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Abstract 
The concept of non-linearity in a neural computation is provided by a proper activation function that plays 
a crucial role in the training process of the network and impacts its generalization ability. The model of 
smoothed multithreshold activation function (SMTAF) is proposed in order to improve the quality of 
modeling complicated nonlinear mappings by increasing the efficiency of the network learning compared 
to standard sigmoid-like activations or their modern modifications. The analysis of properties of three kinds 
of SMTAF is performed as well as its comparison with classical and modern activation functions. The 
performance of SMTAFs is estimated through two series of experiments: the approximation of a complex 
discontinuous function and the benchmark real-world regression problem. Obtained results suggest that a 
properly chosen SMTAF is capable to gain better accuracy in solving problems for which standard 
activation functions are inappropriate due to their limited efficiency. 
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1. Introduction 

Neural-like models have numerous successful applications in intelligent systems [1] due to their 
great capacity to solve important real-world [2, 3], as well as scientific problems [4, 5]. This capacity 
is provided by the key property of the neural units—their ability to learn from examples that is crucial 
for the application of different machine learning (ML) techniques in the training of such units. A 
single neural unit has limited potential to solve tasks related to the function approximation or pattern 
classification [6]. But many properly connected units form a neural network (NN) whose capabilities 
increase significantly compared to a single neural unit. So called NN-based approach in ML leads to 
the development of high-performance AI systems, which use neural computation [7] in their learning 
or synthesis [6,8]. 

The main ability of NN is its capability to produce right responses via output values of last layer 
neurons when specified input stimulus are fed to the network input layer. This ensures the successful 
application of NNs by providing their ability to learn from the data [9] and to make predictions [10]. 
The last is supported by the capacity of a NN to extrapolate on the base of received and processed 
data [11, 12]. The proper choice of activation functions for NN nodes is one of the most important 
features ensuring the above-mentioned ability of NN to produce right reaction in response to given 
input patterns. Just the application of new continuous activations instead of step-wise ones in 1980s 
revived the interest in neural models and inspired the future tremendous achievements in the field. 
Problem-oriented activation functions warrant the non-linearity of a computation model [13] and 
can ensure the finiteness or convergence of the network learning, as well as the speed of the training 
process, its stability, and the network ability to infer from data [6,17]. 
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Usual continuous sigmoid-shaped activation functions such as logistic sigmoid, the hyperbolic 
tangent (tanh), as well as their rectified-based counterparts such as the rectified linear unit (ReLU), 
leaky ReLU [6] or exponential linear unit (ELU) and its modification scaled ELU [7] have their ad-
vantages [6,7]; however, they also have significant limitations [14]. E.g., despite the prototype in 
biological neurons sigmoid-shaped activations perform often badly in the learning of deep NN 
because they suffer from the vanishing gradient problem [15,16], as well as they have a saturation 
drawback [7]. The widespread ReLU activation function is vulnerable to the "dying ReLUs" problem 
[16]. More modern functions like ELU, SELU, Swish, GELU or Mish improve efficiency [7,14,17] but 
still are unable to approximate precisely dependencies characterized by rapid changes [18,19]. 

The drawbacks of classical sigmoid and ReLU activation functions were stated in [6,15, 22]. In 
order to overcome these limitations modified activations such as GELU, Swish or Mish were propo-
sed [7,14,16,17]. It is well-known [6] that wide range of activation functions is suitable for back- 
propagation-based learning rules, where only conditions of continuity of activation function /as well 
as its derivative would be satisfied. But the almost 40 years long practice of the application of 
backpropagation proves that the choice of the activation function has the significant impact on the 
behavior of the learning process. Particular activations are good enough for one ML problems and 
are bad for other ones [6]. This observation has theoretical foundation in famous No Free Lunch 
Theorem, which, speaking informally, states that “we cannot achieve positive performance on some 
problems without getting an equal and opposite amount of negative performance on other problems” 
[6]. Therefore, we would choose activation functions depending on the particular ML problem [20] 
by using the prior knowledge concerning the problem scope. For example, consider the problem of 
the approximation of functions with many peaks and rapid multi-level changes [20, 22]. Standard 
activations are not well appropriate to model such mappings [23]. This makes difficult the learning 
of NN to solve very common tasks concerning the processing complicated signal transformations, 
which are not smooth enough or have a fluctuated gradient [17]. Thus, the design of activation 
functions appropriate in the training of NN for such difficult problems is an important task, as well 
as its tuning in order to improve the ability of NN to produce more precise predictions. 

Multithreshold activation functions (MTAF) provide the one of possible solutions of this problem 
[13]. Their use can increase the quality of modeling significantly nonlinear functions. This approach 
is based on the ability of multithreshold activations to represent more precisely the change of data 
using numerous levels of discretization by the adaptive tuning of the thresholds. It allows to process 
properly discrete patterns as well as to enhance the efficiency of the network learning [8]. 

Models of MTAF were proposed in early works devoted to the application of threshold logic in 
pattern recognition as a more powerful alternative for Heaviside step function (bibliographical and 
historical remarks can be found in [13]). Capabilities of multithreshold neuron (MTN) were studied 
in [20] and [21]. The learning algorithm for multi-valued MTN was proposed in [8]. MTN-based NN 
architectures were introduced in [13, 19]. The synthesis algorithm for MTN-based classifier was 
proposed in [21]. The application of bithreshold neurons with the binary outputs in pattern recog-
nition was studied in [21,23]. Deeper hybrid NN architectures with heterogenous hidden layers were 
proposed in [18]. The synthesis procedure for MTN-based NN considered in [21]. It should be noted 
that only discrete activation functions were used in all above-mentioned multithreshold units and 
NN. Thus, they are almost not applicable for problems dealing with the approximation of general 
real-valued functions. As it is stated in [24], the application of multithreshold models in the solution 
of regression problems was unknown. The reference [25] gives the first example of the use of mul-
tithreshold approach in the design of a bithreshold NN regressor. As mentioned in [10], this model 
of NN regressor can be extended to the case of an arbitrary number of thresholds. 

All known examples of the multithreshold approach in neural computation concerns only neural 
units and networks employing discrete-valued activation functions. The disadvantage of such 
activation is that the modern optimization algorithms based on the use of gradient vector of the 
network error function are not applicable in the case of such MTAF. The main goal of current research 
is the extension of multithreshold approach to the case of continuous differentiable activation func-
tions. This allows to employ the backpropagation-like training techniques to the learning of MTN-



based NN. The combination of MTAF and sigmoid smoothing shall be used in order to combine the 
advantages provided by the power of multithreshold approach as well as the effectiveness of the 
gradient descent optimization. 

2. Models and methods 

2.1. Model of neural unit with a smoothed multithreshold activation function 

2.1.1. Definition of smoothed multithreshold activation function 

Let  1 2, , , kt t tt   be a k-dimensional real vector of strictly increasing thresholds: 1 2 ,kt t t    
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Step function (1) is well suitable to approximate different nonlinear dependencies. It should be noted 

that in the case  0,1, ,kv    ,g xt v  reduces to the activation function of multi-valued k-threshold 

neural unit [20], whereas in the case 0 2 2[ /2] 1 3 2[( 1)/2] 10, 1k kv v v v v v          
 
(where the 

floor function [x] denotes the integer part of the number x) (1) becomes the activation function 
binary-valued k-threshold neuron. Nevertheless, it is possible to use (1) as activation function and, 
thus, to treat it as MTAF. 

The most significant property of MTAF (1) is its discreteness. Therefore, MTAF (1) cannot be 
employed in mode network architectures for which continuous activations are required in order to 
maintain the gradient-based learning techniques. This drawback of (1) it is caused by zero value of 

the derivative of MTAF (1) (moreover,  ,g xt v  is even undefined, if 1 2{ , , , }kx t t t  ). Consequently, 

backpropagation approach to the training is not directly applicable to NN containing nodes with 
such MTAF, because zero value of gradient vector makes weight changes impossible.  

Thus, we need apply some mapping in order to transform MTAF to the form that is acceptable 
for gradient-based optimization. I.e., the transformed MTAF should be smooth enough, namely, it 
may satisfy the main condition—the existence of a continuous nonzero derivative. Consider the fol-
lowing transformation: 
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where a is a positive scalar parameter defining the steepness of the transformed function in the 

neighborhood of thresholds and   1

1 x
x

e
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
 is the standard logistic sigmoid [6]. It is natural to 

call a transformation  , ,as xt v  a logistic sigmoid smoothing. 

Consider an example. Let us employ the sigmoid smoothing to the MTAF , ( )g xt v  having four 

thresholds –5, –1, 2, 6 and five distinct values 3, –2, 2, –1, 5. The results of sigmoid smoothing (2) 

performed in the cases  0.5,1,2,3a  are presented in Figure 1, where vertical dashed lines 

indicated regions with constant values of MTAF (which are depicted using horizontal dotted lines). 



 

Figure 1: Logistic sigmoid smoothing of MTAF for different values of steepness parameter a 

By analyzing curves shown in Figure 1, it is possible to conclude that in the cases 0.5a   the 
smoothing is too harsh and obtained curve does not adequately represent the initial step function. If 

1a  , then logistic sigmoid was capable to perform more adequate smoothing, but the middle peak 
values corresponding to 1 2 3, ,v v v  are almost equalized and are too distant from the corresponding 

values of initial MTAF. In the case  2,3a  the behavior of the smoothed function is more appro-

priate and the shapes of obtained curves are quite similar to the curve of the step function. 
The transformation (2) has been obtained using standard logistic smoothing. But there are many 

other sigmoid functions [16], which can be also useful for the smoothing of MTAF. E.g., consider the 
following smoothing obtained by the use hyperbolic tangent instead of logistic sigmoid: 
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This kind of smoothing will be further referred as tanh smoothing. 

Consider one more kind of sigmoid smoothing obtained using a rational sigmoid  
1 | |

x
r x

x



. 

Rational sigmoid r(x) has the same range of a function as tanh x. Thus, the similar equation for the 
smoothing should be used. Let us define the rational smoothing in the following way: 
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All functions (2)-(4) use the similar idea to the transformation of MTAF—the application of 
sigmoid functions to approximate “leaps” of step function by smooth functions with almost surely 
nonzero derivatives. Hence, it is natural to call a result of one of such transformations a smoothed 
multithreshold activation functions (SMTAF). 

The behavior of different kinds of SMTAF is demonstrated in Figure 2, where the curves are 
shown for transformation results of the same function , ( )g xt v  as was shown in Figure 1, which are 

obtained using logistic sigmoid, tanh and rational smoothing, respectively. Note that the effect of 
rational smoothing is stronger than the one provided by its tanh counterpart. 



 

 

Figure 2: Comparison of results of logistic sigmoid, tanh and rational smoothing 

2.1.2. Properties of SMTAF 

Let us establish basic properties of SMTAFs. It is easy to prove that if  , , , ,, , ,as h r  t v t v t v then 
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Similarly, we can infer from lim ( ) 1
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Note that the proof of the similar properties in the case ,h  t v  is almost identical. 

Let us show that tanh smoothing (3) can be performed using the logistic sigmoid smoothing (2). 
This fact is the direct consequence of the well-known [6] relation between the standard sigmoid and 

the tangent hyperbolic:   tanh 2 2 1.x x   Therefore, 
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It is easy to show that the sum in the last parentheses is equal to zero. Therefore, 
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Despite the fact that an arbitrary MTAF can be smoothed by using transformation (2)-(4), the one 
of most important applications of smoothing is the case when the such transformation is applied to 

the monotonic step function (1), i.e., when the vector  0 1, , , kv v vv   from (1) satisfies inequalities 

0 1 kv v v   . In this case All kinds of sigmoid used in (2)–(4) are increasing,. This implies that 

transformations (2)-(4) result in increasing SMTAFs, because all differences 1i iv v  are positive as 

well as all considered sigmoids are increasing.  
Consider the example of smoothing of increasing MTAF , ( )g xt v  with same four thresholds –5, 

– 1, 2, 6 and five ordered values –2, –1, 2, 3, 5. The plots of curves obtained after logistic sigmoid 
smoothing in cases a = 1 and a = 3 as well as curves of tanh and rational sigmoid SMTAF are 
presented in Figure 3, where horizontal lines indicates values of initial MTAF , ( )g xt v . 

 

Figure 3: Logistic sigmoid, tanh and rational smoothing of increasing function 

It is possible to conclude from Figure 3 that the logistic sigmoid smoothing was unsuccessful in 
the case a = 1, because curve of corresponding SMTAF has the shape of basic logistic sigmoid and 
steps of MTAF are almost neglected, whereas the result of tanh smoothing preserves the main ten-
dencies of , ( )g xt v . Rational smoothing (4) performs better than , ,1st v  but its curve does not seem so 

similar to , ( )g xt v  as , ,3st v  and ,ht v , respectively. 

2.2. Learning of neural units with smoothed multithreshold activation 

Consider issues related to the application of SMTAFs in the learning algorithms based on the gradient 
descent or its generalization. It is well-known that backpropagation algorithm uses the chain rule of 
the calculation of gradient of the network loss function. The one of calculation steps is the computing 
of the partial derivatives of loss function with respect to the activation function of the given neuron. 
Thus, we need formulas for these derivatives when dealing with SMTAFs. Let us compute the 
derivatives of SMTAFs obtained as results of transformation (2)-(4). By using the well-known 

equality       1x x x      , we can infer that 



        , , 1
1

( ) 1 ( ) .
k

a i i i i
i

d
s x a v v a x t a x t

dx
 



    t v  (5) 

Consider the derivative of the result of tanh smoothing. It follows from 2(tanh ) 1 tanhx x    that 
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Thus, it is possible to conclude that smoothing transformations (2)-(4) have very simple deri-
vatives (5)-(7) whose calculation does not require an additional efforts compared to the calculation 
of SMTAF. 

It should be also mentioned that if value vector  0 1, , , kv v vv   of MTAF (1) is increasing, then 

derivatives (5)-(7) are positive in every point of their domain of a function. 
Notice that there are two possible ways of the treating of thresholds 1 2, , , kt t t  used in SMTAF. 

The simplest one assumes that these thresholds are unlearnable, i.e., they are not changed during the 
training epochs. The second approach treats 1 2, , , kt t t  as changeable parameters, which are updated 

on each correction step (like biases of classical feed-forward NN models). Under this assumption we 
need also the formulas for partial derivatives of SMTAFs (2)-(4) with respect to variables 1 2, , , kt t t : 
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Above equations allow to integrate threshold corrections in the backpropagation process.  

3. Experiment and results 

3.1. Description of the learning framework 

In order to estimate the capability of SMTAF in comparison with other popular activations, two 
series of experiments were performed. In the first series the ability of NN with different activation 
functions to solve the approximation task was considered. The second series consisted of the study 
of NNs provided with same activations to solve the regression problem. 

The following hard discontinuous piecewise function containing the combination of constant and 
harmonic parts was used in the approximation task: 
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The values of function (8) computed in 1000 uniformly distributed in [-1.2, 1.2] points form the 
training set. 

The approximation task was solved on the multilayer perceptron (MLP) with two hidden layers 
containing 128 and 64 neurons, respectively. Many classical and popular modern activation were 
tried: logistic sigmoid, tanh, ReLU, Swish, GELU, Mish [6, 22] as well as smoothed multithreshold 
functions (2)-(4). A single output linear neuron was used. The thresholds in SMTAF (2)-(4) were 
treated as hyperparameters of the neural model. Thus, they were not learnt during backpropagation, 
and random search [26] was performed instead. It was made over the distribution of thresholds on 
the segment [-2,2] and the distribution of output values of basic MTAF on the same segment Adam 
optimizer [6] was employed for the minimization of mean squared error (MSE), which served as NN 
loss function [6]. 5-fold cross-validation was used in order to obtain consistent results. 

The second series of experiments treated the small “liver-disorders” real-world dataset available 
in OpenML machine learning repository [27]. This dataset has five input features and a single target 
feature. It contains 345 training instances and belongs to the so-called regression problems. 20% of 
instances were used as a test set. In order to employ mean absolute percentage error (MAPE) metric 
the constant 10 was added to every target value during the preprocessing. The 5-16-16-1 MLP archi-
tecture was used. 

3.2. Results 

The simulation results proved that the considered approximation task is hard enough for chosen 
activations and data obtained for different activation differ considerably. It is natural that behavior 
of SMTAFs was studied most carefully by tuning threshold and value vectors. Plots of the NN outputs 
with above-mentioned activations are shown in Figure 4, where the dashed line depicts the plot of 
the function (8). 

 

Figure 4: Result of the approximation of function (8) using standard and SMT activation functions. 

By analyzing presented curves, we can conclude that logistic sigmoid, tanh, ReLU, GELU, Mish 
and SMTAF (2) failed completely on the both “harmonic” and step-wise parts of the function (8). 
Swish and tanh smoothed MTAF were more successful and could partially approximate the target 
curve on the part of its domain. In general, the tangent-based SMTAF ht v with only two near-sym-
metric thresholds achieved the best value 0.096 of the MSE metric and outperformed all other 
activations for more than 37%. 

Consider the second series of experiments. Measured performance metrics are given in Table 1. 



Table 1 
Performance results of MLP regressors on liver-disorders dataset 

 Logistic tanh ReLU Swish GELU Mish st,v,1 ht,v rt,v 
MSE 10.66 10.61 11.89 17.13 11.85 17.42 9.05 10.98 11.03 

MAPE 19.66 19.54 19.49 21.49 19.76 22.13 17.49 19.28 19.51 
 

By analyzing above data, it is possible to conclude that the activation provided by the logistic sigmoid 
smoothing (2) overperformed all other activations by both metrics, whereas tanh smoothing (3) had 
the second-best result by MAPE metric. Notice also that the best performance of SMTAF was ob-
tained in the case of the smoothing of non-monotonic bithreshold step function (1). 

4. Discussions 

Simulation results suggest that the smoothing of discrete step functions could result in the very 
powerful activation functions. Data presented in the previous chapter prove that SMTAFs are capable 
to overperform standard neuron activations in problems involved both synthetic and real-world 
datasets. But the application of SMTAF faces two main challenges concerning the choice of the 
threshold vector t and the value vector v, respectively. Future efforts would be made to Find solution 
of the problem of the choice of an appropriate combination of thresholds and values of SMTAF or 
the effective embedding their search in the backpropagation learning process. 

5. Conclusions 

The transformation of multithreshold functions using sigmoid smoothing has been considered in 
the paper. The impact of SMTAF to the approximation capability of NN has been studied. The empi-
rical comparison with both traditional (logistic sigmoid, tanh and ReLU) and modern activations like 
Swish, Mish and GELU suggests that the application of SMTAF ensures often faster convergence and 
more adequate representation of complicated dependencies. The adaptive problem-based approach 
in choice of parameters of SMTAFs is very important for their successful application, because it 
allows the fine tuning of NN coefficients in the case of the presence of high degree of nonlinearity 
in dependencies between input and output features. 

Experimental results obtained for two datasets confirm that the use of SMTAFs may improve the 
capability of NN and reduce the cost of the network training. Therefore, the above research confir-
med the conjecture that the application of smoothed multithreshold activation function is promising 
enough for the learning of MLPs. Further studies are necessary to find the concrete combinations of 
thresholds and values of MTAF, which are capable to succeed in the NN training for a wide range of 
regression problems, as well as to investigate preferable approaches of the smoothing of MTAF. 
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