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Abstract 
Software as a Service (SaaS) has become the dominant model in modern software, yet its sprawling, 
complex codebases pose daunting challenges for developers—especially as new engineers onboard to 
the project. Traditional keyword-based search and static documentation struggle to address this scale. 
Meanwhile, recent breakthroughs in Large Language Models (LLMs) offer powerful capabilities in 
natural language understanding and semantic search. By leveraging these models, it becomes possible 
to build conversational AI agents that let developers query a SaaS codebase in natural language. In 
doing so, the agent can surface contextually relevant snippets, streamline problem-solving, and 
accelerate the onboarding process. This article introduces an AI Agent for conversational Question 
Answering over SaaS code, using LLMs to streamline information retrieval, accelerate onboarding, and 
enhance overall productivity. The proposed approach leverages natural language interactions to 
deliver rapid, relevant answers directly from the codebase, spotlighting the transformative potential of 
LLM-based solutions in large-scale SaaS environments. 
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1. Introduction 

Modern technologies and the Internet have enabled Software as a Service (SaaS) [1] models to not 
only emerge but become the dominant paradigm in the global software landscape.  As highlighted 
in prior reports, the SaaS market continues its robust expansion, underpinning critical digital 
infrastructure across industries. Developing and maintaining these sophisticated SaaS applications, 
however, presents significant engineering challenges, especially with the increasing scale and 
complexity of cloud-native [2] architectures.  A key challenge within SaaS development is efficiently 
navigating and understanding the vast, intricate codebases that constitute these systems.  Developers 
often face substantial challenges in locating specific information, comprehending legacy code, and 
effectively collaborating on large projects. SaaS applications, by their very nature, are often 
composed of millions of lines of code, distributed across numerous modules, microservices, and 
repositories. This architectural complexity creates a significant cognitive load for development 
teams. 

For experienced developers, even those familiar with the system, keeping abreast of changes, 
understanding the interplay of different components, and efficiently debugging issues can be 
arduous. They grapple with understanding legacy code, tracing dependencies across services, and 
ensuring consistent behavior in a rapidly evolving environment. However, these challenges are 
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acutely amplified for developers who are new to a SaaS project. Onboarding into a large SaaS 
codebase is often a daunting experience. Newcomers face a steep learning curve as they attempt to 
grasp the system's architecture, business logic, coding conventions, and intricate interdependencies. 
They struggle to locate relevant documentation (which is often outdated or incomplete), identify 
subject matter experts, and quickly become productive contributors. This prolonged onboarding 
period directly impacts development velocity, team efficiency, and ultimately, the ability to innovate 
and respond to market demands. 

Traditional methods for code exploration exacerbate these issues. Keyword-based code searches, 
while useful for simple tasks, fall short when developers need to understand the context and 
semantics of code. Static documentation, even when meticulously maintained, often lags behind the 
pace of change in agile SaaS development. Consequently, developers, especially newcomers, spend 
excessive amounts of time simply searching for information, deciphering existing code, and asking 
colleagues for clarification – time that could be better spent on feature development and innovation. 

Concurrently, the field of conversational interfaces is rapidly advancing, driven by breakthroughs 
in Large Language Models (LLMs) [3]. LLMs are revolutionizing human-computer interaction, 
demonstrating remarkable capabilities in natural language understanding, contextual awareness, 
and information retrieval.  The potential of LLMs extends significantly into software engineering, 
particularly in enhancing developer productivity and knowledge access within complex systems.  
Imagine the efficiency gains if developers could ask questions about the SaaS codebase in natural 
language and receive intelligent, contextually relevant answers directly from the code itself. 

In this article, we explore the application of Large Language Models to address the critical 
challenge of knowledge access within SaaS codebases. We propose an AI Agent specifically designed 
for conversational Question Answering (Q&A) over SaaS code. This agent leverages the power of 
LLMs to provide developers with an intuitive conversational interface for querying the codebase, 
thereby streamlining information retrieval, accelerating problem-solving, and facilitating a deeper 
understanding of complex SaaS architectures. 

2. Related works 

In the research [4], authors explored how and why software engineering students use LLMs (e.g., 
Copilot, ChatGPT) when doing a non-trivial team project. LLMs can be a strong enabler in academic 
team projects—particularly for early-stage scaffolding, or for smaller “standard” tasks (e.g., a DFS, a 
specific data structure). Hence, the LLMs here were used mostly to generate the code, and all 
interaction with LLM happened via prompt engineering. 

K. Tamberg and H. Bahsi in their work [5], shows that LLM-based vulnerability detection can 
indeed match or exceed certain static tools in terms of recall and F1, especially with sophisticated 
prompts. They have utilized prompting variants like self-refinement approaches, chain of thought, 
tree of thoughts etc. However, major disadvantages are its higher cost and time, plus potential for 
false positives or classification mistakes. For everyday code scanning at scale, tools like CodeQL or 
SpotBugs remain strong. 

The work [6] demonstrates that LLM-based automated repair of Ansible scripts is both feasible 
and promising. Although still imperfect—only about 70% of fixes are labeled as helpful, and identical 
patches are rare— the approach can significantly assist developers in rectifying Ansible issues for 
Edge–Cloud infrastructures.  LLM-based reviews might be valuable for deeper or broader security 
audits, where coverage of “unusual” vulnerabilities—and having a natural-language explanation—
becomes important. 

In another work [7], the authors built a web platform where developers can enter software 
requirements (in natural language). The service uses ChatGPT (GPT-3.5) to produce source code. The 
tool includes: 

 a User Interface for controlling parameters (like temperature, max tokens); 
 a Prompt Builder that wraps user instructions in a structured “prompt engineering” format 
to systematically guide ChatGPT; 
 a Backend Service written in Java, supporting streaming calls to ChatGPT for multi-turn 
code generation. 



 

The authors propose systematically adding specific instructions around the user’s initial prompt. 
This includes setting a “role” for ChatGPT (e.g., “system role = code expert”), and including coding 
conventions, file structures, explicit requirements, examples, etc. 

The paper [8] provides a structured introduction to LangChain’s main features and typical usage 
patterns, highlighting how developers can build practical and robust LLM-based solutions quickly. 
LangChain drastically speeds up development of LLM apps by unifying prompt engineering, 
conversation memory, multi-step “chains,” retrieval from user data, and agent-based logic in a single 
framework.  LangChain supports a variety of end-to-end LLM-based applications. The authors 
outline scenarios such as:  

 chatbots that maintain conversation context and personality; 
 autonomous agents (like AutoGPT variants) that iterate steps to accomplish tasks; 
 document Q&A: let the user load data (PDF, CSV, websites, etc.), then query it in plain 
language; 
 extraction and summarization pipelines that read text from multiple files, chunk them, and 
produce structured output or short summaries. 
The paper [9] delivers a structured analysis of how large language models (LLMs) can be adapted 

for code summarization with minimal labeled data. It focuses on Codex (a GPT-based model) to 
demonstrate the feasibility and advantages of few-shot approaches, especially for project-specific 
tasks. Unlike traditional methods that rely on extensive fine-tuning, the paper shows how prompting 
the model with only a handful of examples can deliver high-quality summaries of source code. The 
authors also emphasize the value of local, project-specific examples, leveraging domain vocabulary, 
naming conventions, and code idioms that a project uses. They note that while zero-shot or one-shot 
prompting significantly underperforms, transitioning to 10-shot quickly elevates BLEU scores to 
surpass heavily fine-tuned alternatives. This underscores LLMs’ capacity for fast adaptation with 
minimal overhead. A major takeaway is that each software project has unique identifiers, domain 
terms, and patterns. A small amount of localized data helps the LLM align with these local 
conventions more effectively than broad, cross-project data alone. This minimal-sample training 
paradigm could be generalized to various software engineering tasks that likewise benefit from the 
synergy of local domain context and powerful generative models. 

The paper [10] provides a structured investigation into whether conversational, in-IDE AI 
assistants can improve developers’ ability to read, grasp, and modify unfamiliar code. Dubbed GILT 
(Generation-based Information-support with LLM Technology), the authors’ prototype leverages 
GPT-3.5-turbo to produce on-demand, context-aware help – without requiring users to craft 
specialized prompts. Instead, GILT automatically includes highlighted code as context and offers pre-
generated “buttons” for explaining code sections or giving API usage examples. GILT embeds the 
code snippet or the entire file directly into queries for the LLM. This approach means developers can 
easily select a portion of code to get a summary, an explanation of libraries or API calls, or usage 
examples – significantly reducing the friction of copy-pasting code into a separate web-based AI 
tool. Quantitative results show that participants using GILT correctly completed more sub-tasks, 
though they did not complete them significantly faster nor achieve significantly higher quiz scores. 
Interestingly, the biggest productivity boosts appeared among professional developers, whereas 
students did not benefit as strongly. 

The paper [11] aims to improve few-shot prompting for code summarization by automatically 
augmenting prompt text with semantic information derived from static code analysis. While large 
language models (LLMs) already show impressive performance at many software-engineering tasks, 
most approaches still rely on providing raw code snippets (plus a handful of examples) in the prompt. 
This work proposes a more principled way to supply domain-relevant data—like data-flow graphs, 
tagged identifiers, and repository metadata—so that the LLM can generate higher-quality summaries 
of new, unseen code.  

Therefore, recent research underscores the growing adoption of LLMs in software engineering 
activities—from generating standard code fragments [4], to detecting vulnerabilities [5], patching 
configuration scripts [6], and providing context-aware coding assistance [7,10]. Studies also reveal 
how framework-based approaches (e.g., LangChain) streamline the development of robust LLM-
driven solutions [8], while minimal data “few-shot” strategies enable local, project-specific 
adaptation for tasks like code summarization [9,11]. However, none of these efforts fully explore an 
end-to-end “AI Agent” capable of natural, conversational Q&A specifically tailored to large and 



 

evolving SaaS codebases. Hence, the goal of this article is to build an AI Agent that leverages LLM 
capabilities, to help engineers get answers with regards to the complex SaaS codebases, help them 
onboard quickly, troubleshoot problems, and facilitate deeper understanding of the codebase. 

3. Methods and Materials 

We selected Python as the primary programming language due to its extensive ecosystem of libraries 
and frameworks essential for Artificial Intelligence and Natural Language Processing (NLP). Python's 
readability and versatility facilitate rapid prototyping and integration of diverse components, 
including code parsing, data preprocessing, and interaction with Large Language Models. 

Also, our choice of FastAPI for constructing the backend API of the AI Agent was driven by a 
confluence of factors crucial for building a high-performance, developer-friendly, and production-
ready system. Specifically, FastAPI offers several key advantages: 

 Exceptional Performance. FastAPI is built on top of Starlette and Pydantic, leveraging 
asynchronous Python capabilities to achieve remarkable speed and efficiency. This asynchronous 
nature is paramount for our AI Agent, as it needs to handle concurrent user queries, interact with 
LLMs (which are often accessed via asynchronous APIs), and perform vector database searches, 
all without becoming a bottleneck. FastAPI's performance ensures low latency in responses, 
leading to a more interactive and responsive user experience for developers querying the SaaS 
codebase. 
 Asynchronous Capabilities and Concurrency. As highlighted earlier, FastAPI's asynchronous 
nature is critical. It natively supports asynchronous request handling, allowing the API to 
efficiently manage concurrent requests and perform non-blocking operations, such as calling 
external LLM APIs or querying the vector database. This is in stark contrast to traditional 
synchronous frameworks, which can become easily overwhelmed under load. For a SaaS codebase 
Q&A system that might be accessed by multiple developers simultaneously, FastAPI's 
concurrency handling is vital for maintaining responsiveness and scalability. 
To streamline the development and orchestration of our AI Agent, we utilized Langchain. This 

framework provides crucial abstractions and tools for building applications powered by Large 
Language Models. Langchain simplifies tasks such as prompt management, model interaction, 
retrieval augmentation, and creating conversational agents, significantly accelerating our 
development process and enabling a modular architecture. 

To manage asynchronous tasks, particularly the processing of codebase changes and updates, we 
integrated RabbitMQ as a message broker. RabbitMQ facilitates a decoupled architecture, allowing 
us to efficiently handle code ingestion, parsing, and indexing as background processes. This 
asynchronous processing ensures that the AI Agent remains responsive to user queries even during 
codebase updates and enhances the system's scalability and resilience by distributing workload 
across different components 

To efficiently manage and search the vector embeddings representing code snippets, we chose 
OpenSearch. We selected OpenSearch as our vector storage and search engine because it provides a 
comprehensive and highly scalable solution specifically tailored for the demands of semantic code 
search and retrieval in large SaaS codebases. OpenSearch offers a compelling set of features that 
make it ideally suited for our AI Agent: 

 Native Vector Database Functionality. OpenSearch has robust native support for vector 
databases and similarity search. This is not just an add-on feature but deeply integrated into its 
architecture. It allows us to efficiently index and query the vector embeddings generated by text-
embedding-3-large, enabling semantic search capabilities that go beyond simple keyword 
matching. OpenSearch supports various similarity metrics (like cosine similarity, which is 
commonly used for embeddings), allowing us to find code snippets that are semantically similar 
to user queries. 
 Scalability and Performance for Large Codebases. SaaS codebases can be massive, containing 
millions of lines of code and numerous files and modules. OpenSearch is designed for scalability 
and high-performance search over large datasets. Its distributed architecture allows it to handle 
the indexing and querying of vast vector datasets efficiently. This scalability is crucial for our AI 
Agent to remain responsive and performant even when deployed on extensive SaaS codebases. 



 

OpenSearch's ability to scale horizontally by adding more nodes ensures that the system can grow 
with the increasing size and complexity of the codebase it analyzes. 
 Full-Text Search Capabilities (Beyond Vector Search). While vector search is central to our 
semantic code retrieval, OpenSearch is also a powerful full-text search engine. This allows us to 
combine vector search with traditional keyword-based search if needed. For example, we could 
potentially refine vector search results by also incorporating keyword matches or use full-text 
search for tasks like finding specific code patterns or variable names. This flexibility to leverage 
both semantic and keyword search within a single platform is advantageous. 
 Integration with Cloud Environments and Deployment Options. OpenSearch is easily 
deployable in various cloud environments and offers flexible deployment options, including 
managed services from cloud providers. This simplifies the deployment and management of our 
AI Agent in real-world SaaS development settings, which often rely on cloud infrastructure. Its 
cloud-native design makes it a practical choice for integrating with modern SaaS development 
workflows. 
We employed MongoDB as our primary database to store various application data, including 

processed code representations, user interactions, and conversational history. MongoDB's NoSQL 
nature and flexible schema are advantageous for handling semi-structured data and evolving data 
models common in application development. Its scalability and document-based structure offer 
efficient storage and retrieval for diverse data elements within our system. 

For our AI Agent, we strategically selected a suite of Large Language Models from Anthropic and 
Voyage AI, each chosen for its specialized strengths in different aspects of our system: 

 Claude 3.5 Haiku [12] (for Code Summarization and Entity Extraction). We chose Claude 3.5 
Haiku for the initial stage of code processing, specifically for its exceptional speed and efficiency 
in summarizing code files and extracting key domain entities.  Haiku's rapid processing 
capabilities are crucial for quickly generating concise summaries of code modules, which are then 
used to augment the codebase representation. Its proficiency in identifying key entities within 
code (like class names, function descriptions, and module purposes) allows us to enrich the 
indexed data with semantic information, improving the relevance of search results and the LLM's 
contextual understanding.  The focus on speed with Haiku is vital for efficient preprocessing of 
large SaaS codebases, ensuring a scalable and responsive ingestion pipeline. 
 Claude 3.7 Sonnet [13] (for Conversational Question Answering). For the core conversational 
Q&A functionality, we selected Claude 3.7 Sonnet. Sonnet offers a superior balance of intelligence 
and speed compared to larger, more computationally intensive models, making it ideal for 
interactive applications.  Its advanced natural language understanding and reasoning abilities 
enable it to effectively interpret complex developer queries about the codebase and generate 
contextually accurate and helpful answers.  Claude 3.7 Sonnet's ability to maintain context over 
multi-turn conversations is essential for a fluid and productive developer experience, allowing 
for iterative question refinement and deeper codebase exploration. 
 To generate meaningful vector representations of our text data—including both raw code 
and the summaries produced by Claude 3.5 Haiku—we utilized the text-embedding-3-large[14] 
model. This model is specifically designed for text embeddings and excels at capturing semantic 
nuances within written material. We opted for a vector size of 1024 to strike a balance between 
semantic richness and storage efficiency. Given the potentially massive volume of code in SaaS 
applications, keeping the vector dimension at 1024 significantly optimizes storage requirements 
within our OpenSearch vector database and accelerates similarity search operations. While 
smaller vector sizes could further reduce storage needs, they might sacrifice some fine-grained 
semantic detail compared to higher dimensions. Our experiments showed that a 1024-dimensional 
vector space effectively captures the essential semantic information for robust text retrieval and 
question answering in our SaaS context, offering a practical trade-off for scalability. 
As for the testing ground we have selected the open source codebase for ERP/CRM [15]. It is a 

well-suited codebase for evaluating your AI Agent for several reasons: 

 Representative SaaS Codebase Architecture. MERN stack foundation reflects the architecture 
of many modern SaaS applications. The use of Node.js for the backend, React.js for the 
frontend, and MongoDB for data storage is a common pattern in cloud-native development. 
This makes it a realistic testing ground for your AI Agent, as the challenges encountered 



 

within the codebase are likely to be representative of those in real-world SaaS projects. The 
modular nature implied by the MERN stack and mention of Ant Design components provides 
a level of architectural complexity that is valuable for testing the agent's ability to navigate 
and understand component interdependencies. 

 Meaningful Business Domain Complexity. ERP and CRM systems, inherently involve 
complex business logic and data models. Concepts like invoices, quotes, customers, accounts, 
and inventory are interconnected and have specific business rules governing their behavior. 
This domain complexity ensures that questions posed to the AI Agent will require more than 
just simple keyword searches; they will necessitate understanding the underlying business 
logic and relationships within the code. This complexity is essential for demonstrating the 
value of a conversational AI Agent that can reason about the codebase's semantics, not just 
find code snippets. 

4. Experiment 

The AI Agent architecture consists from tow major components, the code ingestion pipeline and the 
user interface to answer engineer’s questions. Let’s review the ingestion pipeline represented on the 
diagram (Fig. 1). 
 

 
Figure 1: Code Ingestion Pipeline 
 

 The pipeline reads each file one by one. It extracts raw elements (such as classes, functions, 
methods, or comments) and then relays them in a structured text format for further processing. 
 All extracted content is funneled into a central queue. This enables subsequent operations—
like summarization or entity extraction—to run in parallel or asynchronously as resources permit. 
Managing files through this queue architecture allows for seamless scaling when large sets of 
files need to be handled. 
 Each file’s contents are sent to a Large Language Model, “Claude 3.5 Haiku,” using carefully 
crafted prompts. The LLM returns concise summaries capturing key functionality, etc. Those 
summaries are then prepared for integration into the source file. 
 The generated summary is inserted into the original source code as comment blocks at the 
file’s beginning. This step automatically enriches the code with human-readable explanations. 
 Parallel to summary creation, another LLM-based approach isolates important domain-
specific entities (e.g. specialized terminology, domain entities, etc.). This yields a structured set of 
terms, which is then associated with the file to assist in later stages of indexing and search. 
 With documentation and domain entities in place, the system uses a specialized model text-
embedding-3-large to create vector embeddings. These embeddings encode the semantic 
relationships within the code, placing similar or related files closer together in a high-dimensional 
vector space. 
 Finally, the generated embeddings and accompanying metadata (file paths, identified 
entities, etc.) are stored in an OpenSearch index. This indexed information can be efficiently 
queried, using vector search. 



 

The user interface architecture, as well as full integration with backend and AI agent 
infrastructure depicted on the following diagram (Fig. 2). 
 

 

Figure 2: End-to-end integration of UI and backend with AI Agent infrastructure 
 

This diagram (Fig. 2) illustrates the architecture of the Conversational AI Agent, showing how 
user questions are processed and answered. 

The process starts when a User interacts with the system by submitting a question through a 
front-end interface component. 

This interface then sends the user's question to a backend server component.  This server 
component, which is the central processing unit, performs several actions. 

First, it initiates a search for relevant code within a specialized data storage that holds indexed 
representations of the codebase. This search retrieves code snippets related to the user's question. 

Second, the server component formulates a request for an external language model service.  This 
request includes the user's question, the relevant code snippets found in the search, and potentially 
the history of the ongoing conversation. 

The external language model service then generates a natural language response based on the 
provided information and sends it back to the server component. 

The server component also stores the conversation history and internal state in a database for 
managing ongoing interactions. 

Finally, the server component sends the generated response back to the front-end interface 
component, which then displays the answer to the User. 

In essence, the system allows users to ask questions which are processed by a backend server to 
retrieve relevant code and then leverages an external AI model to generate a natural language 
answer, all managed through a user-friendly interface. 

Next diagram (Fig. 3), represents cognitive architecture of our AI Agent. A cognitive architecture 
for an AI agent is a framework that outlines the fundamental components and control mechanisms 
of the agent's "mind." It defines how different cognitive functions, such as memory, reasoning, and 
action selection, are organized and interact to enable intelligent behavior. 
Let’s review each step in the cognitive architecture: 

 Rewrite User Question. the agent first refines or reformulates the original question to 
optimize it for effective code or knowledge retrieval. This might involve adding context, 
clarifying ambiguities, or adjusting terminology to align with the indexing and search 
mechanisms. What’s more important the search query will be rewritten taking into account 
the whole conversation context. 

 Search for Relevant Code Fragments. Using the optimized question, the agent conducts a 
search against indexed code in OpenSearch index to locate potentially relevant snippets. This 



 

involves vector-based semantic search, at this moment we generate an embedding of the user 
query via text-embedding-3-large and perform vector search. 

 

Figure 3: Cognitive architecture of AI Agent 
 

 Assess Relevancy of Found Fragments. The retrieved snippets are evaluated to ensure they 
directly address the user’s query. This step filters out tangential or low-quality results, 
aiming to keep only the most pertinent information. If the fragments are not relevant the 
process loops back to Step 1, prompting a re-analysis or further refinement of the question. 
This feedback loop continues until sufficiently relevant fragments are located or the agent 
deems the query unsolvable. 

 Generate Answer. Using the confirmed relevant code or knowledge fragments, the agent 
formulates a comprehensive answer. This response may be an explanation, code fix, or 
guidance, depending on the user’s original intent. 

To evaluate the performance of the AI Agent, we have prepared a set of questions covering the 
business domain, how-tos, etc. related to the system. 

5. Results 

5.1. Ingestion Pipeline 

First, we estimated the performance and cost of our ingestion pipeline, that takes all the files from a 
codebase, and indexes into a vector database, while generating summaries for each file, and 
extracting key domain entities. The table 1, contains key metrics per averaged per hundred files 
processed. 

Indeed, the current processing times per hundred files is quite big and takes on average nine 
hundred thirty seconds. This is caused by long waiting times for LLMs to generate summaries and 
extract key entities for each file. Though, this can be significantly optimized, by parallelizing 
processing of each file, and scaling the consumer of the ingestion queue horizontally. 



 

The cost of processing per hundred files is acceptable, considering that we selected cost-efficient 
LLM and embedding models. Albeit, on a huge scale if we ever need to process hundreds of thousands 
of files daily, this solution will require a self-hosting of an LLM to be economically viable.  

 
Table 1 
Statistics of ingestion pipeline 

Metric Value 
Processing Time  930 seconds 
Cost of Embedding 0,012$ 
Cost of Summarization 0,4$ 
Cost of Entity Extraction 0,13$ 

 
5.2. AI Agent Interaction 

The figure 4 shows the user interface of AI Chat, the interface uses a straightforward conversational 
layout, with messages stacked vertically. Each message block is clearly separated, making it easy for 
users to scan through the dialogue. Messages from the “AI Chat Assistant” and the user are visually 
differentiated. This reinforces who is speaking and enhances readability. 

The user can see the history of the chat, each question and answer displayed as a separate bubble. 
What’s more important that the at the bottom of AI response, there’s a short list labeled “Sources” 
with references to various source code files (e.g., backend/controllers/invoiceController/index.js), 
which enables the engineer to jump to the relevant source code quickly. 

 

 

Figure 4: User Interface of AI Agent 
 



 

After benchmarking our AI Agent, we have capture 2 key metrics in the table 2, namely average 
response time and cost per answer. Albeit, average response time seems high, taking into account 
that comparing it to a time it would take for an engineer to find out relevant information, this is a 
great result, for a cost of just 0.004$ per answer. 

 
Table 2 
Statistics of bot usage 

Metric Value 
Average Response Time  28s 
Average Cost of Answer 0.004$ 

 
5.3. Example of answer 

To showcase the capabilities of developed AI Agent, we provide an example of generated answer. 
Question – How does invoicing works in our system? 
Answer –  

1. Invoice Lifecycle Management 
The invoicing system supports a full lifecycle of invoice management with multiple key components: 
A. Invoice Creation 
- Supports creating invoices with detailed line items 
- Calculates financial metrics automatically: 
  * Subtotal 
  * Tax total 
  * Discount 
  * Total amount 
- Assigns initial status (draft, pending, etc.) 
B. Invoice Statuses 
The system tracks multiple invoice statuses: 
- Draft: Initial invoice state 
- Pending: Invoice issued but not paid 
- Overdue: Payment deadline has passed 
- Partially Paid: Some payment received 
- Paid: Full payment completed 
- Unpaid: No payment received 
2. Financial Calculation Mechanics 
- Automatic calculation of: 
  * Item-level totals (quantity * price) 
  * Subtotal 
  * Tax total (based on configurable tax rate) 
  * Discount application 
- Precise financial calculations using a dedicated calculate helper 
3. Invoice Management Features 
A. Pagination Controller 
- Supports flexible invoice list retrieval 
- Features: 
  * Paginated results 
  * Sorting capabilities 
  * Search across multiple fields 
  * Filtering options 
B. Invoice Summary Dashboard 
- Generates comprehensive invoice metrics 
- Tracks: 
  * Total invoice count and amount 
  * Status distribution percentages 
  * Payment performance 
  * Unpaid/partially paid amounts 



 

4. PDF Generation 
- Dynamically generates professional PDF invoices 
- Supports multiple languages and currency formatting 
- Uses Pug templates for consistent document design 
5. Update Mechanism 
- Allows modification of existing invoices 
- Recalculates financial metrics on update 
- Automatically adjusts payment status based on payments received 
6. Key Technical Implementation Details 
- Uses MongoDB for data storage 
- Mongoose for data modeling 
- Supports flexible querying and aggregation 
- Implements server-side pagination 
- Provides comprehensive error handling 
Assumptions: 
- The system is designed for businesses needing detailed financial tracking 
- Supports multi-currency and multi-language operations 
- Intended for small to medium-sized businesses 
Potential Improvements/Questions: 
- How are recurring invoices handled? 
- What's the process for invoice reconciliation? 
- Are there integrations with accounting systems? 
Would you like me to elaborate on any specific aspect of the invoicing system? 

6. Discussions 

The presented AI Agent for conversational Q&A over SaaS codebases demonstrates tangible benefits 
in addressing one of the core difficulties in modern cloud-native software engineering: efficient 
knowledge retrieval and onboarding. By combining Large Language Models (LLMs) with vector-
based semantic search, our system delivers contextually relevant information to developers in an 
intuitive dialogue format, significantly reducing the time spent on manual code exploration. 

Our solution stands on the shoulders of recent advances in LLM-driven software engineering. 
Similar to prior research on code generation [4], vulnerability detection [5], and automated repair 
[6], we leverage LLMs to enhance developer productivity—though our focus differs by aiming for 
end-to-end conversational Q&A tailored to large SaaS codebases. As with framework-based 
approaches (e.g., LangChain [8]) and few-shot strategies [9,11], our system extends these concepts 
into a specialized domain: assisting developers in navigating large, complex, and rapidly evolving 
SaaS projects. 

One direct advantage of this approach is the rapid onboarding of new engineers. Traditional 
knowledge transfer in SaaS environments is often slowed by outdated documentation and scattered 
institutional knowledge. Our AI Agent alleviates these bottlenecks by maintaining updated semantic 
indexes (via OpenSearch) and human-readable, LLM-generated summaries embedded within the 
code. This aligns with insights from [7,10], emphasizing how context-aware assistants integrated 
into developers’ workflows reduce friction in comprehending unfamiliar code sections. 

That said, several important considerations emerged: 

 Performance and Cost. Our ingestion pipeline currently incurs both time (e.g., ~930 seconds 
per 100 files) and cost (summarization, entity extraction, vector embeddings). Although this 
is acceptable for moderately sized repositories, the pipeline must be parallelized and perhaps 
distributed across multiple workers to handle massive enterprise-scale codebases rapidly. As 
we observed, hosting self-managed LLMs may become more economical at high volumes, 
echoing concerns from [5] on the cost-effectiveness of large-scale LLM usage. 

 Potential for Hallucinations. Like other LLM-centric systems, the AI Agent may generate 
confident yet inaccurate responses—an issue known as “hallucination”. While we mitigate 
this risk via retrieval-augmented prompting (i.e., tying responses to source code snippets), 



 

users must remain vigilant and confirm critical information. This challenge underlines the 
need for continued advances in LLM alignment and validation techniques. 

 Quality of Summaries and Entity Extraction. Although the Claude 3.5 Haiku model provides 
fast and coherent summaries, there is no guarantee of perfect accuracy for especially intricate 
modules or unconventional code structures. Ensuring robust domain adaptation—potentially 
via local few-shot examples [9,11]—remains a key step to improving summarization 
consistency. Similarly, entity extraction may overlook domain nuances unless carefully 
guided by specialized prompts or additional training data. 

 Scalability of Vector Indexing. While OpenSearch natively supports high-volume indexing, 
maintaining real-time code coverage in dynamic SaaS projects can become computationally 
intensive. Large refactoring or frequent incremental updates may necessitate micro-batch 
ingestion or near-continuous indexing. Future work should explore incremental embedding 
strategies that minimize re-processing time when only certain files change. 

 Security and Privacy Implications. Embedding sensitive code and shipping it to external LLM 
endpoints raises confidentiality concerns, especially for enterprise SaaS. Self-hosted or on-
premise LLM deployments could mitigate data-exposure risks but introduce new 
complexities in model management and hardware costs.  

7. Conclusions 

Developing and maintaining a complex SaaS solution becomes ever-increasing challenging task, 
especially as you need to scale your engineering team and onboard new engineers and get them up 
to speed quickly. Therefore it’s important to apply modern techniques to let the engineers have 
access to the latest information. 

The article try to deal with this challenge, by means of introducing an AI Agent that is in context 
of your codebase and can find relevant code fragments based on the user question and the chat 
context, and what’s more important this happens in a conversational manner, where an engineer 
can speak in a natural language. To achieve that we built an architecture that consists from two 
parts. The first one is ingestion pipeline that indexes the codebase in a scalable manner, using queues, 
to ensure that we can index huge SaaS codebases. The second part is user-interaction UI, where an 
engineer can interact with AI Agent in a conversational manner, and get answers to his questions. 

To achieve best performance of our AI Agent, we have selected a combination of Claude LLMs, 
and text-embedding-3-large embedding model. As a vector storage we utilized OpenSearch, known 
for its scalability and native vector search support. 

Though it is worth to mention that the prototype that we developed still operates on the basis of 
one “repository” and doesn’t have integration with remote VCS system like GitHub or GitLab, to 
automatically re-index changes as they occur. 

Apart from it, currently the AI Agent only has context of codebase, but not integrated into other 
ecosystem of tooling that typical IT project uses, like Jira, Confluence etc. There is huge potential in 
this work, to give the AI Agent access to knowledge from knowledge base, ticketing systems etc, 
which could bring the quality of his answers to a new level. These capabilities to be explored in 
future works.  
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