
AI Agent for conversational Q&A over SaaS codebase
using large language models

Olga Cherednichenko1,†, Dmytro Sytnikov2,†, Nazarii Romankiv3,* ,†, Nataliia
Sharonova4,†, and Polina Sytnikova5,†

1 Bratislava University of Economics and Management, Furdekova 16, Bratislava, Slovak Republic
2 National University of Radio Electronics, 14, Nauki prospect, Kharkiv, 61166, Ukraine
3 National University of Radio Electronics, 14, Nauki prospect, Kharkiv, 61166, Ukraine
4 National Technical University, “Kharkiv Polytechnic Institute”, 2, Kyrpychova str., Kharkiv, 61002, Ukraine
5 National University of Radio Electronics, 14, Nauki prospect, Kharkiv, 61166, Ukraine

Abstract
Software as a Service (SaaS) has become the dominant model in modern software, yet its sprawling,
complex codebases pose daunting challenges for developers—especially as new engineers onboard to
the project. Traditional keyword-based search and static documentation struggle to address this scale.
Meanwhile, recent breakthroughs in Large Language Models (LLMs) offer powerful capabilities in
natural language understanding and semantic search. By leveraging these models, it becomes possible
to build conversational AI agents that let developers query a SaaS codebase in natural language. In
doing so, the agent can surface contextually relevant snippets, streamline problem-solving, and
accelerate the onboarding process. This article introduces an AI Agent for conversational Question
Answering over SaaS code, using LLMs to streamline information retrieval, accelerate onboarding, and
enhance overall productivity. The proposed approach leverages natural language interactions to
deliver rapid, relevant answers directly from the codebase, spotlighting the transformative potential of
LLM-based solutions in large-scale SaaS environments.

Keywords
AI Agent, LLMs, SaaS, Langchain, Python1

1. Introduction

Modern technologies and the Internet have enabled Software as a Service (SaaS) [1] models to not
only emerge but become the dominant paradigm in the global software landscape. As highlighted
in prior reports, the SaaS market continues its robust expansion, underpinning critical digital
infrastructure across industries. Developing and maintaining these sophisticated SaaS applications,
however, presents significant engineering challenges, especially with the increasing scale and
complexity of cloud-native [2] architectures. A key challenge within SaaS development is efficiently
navigating and understanding the vast, intricate codebases that constitute these systems. Developers
often face substantial challenges in locating specific information, comprehending legacy code, and
effectively collaborating on large projects. SaaS applications, by their very nature, are often
composed of millions of lines of code, distributed across numerous modules, microservices, and
repositories. This architectural complexity creates a significant cognitive load for development
teams.

For experienced developers, even those familiar with the system, keeping abreast of changes,
understanding the interplay of different components, and efficiently debugging issues can be
arduous. They grapple with understanding legacy code, tracing dependencies across services, and
ensuring consistent behavior in a rapidly evolving environment. However, these challenges are

ISW-2025: Intelligent Systems Workshop at 9th International Conference on Computational Linguistics and Intelligent
Systems (CoLInS-2025), May 15–16, 2025, Kharkiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 olga.cherednichenko@vsemba.sk (O. Cherednichenko); dmytro.sytnikov@nure.ua (D. Sytnikov);
ayzrian@gmail.com (N. Romankiv); nvsharonova@ukr.net (N. Sharonova); polina.sytnikova@nure.ua (P. Sytnikova)

 0000-0002-9391-5220 (O. Cherednichenko); 0000-0003-1240-7900 (D. Sytnikov); 0009-0004-9893-6823 (N.
Romankiv); 0000-0002-8161-552X (N. Sharonova); 0000-0002-6688-4641 (P. Sytnikova)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

acutely amplified for developers who are new to a SaaS project. Onboarding into a large SaaS
codebase is often a daunting experience. Newcomers face a steep learning curve as they attempt to
grasp the system's architecture, business logic, coding conventions, and intricate interdependencies.
They struggle to locate relevant documentation (which is often outdated or incomplete), identify
subject matter experts, and quickly become productive contributors. This prolonged onboarding
period directly impacts development velocity, team efficiency, and ultimately, the ability to innovate
and respond to market demands.

Traditional methods for code exploration exacerbate these issues. Keyword-based code searches,
while useful for simple tasks, fall short when developers need to understand the context and
semantics of code. Static documentation, even when meticulously maintained, often lags behind the
pace of change in agile SaaS development. Consequently, developers, especially newcomers, spend
excessive amounts of time simply searching for information, deciphering existing code, and asking
colleagues for clarification – time that could be better spent on feature development and innovation.

Concurrently, the field of conversational interfaces is rapidly advancing, driven by breakthroughs
in Large Language Models (LLMs) [3]. LLMs are revolutionizing human-computer interaction,
demonstrating remarkable capabilities in natural language understanding, contextual awareness,
and information retrieval. The potential of LLMs extends significantly into software engineering,
particularly in enhancing developer productivity and knowledge access within complex systems.
Imagine the efficiency gains if developers could ask questions about the SaaS codebase in natural
language and receive intelligent, contextually relevant answers directly from the code itself.

In this article, we explore the application of Large Language Models to address the critical
challenge of knowledge access within SaaS codebases. We propose an AI Agent specifically designed
for conversational Question Answering (Q&A) over SaaS code. This agent leverages the power of
LLMs to provide developers with an intuitive conversational interface for querying the codebase,
thereby streamlining information retrieval, accelerating problem-solving, and facilitating a deeper
understanding of complex SaaS architectures.

2. Related works

In the research [4], authors explored how and why software engineering students use LLMs (e.g.,
Copilot, ChatGPT) when doing a non-trivial team project. LLMs can be a strong enabler in academic
team projects—particularly for early-stage scaffolding, or for smaller “standard” tasks (e.g., a DFS, a
specific data structure). Hence, the LLMs here were used mostly to generate the code, and all
interaction with LLM happened via prompt engineering.

K. Tamberg and H. Bahsi in their work [5], shows that LLM-based vulnerability detection can
indeed match or exceed certain static tools in terms of recall and F1, especially with sophisticated
prompts. They have utilized prompting variants like self-refinement approaches, chain of thought,
tree of thoughts etc. However, major disadvantages are its higher cost and time, plus potential for
false positives or classification mistakes. For everyday code scanning at scale, tools like CodeQL or
SpotBugs remain strong.

The work [6] demonstrates that LLM-based automated repair of Ansible scripts is both feasible
and promising. Although still imperfect—only about 70% of fixes are labeled as helpful, and identical
patches are rare— the approach can significantly assist developers in rectifying Ansible issues for
Edge–Cloud infrastructures. LLM-based reviews might be valuable for deeper or broader security
audits, where coverage of “unusual” vulnerabilities—and having a natural-language explanation—
becomes important.

In another work [7], the authors built a web platform where developers can enter software
requirements (in natural language). The service uses ChatGPT (GPT-3.5) to produce source code. The
tool includes:

 a User Interface for controlling parameters (like temperature, max tokens);
 a Prompt Builder that wraps user instructions in a structured “prompt engineering” format
to systematically guide ChatGPT;
 a Backend Service written in Java, supporting streaming calls to ChatGPT for multi-turn
code generation.

The authors propose systematically adding specific instructions around the user’s initial prompt.
This includes setting a “role” for ChatGPT (e.g., “system role = code expert”), and including coding
conventions, file structures, explicit requirements, examples, etc.

The paper [8] provides a structured introduction to LangChain’s main features and typical usage
patterns, highlighting how developers can build practical and robust LLM-based solutions quickly.
LangChain drastically speeds up development of LLM apps by unifying prompt engineering,
conversation memory, multi-step “chains,” retrieval from user data, and agent-based logic in a single
framework. LangChain supports a variety of end-to-end LLM-based applications. The authors
outline scenarios such as:

 chatbots that maintain conversation context and personality;
 autonomous agents (like AutoGPT variants) that iterate steps to accomplish tasks;
 document Q&A: let the user load data (PDF, CSV, websites, etc.), then query it in plain
language;
 extraction and summarization pipelines that read text from multiple files, chunk them, and
produce structured output or short summaries.
The paper [9] delivers a structured analysis of how large language models (LLMs) can be adapted

for code summarization with minimal labeled data. It focuses on Codex (a GPT-based model) to
demonstrate the feasibility and advantages of few-shot approaches, especially for project-specific
tasks. Unlike traditional methods that rely on extensive fine-tuning, the paper shows how prompting
the model with only a handful of examples can deliver high-quality summaries of source code. The
authors also emphasize the value of local, project-specific examples, leveraging domain vocabulary,
naming conventions, and code idioms that a project uses. They note that while zero-shot or one-shot
prompting significantly underperforms, transitioning to 10-shot quickly elevates BLEU scores to
surpass heavily fine-tuned alternatives. This underscores LLMs’ capacity for fast adaptation with
minimal overhead. A major takeaway is that each software project has unique identifiers, domain
terms, and patterns. A small amount of localized data helps the LLM align with these local
conventions more effectively than broad, cross-project data alone. This minimal-sample training
paradigm could be generalized to various software engineering tasks that likewise benefit from the
synergy of local domain context and powerful generative models.

The paper [10] provides a structured investigation into whether conversational, in-IDE AI
assistants can improve developers’ ability to read, grasp, and modify unfamiliar code. Dubbed GILT
(Generation-based Information-support with LLM Technology), the authors’ prototype leverages
GPT-3.5-turbo to produce on-demand, context-aware help – without requiring users to craft
specialized prompts. Instead, GILT automatically includes highlighted code as context and offers pre-
generated “buttons” for explaining code sections or giving API usage examples. GILT embeds the
code snippet or the entire file directly into queries for the LLM. This approach means developers can
easily select a portion of code to get a summary, an explanation of libraries or API calls, or usage
examples – significantly reducing the friction of copy-pasting code into a separate web-based AI
tool. Quantitative results show that participants using GILT correctly completed more sub-tasks,
though they did not complete them significantly faster nor achieve significantly higher quiz scores.
Interestingly, the biggest productivity boosts appeared among professional developers, whereas
students did not benefit as strongly.

The paper [11] aims to improve few-shot prompting for code summarization by automatically
augmenting prompt text with semantic information derived from static code analysis. While large
language models (LLMs) already show impressive performance at many software-engineering tasks,
most approaches still rely on providing raw code snippets (plus a handful of examples) in the prompt.
This work proposes a more principled way to supply domain-relevant data—like data-flow graphs,
tagged identifiers, and repository metadata—so that the LLM can generate higher-quality summaries
of new, unseen code.

Therefore, recent research underscores the growing adoption of LLMs in software engineering
activities—from generating standard code fragments [4], to detecting vulnerabilities [5], patching
configuration scripts [6], and providing context-aware coding assistance [7,10]. Studies also reveal
how framework-based approaches (e.g., LangChain) streamline the development of robust LLM-
driven solutions [8], while minimal data “few-shot” strategies enable local, project-specific
adaptation for tasks like code summarization [9,11]. However, none of these efforts fully explore an
end-to-end “AI Agent” capable of natural, conversational Q&A specifically tailored to large and

evolving SaaS codebases. Hence, the goal of this article is to build an AI Agent that leverages LLM
capabilities, to help engineers get answers with regards to the complex SaaS codebases, help them
onboard quickly, troubleshoot problems, and facilitate deeper understanding of the codebase.

3. Methods and Materials

We selected Python as the primary programming language due to its extensive ecosystem of libraries
and frameworks essential for Artificial Intelligence and Natural Language Processing (NLP). Python's
readability and versatility facilitate rapid prototyping and integration of diverse components,
including code parsing, data preprocessing, and interaction with Large Language Models.

Also, our choice of FastAPI for constructing the backend API of the AI Agent was driven by a
confluence of factors crucial for building a high-performance, developer-friendly, and production-
ready system. Specifically, FastAPI offers several key advantages:

 Exceptional Performance. FastAPI is built on top of Starlette and Pydantic, leveraging
asynchronous Python capabilities to achieve remarkable speed and efficiency. This asynchronous
nature is paramount for our AI Agent, as it needs to handle concurrent user queries, interact with
LLMs (which are often accessed via asynchronous APIs), and perform vector database searches,
all without becoming a bottleneck. FastAPI's performance ensures low latency in responses,
leading to a more interactive and responsive user experience for developers querying the SaaS
codebase.
 Asynchronous Capabilities and Concurrency. As highlighted earlier, FastAPI's asynchronous
nature is critical. It natively supports asynchronous request handling, allowing the API to
efficiently manage concurrent requests and perform non-blocking operations, such as calling
external LLM APIs or querying the vector database. This is in stark contrast to traditional
synchronous frameworks, which can become easily overwhelmed under load. For a SaaS codebase
Q&A system that might be accessed by multiple developers simultaneously, FastAPI's
concurrency handling is vital for maintaining responsiveness and scalability.
To streamline the development and orchestration of our AI Agent, we utilized Langchain. This

framework provides crucial abstractions and tools for building applications powered by Large
Language Models. Langchain simplifies tasks such as prompt management, model interaction,
retrieval augmentation, and creating conversational agents, significantly accelerating our
development process and enabling a modular architecture.

To manage asynchronous tasks, particularly the processing of codebase changes and updates, we
integrated RabbitMQ as a message broker. RabbitMQ facilitates a decoupled architecture, allowing
us to efficiently handle code ingestion, parsing, and indexing as background processes. This
asynchronous processing ensures that the AI Agent remains responsive to user queries even during
codebase updates and enhances the system's scalability and resilience by distributing workload
across different components

To efficiently manage and search the vector embeddings representing code snippets, we chose
OpenSearch. We selected OpenSearch as our vector storage and search engine because it provides a
comprehensive and highly scalable solution specifically tailored for the demands of semantic code
search and retrieval in large SaaS codebases. OpenSearch offers a compelling set of features that
make it ideally suited for our AI Agent:

 Native Vector Database Functionality. OpenSearch has robust native support for vector
databases and similarity search. This is not just an add-on feature but deeply integrated into its
architecture. It allows us to efficiently index and query the vector embeddings generated by text-
embedding-3-large, enabling semantic search capabilities that go beyond simple keyword
matching. OpenSearch supports various similarity metrics (like cosine similarity, which is
commonly used for embeddings), allowing us to find code snippets that are semantically similar
to user queries.
 Scalability and Performance for Large Codebases. SaaS codebases can be massive, containing
millions of lines of code and numerous files and modules. OpenSearch is designed for scalability
and high-performance search over large datasets. Its distributed architecture allows it to handle
the indexing and querying of vast vector datasets efficiently. This scalability is crucial for our AI
Agent to remain responsive and performant even when deployed on extensive SaaS codebases.

OpenSearch's ability to scale horizontally by adding more nodes ensures that the system can grow
with the increasing size and complexity of the codebase it analyzes.
 Full-Text Search Capabilities (Beyond Vector Search). While vector search is central to our
semantic code retrieval, OpenSearch is also a powerful full-text search engine. This allows us to
combine vector search with traditional keyword-based search if needed. For example, we could
potentially refine vector search results by also incorporating keyword matches or use full-text
search for tasks like finding specific code patterns or variable names. This flexibility to leverage
both semantic and keyword search within a single platform is advantageous.
 Integration with Cloud Environments and Deployment Options. OpenSearch is easily
deployable in various cloud environments and offers flexible deployment options, including
managed services from cloud providers. This simplifies the deployment and management of our
AI Agent in real-world SaaS development settings, which often rely on cloud infrastructure. Its
cloud-native design makes it a practical choice for integrating with modern SaaS development
workflows.
We employed MongoDB as our primary database to store various application data, including

processed code representations, user interactions, and conversational history. MongoDB's NoSQL
nature and flexible schema are advantageous for handling semi-structured data and evolving data
models common in application development. Its scalability and document-based structure offer
efficient storage and retrieval for diverse data elements within our system.

For our AI Agent, we strategically selected a suite of Large Language Models from Anthropic and
Voyage AI, each chosen for its specialized strengths in different aspects of our system:

 Claude 3.5 Haiku [12] (for Code Summarization and Entity Extraction). We chose Claude 3.5
Haiku for the initial stage of code processing, specifically for its exceptional speed and efficiency
in summarizing code files and extracting key domain entities. Haiku's rapid processing
capabilities are crucial for quickly generating concise summaries of code modules, which are then
used to augment the codebase representation. Its proficiency in identifying key entities within
code (like class names, function descriptions, and module purposes) allows us to enrich the
indexed data with semantic information, improving the relevance of search results and the LLM's
contextual understanding. The focus on speed with Haiku is vital for efficient preprocessing of
large SaaS codebases, ensuring a scalable and responsive ingestion pipeline.
 Claude 3.7 Sonnet [13] (for Conversational Question Answering). For the core conversational
Q&A functionality, we selected Claude 3.7 Sonnet. Sonnet offers a superior balance of intelligence
and speed compared to larger, more computationally intensive models, making it ideal for
interactive applications. Its advanced natural language understanding and reasoning abilities
enable it to effectively interpret complex developer queries about the codebase and generate
contextually accurate and helpful answers. Claude 3.7 Sonnet's ability to maintain context over
multi-turn conversations is essential for a fluid and productive developer experience, allowing
for iterative question refinement and deeper codebase exploration.
 To generate meaningful vector representations of our text data—including both raw code
and the summaries produced by Claude 3.5 Haiku—we utilized the text-embedding-3-large[14]
model. This model is specifically designed for text embeddings and excels at capturing semantic
nuances within written material. We opted for a vector size of 1024 to strike a balance between
semantic richness and storage efficiency. Given the potentially massive volume of code in SaaS
applications, keeping the vector dimension at 1024 significantly optimizes storage requirements
within our OpenSearch vector database and accelerates similarity search operations. While
smaller vector sizes could further reduce storage needs, they might sacrifice some fine-grained
semantic detail compared to higher dimensions. Our experiments showed that a 1024-dimensional
vector space effectively captures the essential semantic information for robust text retrieval and
question answering in our SaaS context, offering a practical trade-off for scalability.
As for the testing ground we have selected the open source codebase for ERP/CRM [15]. It is a

well-suited codebase for evaluating your AI Agent for several reasons:

 Representative SaaS Codebase Architecture. MERN stack foundation reflects the architecture
of many modern SaaS applications. The use of Node.js for the backend, React.js for the
frontend, and MongoDB for data storage is a common pattern in cloud-native development.
This makes it a realistic testing ground for your AI Agent, as the challenges encountered

within the codebase are likely to be representative of those in real-world SaaS projects. The
modular nature implied by the MERN stack and mention of Ant Design components provides
a level of architectural complexity that is valuable for testing the agent's ability to navigate
and understand component interdependencies.

 Meaningful Business Domain Complexity. ERP and CRM systems, inherently involve
complex business logic and data models. Concepts like invoices, quotes, customers, accounts,
and inventory are interconnected and have specific business rules governing their behavior.
This domain complexity ensures that questions posed to the AI Agent will require more than
just simple keyword searches; they will necessitate understanding the underlying business
logic and relationships within the code. This complexity is essential for demonstrating the
value of a conversational AI Agent that can reason about the codebase's semantics, not just
find code snippets.

4. Experiment

The AI Agent architecture consists from tow major components, the code ingestion pipeline and the
user interface to answer engineer’s questions. Let’s review the ingestion pipeline represented on the
diagram (Fig. 1).

Figure 1: Code Ingestion Pipeline

 The pipeline reads each file one by one. It extracts raw elements (such as classes, functions,
methods, or comments) and then relays them in a structured text format for further processing.
 All extracted content is funneled into a central queue. This enables subsequent operations—
like summarization or entity extraction—to run in parallel or asynchronously as resources permit.
Managing files through this queue architecture allows for seamless scaling when large sets of
files need to be handled.
 Each file’s contents are sent to a Large Language Model, “Claude 3.5 Haiku,” using carefully
crafted prompts. The LLM returns concise summaries capturing key functionality, etc. Those
summaries are then prepared for integration into the source file.
 The generated summary is inserted into the original source code as comment blocks at the
file’s beginning. This step automatically enriches the code with human-readable explanations.
 Parallel to summary creation, another LLM-based approach isolates important domain-
specific entities (e.g. specialized terminology, domain entities, etc.). This yields a structured set of
terms, which is then associated with the file to assist in later stages of indexing and search.
 With documentation and domain entities in place, the system uses a specialized model text-
embedding-3-large to create vector embeddings. These embeddings encode the semantic
relationships within the code, placing similar or related files closer together in a high-dimensional
vector space.
 Finally, the generated embeddings and accompanying metadata (file paths, identified
entities, etc.) are stored in an OpenSearch index. This indexed information can be efficiently
queried, using vector search.

The user interface architecture, as well as full integration with backend and AI agent
infrastructure depicted on the following diagram (Fig. 2).

Figure 2: End-to-end integration of UI and backend with AI Agent infrastructure

This diagram (Fig. 2) illustrates the architecture of the Conversational AI Agent, showing how
user questions are processed and answered.

The process starts when a User interacts with the system by submitting a question through a
front-end interface component.

This interface then sends the user's question to a backend server component. This server
component, which is the central processing unit, performs several actions.

First, it initiates a search for relevant code within a specialized data storage that holds indexed
representations of the codebase. This search retrieves code snippets related to the user's question.

Second, the server component formulates a request for an external language model service. This
request includes the user's question, the relevant code snippets found in the search, and potentially
the history of the ongoing conversation.

The external language model service then generates a natural language response based on the
provided information and sends it back to the server component.

The server component also stores the conversation history and internal state in a database for
managing ongoing interactions.

Finally, the server component sends the generated response back to the front-end interface
component, which then displays the answer to the User.

In essence, the system allows users to ask questions which are processed by a backend server to
retrieve relevant code and then leverages an external AI model to generate a natural language
answer, all managed through a user-friendly interface.

Next diagram (Fig. 3), represents cognitive architecture of our AI Agent. A cognitive architecture
for an AI agent is a framework that outlines the fundamental components and control mechanisms
of the agent's "mind." It defines how different cognitive functions, such as memory, reasoning, and
action selection, are organized and interact to enable intelligent behavior.
Let’s review each step in the cognitive architecture:

 Rewrite User Question. the agent first refines or reformulates the original question to
optimize it for effective code or knowledge retrieval. This might involve adding context,
clarifying ambiguities, or adjusting terminology to align with the indexing and search
mechanisms. What’s more important the search query will be rewritten taking into account
the whole conversation context.

 Search for Relevant Code Fragments. Using the optimized question, the agent conducts a
search against indexed code in OpenSearch index to locate potentially relevant snippets. This

involves vector-based semantic search, at this moment we generate an embedding of the user
query via text-embedding-3-large and perform vector search.

Figure 3: Cognitive architecture of AI Agent

 Assess Relevancy of Found Fragments. The retrieved snippets are evaluated to ensure they
directly address the user’s query. This step filters out tangential or low-quality results,
aiming to keep only the most pertinent information. If the fragments are not relevant the
process loops back to Step 1, prompting a re-analysis or further refinement of the question.
This feedback loop continues until sufficiently relevant fragments are located or the agent
deems the query unsolvable.

 Generate Answer. Using the confirmed relevant code or knowledge fragments, the agent
formulates a comprehensive answer. This response may be an explanation, code fix, or
guidance, depending on the user’s original intent.

To evaluate the performance of the AI Agent, we have prepared a set of questions covering the
business domain, how-tos, etc. related to the system.

5. Results

5.1. Ingestion Pipeline

First, we estimated the performance and cost of our ingestion pipeline, that takes all the files from a
codebase, and indexes into a vector database, while generating summaries for each file, and
extracting key domain entities. The table 1, contains key metrics per averaged per hundred files
processed.

Indeed, the current processing times per hundred files is quite big and takes on average nine
hundred thirty seconds. This is caused by long waiting times for LLMs to generate summaries and
extract key entities for each file. Though, this can be significantly optimized, by parallelizing
processing of each file, and scaling the consumer of the ingestion queue horizontally.

The cost of processing per hundred files is acceptable, considering that we selected cost-efficient
LLM and embedding models. Albeit, on a huge scale if we ever need to process hundreds of thousands
of files daily, this solution will require a self-hosting of an LLM to be economically viable.

Table 1
Statistics of ingestion pipeline

Metric Value
Processing Time 930 seconds
Cost of Embedding 0,012$
Cost of Summarization 0,4$
Cost of Entity Extraction 0,13$

5.2. AI Agent Interaction

The figure 4 shows the user interface of AI Chat, the interface uses a straightforward conversational
layout, with messages stacked vertically. Each message block is clearly separated, making it easy for
users to scan through the dialogue. Messages from the “AI Chat Assistant” and the user are visually
differentiated. This reinforces who is speaking and enhances readability.

The user can see the history of the chat, each question and answer displayed as a separate bubble.
What’s more important that the at the bottom of AI response, there’s a short list labeled “Sources”
with references to various source code files (e.g., backend/controllers/invoiceController/index.js),
which enables the engineer to jump to the relevant source code quickly.

Figure 4: User Interface of AI Agent

After benchmarking our AI Agent, we have capture 2 key metrics in the table 2, namely average
response time and cost per answer. Albeit, average response time seems high, taking into account
that comparing it to a time it would take for an engineer to find out relevant information, this is a
great result, for a cost of just 0.004$ per answer.

Table 2
Statistics of bot usage

Metric Value
Average Response Time 28s
Average Cost of Answer 0.004$

5.3. Example of answer

To showcase the capabilities of developed AI Agent, we provide an example of generated answer.
Question – How does invoicing works in our system?
Answer –

1. Invoice Lifecycle Management
The invoicing system supports a full lifecycle of invoice management with multiple key components:
A. Invoice Creation
- Supports creating invoices with detailed line items
- Calculates financial metrics automatically:
 * Subtotal
 * Tax total
 * Discount
 * Total amount
- Assigns initial status (draft, pending, etc.)
B. Invoice Statuses
The system tracks multiple invoice statuses:
- Draft: Initial invoice state
- Pending: Invoice issued but not paid
- Overdue: Payment deadline has passed
- Partially Paid: Some payment received
- Paid: Full payment completed
- Unpaid: No payment received
2. Financial Calculation Mechanics
- Automatic calculation of:
 * Item-level totals (quantity * price)
 * Subtotal
 * Tax total (based on configurable tax rate)
 * Discount application
- Precise financial calculations using a dedicated calculate helper
3. Invoice Management Features
A. Pagination Controller
- Supports flexible invoice list retrieval
- Features:
 * Paginated results
 * Sorting capabilities
 * Search across multiple fields
 * Filtering options
B. Invoice Summary Dashboard
- Generates comprehensive invoice metrics
- Tracks:
 * Total invoice count and amount
 * Status distribution percentages
 * Payment performance
 * Unpaid/partially paid amounts

4. PDF Generation
- Dynamically generates professional PDF invoices
- Supports multiple languages and currency formatting
- Uses Pug templates for consistent document design
5. Update Mechanism
- Allows modification of existing invoices
- Recalculates financial metrics on update
- Automatically adjusts payment status based on payments received
6. Key Technical Implementation Details
- Uses MongoDB for data storage
- Mongoose for data modeling
- Supports flexible querying and aggregation
- Implements server-side pagination
- Provides comprehensive error handling
Assumptions:
- The system is designed for businesses needing detailed financial tracking
- Supports multi-currency and multi-language operations
- Intended for small to medium-sized businesses
Potential Improvements/Questions:
- How are recurring invoices handled?
- What's the process for invoice reconciliation?
- Are there integrations with accounting systems?
Would you like me to elaborate on any specific aspect of the invoicing system?

6. Discussions

The presented AI Agent for conversational Q&A over SaaS codebases demonstrates tangible benefits
in addressing one of the core difficulties in modern cloud-native software engineering: efficient
knowledge retrieval and onboarding. By combining Large Language Models (LLMs) with vector-
based semantic search, our system delivers contextually relevant information to developers in an
intuitive dialogue format, significantly reducing the time spent on manual code exploration.

Our solution stands on the shoulders of recent advances in LLM-driven software engineering.
Similar to prior research on code generation [4], vulnerability detection [5], and automated repair
[6], we leverage LLMs to enhance developer productivity—though our focus differs by aiming for
end-to-end conversational Q&A tailored to large SaaS codebases. As with framework-based
approaches (e.g., LangChain [8]) and few-shot strategies [9,11], our system extends these concepts
into a specialized domain: assisting developers in navigating large, complex, and rapidly evolving
SaaS projects.

One direct advantage of this approach is the rapid onboarding of new engineers. Traditional
knowledge transfer in SaaS environments is often slowed by outdated documentation and scattered
institutional knowledge. Our AI Agent alleviates these bottlenecks by maintaining updated semantic
indexes (via OpenSearch) and human-readable, LLM-generated summaries embedded within the
code. This aligns with insights from [7,10], emphasizing how context-aware assistants integrated
into developers’ workflows reduce friction in comprehending unfamiliar code sections.

That said, several important considerations emerged:

 Performance and Cost. Our ingestion pipeline currently incurs both time (e.g., ~930 seconds
per 100 files) and cost (summarization, entity extraction, vector embeddings). Although this
is acceptable for moderately sized repositories, the pipeline must be parallelized and perhaps
distributed across multiple workers to handle massive enterprise-scale codebases rapidly. As
we observed, hosting self-managed LLMs may become more economical at high volumes,
echoing concerns from [5] on the cost-effectiveness of large-scale LLM usage.

 Potential for Hallucinations. Like other LLM-centric systems, the AI Agent may generate
confident yet inaccurate responses—an issue known as “hallucination”. While we mitigate
this risk via retrieval-augmented prompting (i.e., tying responses to source code snippets),

users must remain vigilant and confirm critical information. This challenge underlines the
need for continued advances in LLM alignment and validation techniques.

 Quality of Summaries and Entity Extraction. Although the Claude 3.5 Haiku model provides
fast and coherent summaries, there is no guarantee of perfect accuracy for especially intricate
modules or unconventional code structures. Ensuring robust domain adaptation—potentially
via local few-shot examples [9,11]—remains a key step to improving summarization
consistency. Similarly, entity extraction may overlook domain nuances unless carefully
guided by specialized prompts or additional training data.

 Scalability of Vector Indexing. While OpenSearch natively supports high-volume indexing,
maintaining real-time code coverage in dynamic SaaS projects can become computationally
intensive. Large refactoring or frequent incremental updates may necessitate micro-batch
ingestion or near-continuous indexing. Future work should explore incremental embedding
strategies that minimize re-processing time when only certain files change.

 Security and Privacy Implications. Embedding sensitive code and shipping it to external LLM
endpoints raises confidentiality concerns, especially for enterprise SaaS. Self-hosted or on-
premise LLM deployments could mitigate data-exposure risks but introduce new
complexities in model management and hardware costs.

7. Conclusions

Developing and maintaining a complex SaaS solution becomes ever-increasing challenging task,
especially as you need to scale your engineering team and onboard new engineers and get them up
to speed quickly. Therefore it’s important to apply modern techniques to let the engineers have
access to the latest information.

The article try to deal with this challenge, by means of introducing an AI Agent that is in context
of your codebase and can find relevant code fragments based on the user question and the chat
context, and what’s more important this happens in a conversational manner, where an engineer
can speak in a natural language. To achieve that we built an architecture that consists from two
parts. The first one is ingestion pipeline that indexes the codebase in a scalable manner, using queues,
to ensure that we can index huge SaaS codebases. The second part is user-interaction UI, where an
engineer can interact with AI Agent in a conversational manner, and get answers to his questions.

To achieve best performance of our AI Agent, we have selected a combination of Claude LLMs,
and text-embedding-3-large embedding model. As a vector storage we utilized OpenSearch, known
for its scalability and native vector search support.

Though it is worth to mention that the prototype that we developed still operates on the basis of
one “repository” and doesn’t have integration with remote VCS system like GitHub or GitLab, to
automatically re-index changes as they occur.

Apart from it, currently the AI Agent only has context of codebase, but not integrated into other
ecosystem of tooling that typical IT project uses, like Jira, Confluence etc. There is huge potential in
this work, to give the AI Agent access to knowledge from knowledge base, ticketing systems etc,
which could bring the quality of his answers to a new level. These capabilities to be explored in
future works.

Acknowledgements

The research study depicted in this paper is partially funded by the EU NextGenerationEU through
the Recovery and Resilience Plan for Slovakia under project No. 09I03-03-V01-00078.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] M. J. Kavis. Architecting the Cloud Design Decisions for Cloud Computing Service Models (SaaS,
PaaS, and IaaS), Wiley, New Jersey, NJ, 2014

[2] T. Erl, R. Puttini, Z. Mahmood. Cloud Computing, Concepts, Technology & Architecture 2nd.
ed., Pearson, 2023

[3] Large language model, URL: https://en.wikipedia.org/wiki/Large_language_model
[4] S. Rasnayaka, G. Wang, R. Shariffdeen and G. N. Iyer, An Empirical Study on Usage and

Perceptions of LLMs in a Software Engineering Project, 2024 IEEE/ACM International
Workshop on Large Language Models for Code (LLM4Code), Lisbon, Portugal, 2024, pp. 111-
118

[5] K. Tamberg and H. Bahsi, Harnessing Large Language Models for Software Vulnerability
Detection: A Comprehensive Benchmarking Study, in IEEE Access, vol. 13, pp. 29698-29717,
2025, doi:10.1109/ACCESS.2025.3541146

[6] S. Kwon, S. Lee, T. Kim, D. Ryu and J. Baik, Exploring LLM-Based Automated Repairing of
Ansible Script in Edge-Cloud Infrastructures, in Journal of Web Engineering, vol. 22, no. 6, pp.
889-912, September 2023, doi:10.13052/jwe1540-9589.2263

[7] Y. Li, J. Shi and Z. Zhang, An Approach for Rapid Source Code Development Based on ChatGPT
and Prompt Engineering, in IEEE Access, vol. 12, pp. 53074-53087, 2024,
doi:10.1109/access.2024.3385682

[8] Topsakal, Oguzhan & Akinci, T. Cetin, Creating Large Language Model Applications Utilizing
LangChain: A Primer on Developing LLM Apps Fast. International Conference on Applied
Engineering and Natural Sciences. 1. 1050-1056. doi:10.59287/icaens.1127

[9] Toufique Ahmed, Premkumar Devanbu, Few-shot training LLMs for project-specific code-
summarization, 2022 doi:10.48550/arXiv:2207.04237

[10] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu and B. Myers, Using an LLM to Help with
Code Understanding, 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE), Lisbon, Portugal, 2024, pp. 1184-1196, doi: 10.1145/3597503.3639187

[11] T. Ahmed, K. S. Pai, P. Devanbu and E. T. Barr, Automatic Semantic Augmentation of Language
Model Prompts (for Code Summarization), 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), Lisbon, Portugal, 2024, pp. 2720-2732

[12] Claude 3.5 Haiku \ Anthropic, URL: https://www.anthropic.com/claude/haiku
[13] Claude 3.7 Sonnet \ Anthropic, URL: https://www.anthropic.com/claude/sonnet
[14] Model - OpenAI API, URL: https://platform.openai.com/docs/models/text-embedding-3-large
[15] Ayzrian/idurar-erp-crm: Free Open Source ERP CRM Accounting Invoicing Software | Node Js

React, URL: https://github.com/Ayzrian/idurar-erp-crm

