteratively. In each step, one matrix is held constant while the other 
is updated to minimize the error. 

2.4. Deep Neural Network Models for Recommendations 

There are various types of artificial neural networks (ANN) [18-20]:  

 Artificial Neural Networks (ANNs) that transmit information solely from one layer to the 
next are known as feedforward neural networks. A specific type of feedforward ANN is the 
multilayer perceptron (MLP), which comprises at least three layers of nodes: an input layer, 
one or more hidden layers, and an output layer. MLPs are versatile networks that can be 
applied in various scenarios. 

 Convolutional neural networks are tools used for identifying objects. 
 Recurrent neural networks are mathematical models used for analyzing language patterns 

and data sequences. 

Deep learning (DL) recommender models are based on existing techniques such as factorization, 
which models interactions between variables, and embedding, which is used to manage categorical 
variables. An embedding is a learned vector that represents the characteristics of an entity, allowing 
similar entities (whether users or items) to maintain similar distances in vector space. For instance, 
a deep learning approach to collaborative filtering learns user and item embeddings (latent feature 
vectors) by analyzing the interactions between users and items using a neural network. 

DL technologies also utilize advanced network architectures and rapidly evolving optimization 
algorithms to learn from large datasets. By harnessing the power of deep learning to extract features, 
these technologies create more expressive and effective models. 

2.4.1. Neural Collaborative Filtering 

Neural Collaborative Filtering (NCF) is a neural network that enables collaborative filtering through 
user and item interactions [15, 18]. The model takes into account matrix factorization with a focus 
on nonlinearity. NCF TensorFlow accepts a sequence of pairs (user ID, item ID) as input, which it 
then processes separately. The pairs are sent to the matrix factorization stage, where the embeddings 
are multiplied, and to the multi-level perceptron (MLP) network. 

The matrix factorization results and MLP network outputs are combined and input into a dense 
layer that predicts if a user is likely to interact with a given item. 

2.4.2. Variational Autoencoders for Collaborative Filtering 

The autoencoder's neural network reconstructs the input at the output level by leveraging the 
representation obtained from the hidden layer. In the context of collaborative filtering, the 
autoencoder learns a nonlinear representation of the user-item matrix and is capable of 
reconstructing it by identifying and filling in missing values [19].  

The model is composed of two main components: an encoder and a decoder. The encoder is a 
fully connected feed-forward neural network that transforms an input vector, which contains user-
specific interactions, into an n-dimensional variation distribution. This variation distribution is 
utilized to create a hidden representation of the user's features, also known as an embedding. This 
hidden representation is then passed to the decoder, which is another feed-forward network with a 
structure similar to that of the encoder. The output is a vector of probabilities representing the 
likelihood of interaction between items for a specific user. 

2.4.3. Learning Sequences in Context 

Recurrent Neural Networks (RNNs) are a type of neural network that incorporates memory or 
feedback loops, enabling them to better recognize patterns in data. RNNs are particularly effective 



in handling complex tasks related to context and sequence, such as natural language processing and 
contextual sequence recommendations. What sets sequence learning apart from other tasks is the 
necessity for models with active data memory, like Long Short-Term Memory (LSTM) networks or 
Gated Recurrent Units (GRU), to understand the temporal dependencies in the input data [21-22]. 
This retention of past inputs is essential for achieving successful sequence learning. 

On the other hand, transformer-based deep learning models, such as Bidirectional Encoder 
Representations from Transformers (BERT), offer an alternative to RNNs by utilizing an attention 
mechanism. This allows them to analyze a sentence by focusing on the most relevant words both 
before and after a target word. Unlike RNNs, transformer-based models do not require sequential 
data processing, enabling greater parallelization and significantly shorter training times on GPUs. 

2.4.4. Wide & Deep 

Wide & Deep refers to a type of network architecture combining the outputs of two parallel 
components: the Wide and Deep models. The results from these models are then summarized to 
calculate the probability of interaction. The Wide model is essentially a generalized linear model that 
focuses on the objects and their transformations. In contrast, the Deep model consists of a dense 
neural network (Deep-NN) made up of five hidden layers of multilayer perceptrons (MLP), with each 
layer containing 1,024 neurons. The Deep model begins with a dense feature embedding, where 
categorical variables are transformed into continuous vector representations. These embeddings can 
be learned automatically or defined by the user before being input into the Deep-NN [23].  

The success of this model in recommendation tasks stems from its dual approach to learning 
patterns in data: both "deep" and "shallow." The deep neural network (DNN) component excels at 
learning complex, nonlinear relationships within the data and can generalize similar elements 
through embeddings. However, this DNN requires many examples of these relationships to perform 
well. In contrast, the linear component is adept at "memorizing" simpler relationships that may 
appear only a few times in the training dataset. 

2.4.5. Deep Learning Recommendation Model (DLRM) 

DLRM, developed by Facebook Research, is a deep learning-based recommendation model. It 
effectively handles both categorical and numerical inputs, often found in recommender systems' 
training data. To manage categorical data, embedding layers convert each category into a dense 
representation before passing it into multi-layer perceptrons (MLPs). Numerical features can be 
directly inputted into the MLP [24].  

DLRM distinguishes itself from other deep learning-based recommender systems in two key 
ways. First, it focuses on feature interactions by limiting them to pairwise interactions. Second, 
DLRM treats each embedded feature vector corresponding to categorical features as a single unit. In 
contrast, other methods consider each individual element of the feature vector as a separate unit, 
which leads to the generation of different cross-terms. These design choices help to reduce 
computational and memory overhead while still achieving competitive accuracy. 

3. The Significance of Recommendations in E-Commerce Systems 

Personalization has become a key success factor for online retailers. These businesses are 
increasingly focused on enhancing personalization, whether by addressing customers by name in 
their communications or by offering special promotions based on individual interests. 

Recommendations represent the highest level of personalization and are vital for customers and 
the companies serving them. For customers, the benefits include an enhanced user experience, a 
sense of being understood and valued, and more tailored offers and promotions. For businesses, the 
advantages are equally significant: improved customer engagement, substantial customer growth, 
increased web traffic, and higher sales and revenue. 



A good example of the impact of recommender systems on business is Netflix. Although Netflix 
started as a movie rental service, it now streams movies and has over 200 million paying customers 
worldwide [25-27]. A crucial aspect of this development is their personalized recommendation 
system. 

Netflix's recommendation engine provides a diverse range of content tailored to your preferences. 
Over the years, hundreds of engineers have developed these recommendation systems by analyzing 
millions of users. When a new subscriber joins, Netflix prompts them to select their favorite shows 
and movies. As subscribers watch more content over time, the platform offers suggestions based on 
these selections, as well as other factors [25].  

Steam is a digital game distribution system with 69 million daily active users and a catalog of over 
101,035 games available on Steam as of June 2024 [27]. Steam users logged 37.87 billion hours of 
playtime in 2021. Closer to the topic of our study is Steam, a digital game distribution system with 
69 million daily active users and a catalog of over 101,035 games available on Steam as of June 2024 
[27]. Steam users logged 37.87 billion hours of playtime in 2021.The platform features a powerful 
video game recommendation system designed to help players discover games they are likely to enjoy. 
It suggests games based on factors such as your gaming history, purchase records, browsing activity 
in the store, and preferences of other players with similar tastes. 

However, despite recognizing the importance of high-quality recommendations by online 
retailers, they have yet to perfect the art of product suggestion. The main issue with current online 
recommendation systems is that they are primarily behaviorally driven rather than motivational. 
While many people may play the same game, their reasons for doing so can differ significantly. 

A player’s motivation is shaped by their emotional and psychological makeup, which includes 
aspects such as values, personality, and life circumstances. To improve video game 
recommendations, it’s essential to start by understanding the games you recommend and the reasons 
behind why players enjoy them. Next, analyze your user base to understand each individual on a 
deeper level. Finally, determine why players choose specific games and leverage that insight to 
enhance your video game recommendations. 

Machine learning algorithms that are intelligent, when paired with high-quality data, are your 
greatest assets. 

4. Selection Methods of Generating Recommendations for Choosing 
Video Games 

Recommender systems typically consist of three key components: 

 Candidate generation is responsible for creating smaller subsets of candidates to recommend 
to users from a large pool of thousands of products. 

 Evaluation systems. We need to standardize candidate generation from various sources and 
implement a scoring system to assign scores to each item in the subsets. 

 Ranking systems. After the evaluation process, the system considers additional constraints to 
produce the final ratings. [28]. 

4.1. Content-Based Filtering 

Content-Based Filtering (CBF) is a type of recommendation system that predicts a user's 
preferences or behaviors by analyzing the features of items they have responded to positively.  

Once we understand the user's preferences, we can represent them in an embedding space using 
a generated feature vector. Recommendations are then made based on this representation. During 
the recommendation process, similarity scores are calculated by comparing the feature vectors of the 
items with the user's preferred feature vectors from their previous selections. Finally, the top 
recommended items are presented to the user [29].  



Content-based filtering recommends items to a user based solely on that user's preferences 
without relying on data from other users. 

4.2. Collaborative Filtering (CF) 

The collaborative filtering system operates without the need for specific functions of the provided 
elements. Instead, it describes each user and item through a feature vector or embedding. The system 
independently generates embeddings for users and items, positioning them within the same 
embedding space.  

Additionally, it considers the reactions of other users when recommending items to a particular 
user. It observes not only the products that a specific user likes but also the products favored by users 
with similar behaviors and preferences. This information is used to suggest relevant products to the 
user. 

Moreover, the system collects user reviews for various products and employs these insights to 
enhance its recommendations. The sources of user interaction with an item include: 

 Implicit feedback. User preferences and dislikes are recorded based on actions like clicks, 
searches, and purchases. There are many preferences noted, but negative reviews are fewer. 

 Explicit feedback. The user expresses their preferences by reacting to or rating a product. 
There are both positive and negative reviews, but the negative ones are fewer. 

4.2.1. Types of Collaborative Recommender Systems 

Collaborative filtering based on memory refers to remembering the user's interaction matrix with 
an object and how the user responds to it, specifically the user's evaluation of that object. This 
approach does not involve dimensionality reduction or model fitting. 

Collaborative Filtering Based on a Model. In this approach, there's no need to memorize the 
interaction matrix itself. Instead, we analyze how a particular user or item behaves by compressing 
the large interaction matrix through dimensionality reduction or clustering algorithms. Machine 
learning models are utilized to predict the ratings a user is likely to give a product. Several methods 
exist, including clustering algorithms, matrix factorization techniques, and deep learning methods. 

Clustering Algorithms. Typically, simple clustering algorithms are employed, such as K-
Nearest Neighbors (KNN), to identify the K nearest neighbors or embeddings based on the chosen 
similarity metrics. 

Algorithms Based on Matrix Factorization. Just as any large number can be decomposed into 
smaller components, a user-item interaction matrix can also be decomposed into two smaller 
matrices. These matrices can then be used to reconstruct the interaction matrix. We generate factor 
matrices that represent features for users and items. These feature matrices serve as embeddings for 
each user and item. To create these feature matrices, it is necessary to perform dimensionality 
reduction [30]. The number of feature vector functions depends on the number of domains or 
features we need to consider to effectively represent users and items. To achieve this, we must 
identify the principal components of the distributions of users and items. This process, known as 
dimensionality reduction, aims to clearly represent the distribution with the smallest possible 
number of features. There are several methods for reducing dimensionality, including Singular Value 
Decomposition (SVD), Probability Matrix Factorization (PMF), and Non-Negative Matrix 
Factorization (NMF).  

However, it is important to note that matrix factorization methods also have their limitations. 

 The challenge of utilizing additional characteristics that may influence recommendations, 
such as a movie's U/PG rating or the user's country, can be significant. In the case of matrix 
factorization, only the product ID and user ID can be employed. Additionally, this approach 
does not permit querying for products or users that are not included in the training set. 



 Matrix factorization faces a cold start problem because it lacks a feature vector or embedding 
for new items.  

 It often recommends popular products to all users, which may not accurately reflect their 
individual interests, especially when using dot multiplications.  

 Matrix factorization relies on basic user intrinsic product embeddings and product feature 
embeddings, which are often inadequate for capturing and representing complex 
relationships between users and products.  

Deep neural networks have been developed to address the shortcomings of matrix factorization 
methods. 

4.3. Algorithms for Generating Recommendations for Choosing Video Games 

We decided to use three different algorithms to generate recommendations for each user. Two 
approaches will utilize collaborative filtering—one based on the ALS algorithm and the other using 
the EM and SVD algorithms. Additionally, we will implement a content-based method for 
recommendations. 

4.3.1. Model Alternating Least Squares (ALS) 

We present a straightforward implementation of a collaborative recommendation filtering algorithm 
using matrix factorization with implicit data. Matrix factorization maps the latent vectors of users 
and items—or dense feature vectors used to describe objects or users—into a single latent or 
embedding space. The interaction between a user and an item is represented as the dot product of 
the user and item vectors.  

In this approach, the Alternating Least Squares (ALS) model is employed to analyze the data and 
generate recommendations using the least squares method [29,30]. The ALS (Alternating Least 
Squares) algorithm utilizes matrix factorization, which involves splitting a large matrix into smaller 
matrices whose product equals the original matrix. In the context of a collaborative recommender 
system with implicit data, this technique reduces the original matrix, which represents "all users vs. 
all features," into smaller matrices: "all users vs. some features" and "all features vs. some features." 
The features derived from the data do not necessarily correspond to real metadata. 

ALS is an iterative optimization process that aims to achieve a closer factorized representation 
(𝑈 × 𝑉) of the original matrix 𝑅 (Figure 1) at each iteration. Here 𝑅 is the original user-item matrix 
containing implicit data. The matrices 𝑈 and 𝑉 contain weights that indicate the correlation between 
each user and item with respect to various characteristics. The objective is to determine the weights 
of 𝑈 and 𝑉 such that 𝑅 is approximately equal to 𝑈 × 𝑉 (𝑅 ≈ 𝑈 × 𝑉). 

The ALS algorithm alternates between optimizing 𝑈 while keeping 𝑉 fixed, and vice versa, until 
it converges to a solution that best approximates 𝑅. 

 

Figure 2: Scheme of the ALS algorithm 

Suppose we have a matrix 𝑅 of size m×n, where the elements 𝑅represent ratings or relationships 
between objects (for example, user ratings for movies). The objective is to factorize the matrix 𝑅 into 



two matrices: 𝑈(𝑚 × 𝑘)and 𝑉(𝑘 × 𝑛), where k is the number of latent factors we want to identify. 
The goal is to minimize the reconstruction error: 
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where 𝜆(‖𝑈‖ଶ + ‖𝑉‖ଶ) — the Frobenius norm measures the distance between the original matrix 
and its approximation through factorized matrices.  

The first part of the formula focuses on minimization, while the second part is for regularization 
to prevent overfitting and manage the size of the elements in the 𝑈 and 𝑉 matrices. 

Initialization: The matrices 𝑈 and 𝑉 can be initialized with either random values or alternative 
methods, such as singular value decomposition (SVD). 

Alternative updates. 
Step 1: Update the matrix 𝑈. 
Update the matrix 𝑈 while keeping 𝑉 fixed. For each user i, we minimize the function 
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where 𝑅 — this is a recognized element of the matrix 𝑅; 𝑈and 𝑉
் — are the corresponding rows 

from the matrices 𝑈 and 𝑉.  
This equation can be solved using the least-squares method, providing a value for each user. 
Step 2: Update the matrix 𝑉. 
Update the matrix 𝑉 while keeping 𝑈 fixed. For each element j, we minimize function (2), which 

can be solved using least squares. We apply the least squares method to reduce the error during each 
update. 

The process of updating the matrices 𝑈 and 𝑉 continues until a certain stopping condition is 
reached, for example, when the changes in the matrices between iterations become very small or the 
maximum number of iterations is reached. 

4.3.2. Collaborative Recommender for EM and SVD 

Expectation-Maximization (EM) is an approach for estimating the Maximum Likelihood (ML) or 
posterior estimation (MAP) of model parameters in cases where the data have hidden (latent) 
variables. It is advisable to use it to estimate the parameters of a given data distribution. It is an 
iterative algorithm for estimating the parameters of statistical models when part of the data is hidden 
(unknown) or when probabilities have a complex structure. 

Suppose we have some observable data 𝑋, but there are also hidden variables  𝑍 that we cannot 
see. We want to find the model parameters  𝜃 that maximize the likelihood: 

𝐿(𝜃) = 𝑃(𝑋|𝜃). (3) 

However, because of the hidden variables 𝑍, it is difficult to calculate this probability directly. 
The EM-algorithm approximates the solution using two phases: E-step (expectation) – estimating the 
hidden variables  𝑍 based on the current parameters  𝜃(௧); M-step (maximization) – updating the 
parameters 𝜃 to increase the likelihood. 

These two steps are repeated until the changes in the parameters become insignificant. 
EM maximizes the expected logarithm of the likelihood: 
E-step: Calculate the mathematical expectation of the log-likelihood given the current parameters: 

𝑄൫𝜃|𝜃(௧)൯ = 𝐸|,ఏ()[𝑙𝑜𝑔𝑃(𝑋, 𝑍|𝜃)]. (4) 

M-step: Update the parameters by maximizing the function 𝑄൫𝜃|𝜃(௧)൯: 
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In order to come up with a rating system (since the user dataset contains implicit data), it was 
decided to use the distribution of hours played for each game using the EM algorithm rather than 
percentiles. 

We used the Singular Value Decomposition (SVD) algorithm to factorize the matrix of user items 
into singular vectors and singular values (similar to the eigendecomposition) and the gradient 
descent approach to fill in the missing data using prediction. Gradient descent is a convex 
optimization method used to find the optimal matrices 𝑈 and 𝑉 representing the original matrix 𝑅 
of user-items, replacing missing values with new ones estimated from similar users and games. 

Any matrix 𝑅 can be decomposed as follows: 

𝑅 = 𝑈Σ𝑉் , (6) 

where 𝑈 — matrix of left singular vectors (users) 𝑈(𝑚 × 𝑘): та 𝑉(𝑘 × 𝑛);  
Σ — diagonal matrix of singular values; 
𝑉் — a matrix of right singular vectors (elements rated by users). 
Each column in 𝑈 and 𝑉 can be interpreted as a latent factor that describes hidden features of 

users and objects. 
SVD is a powerful method for recommender systems, but it is rarely used in its pure form due to 

scaling issues. However, it is the basis of modern hybrid recommender models. 

4.4. Class Diagram 

A class diagram is constructed to study the algorithms for generating recommendations for choosing 
video games. Figure 2 (Class diagram) shows the generalization between the 
VideoGameRecommendation superclass and three subclasses ImplicitCollaborativeRecommendation, 
CollaborativeRecommendationWithEMAndSVD and ContentBasedRecommendation. 

VideoGameRecommender. Class attributes: Recommender_name (private, type String). Class 
operations: VideoGameRecommender() – конструктор (public, attributes: 
recommender_name(String)); generateRecommendations() – (public, return type: List).  

ImplicitCollaborativeRecommender. Class attributes: __model (private, type List); 
__m_user_item (private, type List); __m_item_user (private, type List). Class operations: 
ImplicitCollaborativeRecommender() – конструктор (public, attributes: data_path(String)); 
load_data() – (private, attributes: data_path(String)); load_model() – (private); similar_items() – 
(private, attributes: items(List), n_similar(Integer), return type: List); recommend() - (private, 
attributes: users(List), n_recommendation(Integer), return type: List). 

CollaborativeRecommenderWithEMAndSVD. Class attributes: __prediction_matrix(private, 
type List). Class operations: CollaborativeRecommenderWithEMAndSVD() – конструктор (public, 
attributes: data_path(String)); load_data() – (private, attributes: data_path(String)); 
create_prediction_matrix() – (private); top() – (public, attributes: user(List), n(Integer), return type: 
List).  

ContentBasedRecommender. Class attributes: __data_matrix (private, type List); 
__cosine_sim_matrix (private, type List). Class operations: ContentBasedRecommender() – 
конструктор (public, attributes: data_path(String)); load_data() – (private, attributes: 
data_path(String)); ger_recommendations() – (private, attributes: cosine_sim(List), title(String), 
return type: List); make_recommendation_for_user() - (public, attributes: user_Id(String), 
game_list(List), games_user_has(List), return type: List). 



 

Figure 2: Class diagram 

5. Study of the Functioning of the Proposed Methods for Generating 
Video Game Recommendations 

5.1. Formation of Data Sets for Testing Recommendation Algorithms 

Two different data sets are used for this project. Both are available for free on Kaggle and contain 
data obtained from Steam. We used data for 2023 for the study. 

5.1.1. User Data Set 

The first dataset is the user dataset. It contains a user ID, a game name, a behavior ("purchase" or 
"play"), and a value associated with that behavior. Each dataset row represents the user's behavior 
towards the game - "play" or "purchase". If the behavior is "play", the value associated with it 
corresponds to the number of hours spent playing the game. If the behavior is "buy", the value 
associated with it is 1, which means that the user bought the game. In the case of this user data set, 
the value associated with "buy" is always 1. 

Fig. 3 shows a part of the user data set. Column headings have been added for convenience based 
on the data description. 

а)  b)  

Figure 3: View of the user data set: а) initial; b) reformatting 



The user dataset contains a total of 200,000 rows, including 5,155 unique games and 12,393 unique 
users. For convenience, the structure of the user dataset has been reformatted (Figure 3,b) (the 
information stored in the "behavior" column is divided into two columns: "purchase" and "play"). For 
each row, the "play" column has a value of 1 if the user has actually played the game or 0 if the user 
has no record of hours spent. Each row in the reformatted user dataset represents a unique user-
game interaction.  

Using the reformatted user dataset, we began to explore and analyze the data stored in it. The 
main task is to assess whether the most purchased games correspond to the most played games. For 
each game, we calculated the total number of users and the total time spent in the game by all users. 

We used a bar chart to better visualize the results for the top 20 games with the largest number 
of users (Figure 4). 

Game titles are organized in descending order by the number of users. The color gradient reflects 
the total number of hours spent playing the game, from highest to lowest. We also counted only 
those users who actually played the games. Thus, users who purchased it but never played it were 
removed for each game. 

To better understand user data distribution and gaming habits, we plotted the top 20 most popular 
games based on the total number of hours spent playing the game (Figure 5). 

  

Figure 4: Top 20 games with the largest number of players  

  

Figure 5: Top 20 games with the most hours played 



As you can see, the distribution of data for each of the games considered is not symmetrical. 
Moreover, 75% of the data points for each game are in the range of hundreds of hours, with several 
games having very large outliers. For example, you can see that a user has played more than 10,000 
hours of Dota 2. Another interesting example: a user has played almost 12,000 hours of Sid Meier's 
Civilization V. 

5.1.2. Game Data Set 

The second dataset is the games dataset. It contains a list of games, their descriptions, URL 
(pointing to the Steam store), package type (single game, bundle...), game title, short description, 
recent reviews, all reviews, release date, developer, publisher, popular tags (Action, Shooter, PvP...), 
game details (multiplayer, single player, full controller support...), languages, achievements, genre 
(Action, Adventure, RPG, Strategy...), game description, adult content description, minimum 
requirements to run the game, recommended requirements, original price and discount price. The 
dataset contains 51920 games in total. 

5.2. Study of the Proposed Recommendation Generation Algorithms 

All three algorithms generate recommendations for the same users, allowing us to compare their 
results and evaluate which approach best suits a given project.  

5.2.1. Collaborative Filtering 

Before implementing the algorithms that will be used for the collaborative recommendation filtering 
system, a training and test dataset is created from the reformatted user data set.  

The reformatted version of the user dataset contains 128804 rows, each containing unique 
information about the user's interaction with the game. It was decided to remove 20% of all user 
interactions with the game (25761 rows) for the test dataset and leave the rest (103043 rows) for the 
training dataset. 

The training dataset will be used to implement collaborative recommendation filtering models. 
Once completed, the models will be used to generate recommendations for all users listed in the test 
dataset. 

 
Collaborative Recommender with ALS 
Collaborative filtering requires no information about objects or users to make recommendations. 

It only uses the interaction between users and objects, expressed by a certain rating. The data used 
for this recommendation system is from the reformatted Steam user dataset. This data does not 
explicitly contain users' ratings or preferences for games but rather is expressed by the number of 
hours users have spent playing games. 

The ALS algorithm, available through the "implicit" library, is a recommendation model based on 
performance-optimized algorithms [29,30]. The advantage of using the implicit library compared to 
manual algorithm implementation is the speed required to generate recommendations since the ALS 
model in the existing library uses Cython, which allows parallelizing the code between threads. 

The ALS model uses two separate quantities (preferences and trust level) to express raw user 
observations. For each user interaction with an item in the data, it calculates a score that expresses 
whether the user likes or dislikes the item (i.e., preference) and combines this score with a confidence 
level directly related to the value of the raw implicit observations (higher confidence levels the more 
the user has played the game). 

To create recommendations using the ALS algorithm described above, the 
ImplicitCollaborativeRecommender class is implemented in a Python script. The class was developed 
based on the recommendations from the sources mentioned above. The class performs all the 
necessary manipulations with DataFrame data to create the matrices required by the ALS algorithm. 
We used methods already implemented around the ALS algorithm from the "implicit" library to 
create recommendations. 



The collaborative recommender model is created using the training user dataset and the 
ImplicitCollaborativeRecommender class. 

After the model is successfully loaded, you can start generating recommendations for all users 
for whom the user-item interaction was hidden during data partitioning training and testing. For 
each user, 20 recommendations are generated. The recommendations are stored in a Pandas 
DataFrame, which is later output as a CSV file. 

It should be noted that the model failed to provide recommendations for some users. This is due 
to the fact that many users have only one user-object interaction that was included in the test dataset. 
Therefore, since the model has no prior knowledge of the preferences of these users, it cannot 
provide any recommendations. For these cases, the output values are set to '-999'. 

 
 
Collaborative Recommender with EM and SVD 
EM algorithm: Distribution of playing time. To come up with a ranking system (since the user 

dataset contains implicit data), it is decided to use the distribution of hours played for each game 
using the EM algorithm rather than percentiles. 

A ranking system is created based on the distribution of time spent in the game for each game 
available in the user data set. 5 groups (equivalent to a 5-star rating system) are used to determine 
the rating that users can give to the game they have played based on the time each user has spent in 
each game relative to the time spent by all others. 

Steam allows users to get a refund for games they have played for less than 2 hours. This fact was 
taken into account for the recommendation system. Thus, user interaction with an item lasting less 
than 2 hours is not taken into account. An example of the EM algorithm's timeline for a given game 
can be seen in Figure 6. 

  

Figure 6: How the EM algorithm works for a given game 

As you can see in the graph above for The Fallout 4, the EM algorithm does a great job of finding 
5 groups of people with similar gaming habits who could potentially similarly rate the game. You 
can see that some users have played "The Fallout 4" for very few hours. It is possible that some of 
these users lost interest in the game shortly after they started playing it. For Groups 3 and 4, the 
distribution is tighter. This indicates that most users are interested in this game. Therefore, this game 
will have a high rating.  A "user-items" matrix is created with users as rows and games as columns. 
The missing values are zero. The values stored in the matrix correspond to the number of hours for 
each user-game combination. Following the source's recommendations, the data used to create the 
user-game matrix only includes games with more than 50 users and users who have played the game 
for more than 2 hours. 

It was decided to implement the SVD algorithm using the gradient descent method manually [31]. 
We set the learning rate to 0.001 and the number of iterations to 200, tracking the root mean square 



error (RMSE) (Figure 7). The U and V matrices are initialized with random values drawn from the 
normal distribution [0, 0.01]. The tracking function measures the RMSE between the actual and 
predicted values. 

The graph shows that the SVD using gradient descent converges to zero on the training dataset, 
while the RMSE for the training dataset remains at around 0.68. 

  

Figure 7: SVD accuracy on training and test datasets 

Interestingly, after the 75th to 100th iteration, the accuracy on the test dataset stops improving 
(the RMSE remains at about the same level). The accuracy on the test data could be improved by 
using more leading components, but this would increase the time required for computation. 
Consequently, for the data used, one could stop the computation after 75 to 100 iterations because 
the accuracy on the test data set is no longer improving. 

EM Algorithm: Post SVD via Gradient Descent. With the matrix of predicted user elements, the 
distribution of hours for the game "Fallout 4" was reviewed using the EM algorithm to find a 
reasonable rating from 1 to 5 stars. 

The results of the EM algorithm for this game are plotted, this time using the predicted matrix of 
user elements obtained with the SVD algorithm using the gradient descent method (Figure 8).  

  

Figure 8: Operation of the modified EM algorithm for a given game 



As shown in Figure 8, distributions 2-4 look like they fit the data quite well. However, this is not 
the case for distribution 1. On the other hand, distribution 5 is practically flat on the right-hand side. 

To complete the study, we used the SVD algorithm via gradient descent to generate the top 20 
game recommendations for each user from the test dataset. 

Similar to the collaborative recommender with the ALS algorithm, the recommender does not 
make recommendations for users that exist only in the test dataset. Therefore, since the model has 
no prior knowledge of the observations of these users, it cannot provide any recommendations. For 
these cases, the output values are set to "0". 

As an example, the top 20 game recommendations for user "5250" are shown in Figure 9. 

  

Figure 9: 20 best gaming recommendations for a given user 

5.2.2. Content-Based Recommendation 

A content-based recommendation system makes recommendations based on the similarity 
between the game the user already has and other games. 

To create a recommender system, you need to prepare data and build an algorithm. To do this, 
you first need to pre-process the game dataset with all the useful information to feed it to the 
recommendation algorithm, formatting it more simply. We implement a function that allows us to 
make recommendations for games that are similar to other games. Finally, we create 
recommendations for all users based on the games they already have. 

To prepare the data for content-based recommendations, we started by selecting the information 
that would be most useful for finding similar games. Useful columns from the game dataset were 
read. It was decided to keep only those games that are present in both the game dataset and the user 
dataset, as many games in the game dataset have never been played or purchased by any user in the 
user dataset, so it makes no sense to include them in the recommendation system. In addition, the 
game dataset is too large to create a cosine similarity matrix because it takes up too much memory. 

An identifier was created for each game to match games from both datasets, removing all non-
alphabetic characters and spaces and changing all uppercase letters to lowercase. The same was done 
for the games from the custom dataset. 

After that, we found all unique identifiers from the user dataset and used them to filter the rows 
in the game dataset, keeping those with identifiers that match those from the user dataset. This 
resulted in 3036 games from the game dataset that matched some of the 5152 games in the user 
dataset. Initially, without the ID approach, using only game titles, only 71 games from the game set 



were retrieved that matched games from the user dataset. Since there are fewer games in the new 
game set than in the user set, the recommender system will not be able to find recommendations for 
every game in the user set. This affects its performance. 

In the new smaller game dataset, spaces have been removed from the useful columns that are 
decided to be used. This way, there is a guarantee that, for example, 'Steam Achievements' and 'Steam 
Cloud' will not get a match because they both contain 'Steam'. They will now have unique values of 
'SteamAchievement' and 'SteamCloud'. Therefore, this feature has been applied to all columns in use. 

Finally, some custom columns were created by combining several columns to find a combination 
of information that could give the best possible recommendation system. 

Additional manipulations were made with the reviews column from the game dataset to extract 
the percentage and any other possible useful information. For this purpose, we used the fact that all 
reviews have the following format: "Predominantly positive (11481) - 74% of the user reviews for this 
game are positive". 

We started by getting the percentage of positive reviews by using a regex to get the "- 74%" part 
of the review, leaving only the number. We also got the qualitative information about the reviews 
by separating them with a comma and keeping only the first element. Qualifications that contain the 
words "user reviews" are ignored, as this means that not enough users have reviewed the game and 
the format of the reviews is different. 

To do this, we use a script that outputs the result to a CSV file. This CSV file is read by the content-
based recommendation script to get feedback. 

A cosine similarity matrix is generated for the recommendation system. First, a frequency matrix 
is created for each word in the selected column (column_name) and for each game. Then, using the 
frequency matrix, the cosine similarity matrix is created. 

To generate recommendations for each game, the get_recommendations function is used, as 
shown below. The input to the function is the name of the game in the form of a string and the cosine 
similarity matrix created just before. The output is a list of recommended games ordered by 
similarity. 

The similarity score for each recommended game is obtained from the cosine similarity matrix to 
order them from most similar to least similar. Finally, we get the number of recommendations we 
need and return them in the form of a list. The variable 'n_recommendation', set to 20, determines 
the number of recommendations to be generated. 

To get recommendations for each user, the 'make_recommendation_for_user' function is 
implemented. This function combines the recommendations created for each game using the 
'get_recommendations' function, keeping the recommendations with the best reviews (extracted 
from the game dataset). This function takes three inputs: a user ID, a list of recommendations for the 
user (the 'get_recommendations' function described earlier is applied to all games the user already 
has, the results are returned as a list with all recommendations), and a list of all games the user 
already has. The function returns a Pandas DataFrame containing the user's ID in the first column, 
followed by 20 columns with the best recommendations. 

If the list of recommendations is empty (this can happen if none of the games that the user already 
has are included in the game data set) or invalid, a DataFrame is returned without recommendations. 
If the recommendation list is valid, the returned DataFrame contains the recommended game titles 
with the corresponding rating (percentage of positive reviews). Games that the user already owns 
are removed (there is no need to recommend a game that the user has already purchased). 

The recommendations are then organized according to their reviews, from best to worst. It was 
decided to do this because it is the easiest way to organize the recommendations, especially since it 
is not possible to create recommendations for every game the user owns, as the games in both 
datasets do not match perfectly, as mentioned earlier. If this were not due to a mismatch, 
consideration was given to taking into account the proportion of playing time each game has relative 
to other games played by the user to recommend similar games to those played most often. Using 
reviews to sort recommendations still ensures that the recommended games are considered good 
overall by all users. 



If the number of recommendations is less than the desired number, the remaining columns are 
filled with spaces. All the DataFrame rows created by the 'make_recommendation_for_user' function 
are merged and then output as a CSV file. 

6. Analysis of the obtained results 

To compare the different algorithms used to generate recommendations, we created an algorithm 
that calculates for each user the ratio of the number of games in the user's test dataset 
𝑁ூ௧௦ோ்௦௧ that are in the top 20 recommendations to the total number of games in the user's 
test dataset 𝑁ூ௧௦்௦௧ (7):  

𝑅𝑎𝑡𝑖𝑜 =
𝑁ூ௧௦ோ்௦௧

𝑁ூ௧௦்௦௧
, 

(7) 

 
where 𝑁ூ௧௦ோ்௦௧  – the number of games in the user's test dataset that are in the top 20 

recommendations;  𝑁ூ௧௦்௦௧– the total number of games in the user's test dataset. 
The average value of the ratio for all users is then calculated. This ratio is somewhat 

underestimated because if a recommendation cannot be created for a particular user, the calculated 
ratio is 0. 

First of all, we created a comparison of the content-based recommendation algorithm with 
different input data. This is either a column from the original dataset or a combination of different 
columns. Figure 10 shows the ratio calculated using different inputs. Here, the best result 
corresponds to using a combination of columns: genre, publisher, and developer. This 
implementation of content-based recommendations is used in the comparison with the other two 
collaborative filtering recommendations. 

 

  

Figure 10: The impact of combinations of characteristics on the result 

We calculated the ratios for both collaborative filtering recommendations in the same way as 
described earlier. Their results, as well as the results of the retained content-based recommender, are 
shown in Figure 11. 



 

Figure 11: Comparison of the results of the three algorithms 

As you can see from the table, the best recommender is a collaborative recommender with ALS. 
The performance of the collaborative recommender system with EM and SVD, as well as the content-
based recommender system, lags far behind it. 

7. Conclusions 

As a result of the research, an overview of the latest and most well-known methods, tools, algorithms, 
and approaches to solving the problem of recommendation generation is made, such as: neural 
collaborative filtering, variational autoencoder, contextual sequence learning, wide and deep neural 
networks, and DLRM. 

The most important goal of recommender systems is to facilitate the process of choosing video 
games and provide players with games that best match their interests and preferences. To analyze 
user preferences and generate personalized video game recommendations, we proposed three 
algorithms: a collaborative recommender with ALS, a collaborative recommender with EM and SVD, 
and a content-based recommender, and analyzed their performance results. We used two different 
datasets for testing, available for free on Kaggle and containing data obtained from Steam. The first 
dataset is the user dataset, which contains a total of 200,000 rows, including 5,155 unique games and 
12,393 unique users. The second dataset is the game dataset, with a total of 51920 game 
characteristics. As a result of the study, the collaborative recommender with ALS performed best. It 
was implemented in a prototype video game recommender system. After selecting and evaluating 5 
games from the list, the user will be able to receive 5 video game recommendations generated by the 
system based on his/her choice. This can significantly improve the gaming experience of users, 
making the process of choosing games more personalized and efficient. 

Creating this project helped us better understand how a collaborative filtering system works. It 
doesn't use any information about objects but relies entirely on user interaction with objects and 
matrix operations to generate recommendations. We needed to find an approach to work with the 
dataset (only user data for the collaborative recommender), as it contains only implicit data. Both 
approaches handle implicit data differently to generate recommendations. For example, Singular 
Value Decomposition (SVD) is used to remove some noise data as a dimensionality reduction method 
to make it easier to work with a large dataset. 

On the other hand, the content-based approach requires a description of the elements to generate 
recommendations. Some problems were found when implementing the content-based recommender 
because it uses two different datasets. When the project started using two datasets (user and game), 
it was expected to find all the games available in the user dataset in the game dataset since they both 
come from Steam. However, as the project progressed, it was concluded that this was not the case. 
Among the 5152 game titles available in the user dataset, only 3036 game titles were found in the 
game dataset. This poses a serious problem for a content-based recommender because it relies on the 
assumption that all games available in the user dataset have information in the game dataset. Because 
of this, it is impossible to create recommendations for every game that a user has purchased. 



Moreover, this problem made it impossible to create recommendations for multiple users. This 
probably affects the performance of the content-based algorithm. 

Overall, the results are satisfactory. Moreover, it has provided a better understanding of 
recommender systems' complexity, stringent requirements, and importance in real life. Of course, 
there are ways to improve the performance of this model by using more complex algorithms or 
training it on a better dataset. You can also deepen the system itself by integrating it with a user's 
Steam account or the history of previous generations. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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