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Abstract 
A deep learning-based pixel-based flood zone segmentation approach is proposed using multi-temporal 
satellite images and topographic and hydrological information. It is proposed to combine heterogeneous 
data (satellite images before and after the flood, digital elevation model, and hydrographic characteristics) 
into a single input tensor, allowing the neural network to consider the area's spatial and temporal 
dynamics and morphometric features. The architecture of the model ensures the preservation of the 
spatial detail of the flooded area through skip-connection mechanisms, which contributes to the correct 
identification of flood boundaries. Comparative analysis with FCNN, DeepLabv3, and BASNet confirmed 
the superiority of the proposed approach (F1-score 82%, Dice 82% for the category 'flooded areas'), which 
indicates its effectiveness for accurately detecting flooded areas. 
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1. Introduction 

Floods are among the most devastating natural disasters, causing severe damage to infrastructure, 
human casualties, and significant economic losses. Climate change, the intensification of extreme 
weather events, and the expansion of urban areas further increase the vulnerability of regions to 
such hazards. Timely and accurate flood detection, along with continuous monitoring of their 
progression, are crucial components of effective emergency response, evacuation planning, 
resource allocation, and risk reduction for affected populations. 

Traditional flood detection methods are typically based on ground observations or hydrological 
models, which come with several limitations, including a high dependency on the quality of input 
data, labor-intensive processes, delays in obtaining results, and challenges in scaling to large areas. 
This issue is particularly critical in urban areas, where complex terrain morphology, shallow and 
temporary flooding, and other water bodies significantly complicate flood detection [1]. While 
high-precision hydrological models can be effective in limited areas, their application at the 
community scale is constrained by the need for substantial computational resources. 

Satellite imagery has become a vital resource for flood monitoring due to its ability to capture 
data over large areas with detailed spatial representation rapidly. However, flood zone 
segmentation remains challenging, particularly in urban environments [2]. 

Firstly, urban areas are characterized by high structural complexity and numerous water 
channels and drainage systems, often very narrow and sometimes less than one meter wide. 
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Secondly, urban flooding is typically shallow and short-lived, making it difficult to detect and 
monitor using satellite-based methods. Thirdly, permanent water bodies, such as ponds or 
reservoirs, create difficulties in distinguishing temporary flood zones, especially under conditions 
of dynamic change. Given the complexity of urban terrain, the transient nature of flooding, and the 
presence of permanent water features, flood detection requires highly effective automated satellite 
image analysis methods capable of processing large volumes of data and accounting for the 
spatiotemporal variability of flood events. 

2. Related works 

Detecting flooded areas through precisely delineating water bodies using segmentation methods is 
a key component of satellite-based flood monitoring systems. This approach enables rapid 
emergency response and effective risk management by providing timely information, thereby 
reducing threats to the population. Additionally, the resulting data are critically important for 
spatial planning, particularly regarding land use [3] and the development of resilient infrastructure, 
considering the need to protect critical facilities such as hydroelectric power stations from 
potential flooding impacts. In turn, it contributes to minimizing socio-economic losses [4, 5].  

Deep learning methods utilize multilayer neural networks to identify patterns in data, making 
them particularly promising for analyzing complex satellite imagery. Recurrent neural networks 
(RNN) are widely used to analyze water bodies and land cover using Sentinel imagery [6, 7]. In 
particular, studies [8, 9] have proposed approaches incorporating recursive and convolutional 
operations for effective spatiotemporal data processing. The authors of [10] presented a method 
based on convolutional neural networks (CNN) for rapid flood mapping using Sentinel-1 SAR 
imagery. This approach reduced map production time by 80% and enabled accurate monitoring 
under various conditions. Fully convolutional networks (FCN) have outperformed traditional 
superpixel-based segmentation methods, and their performance has been further enhanced by the 
use of Conditional Random Fields [11]. 

In the study [12], convolutional and recurrent neural networks were used to predict the 
likelihood of flash floods in Golestan Province, Iran. CNN models achieved higher accuracy due to 
using geospatial databases and the SWARA weighting method. The authors in [13] proposed a 
modified U-Net architecture called UFLOOD, which enables the prediction of two-dimensional 
water depth maps during urban flooding. The model utilizes hyetographic and topographic data to 
generate fast and accurate forecasts. Another approach, described in [14], involves using CNN 
models such as YOLOv3 and Fast R-CNN to detect flood indicators through integrated computer 
vision systems. The method incorporates edge detection and the analysis of objects’ geometric 
parameters for real-time flood monitoring. The study [15] focuses on accurately identifying flooded 
areas using a fully convolutional network based on dual patches, which leverages deep learning-
based feature fusion. FCNs are independently trained on synthetic aperture radar and multispectral 
images, enabling them to capture distinctive features combined to enhance flood detection 
capabilities. 

Despite significant advances in applying deep learning for flood detection, current image 
segmentation methods still face several limitations. While techniques such as convolutional neural 
networks and fully convolutional networks achieve high accuracy, they demand substantial 
computational resources. This can slow down processing of large data volumes in real-time, which 
limits their effectiveness in emergency response scenarios where timely information is crucial. 
Furthermore, these models often require large annotated datasets for effective training. The limited 
availability of multi-temporal satellite imagery with corresponding expert annotations also reduces 
the models’ generalization ability and performance across different geographic regions and flood 
types. 

This study aims to develop a deep learning-based approach for the segmentation of multi-
temporal satellite imagery to improve the accuracy of flood zone detection, enhance early warning 
systems, optimize risk management, and support more rapid emergency response. 



3. Deep learning-based image segmentation 

The proposed approach for detecting flooded areas is based on integrating multi-temporal satellite 
imagery and additional geospatial data using deep neural network architecture. The overall 
structure of the proposed approach is shown in Figure 1. 

 
Figure 1: Diagram of the proposed approach. 
 
In the first step (Input data), the collection and preprocessing of all necessary geospatial data 

occur, which will serve as input layers for the neural network. The data are stored and managed in 
a Geo-database, ensuring their integration and accessibility. The Digital Elevation Model (DEM) is 
the initial step for flood zone analysis. The DEM represents a three-dimensional digital model of 
the Earth's surface, including elevations over a specific area. This model is used to calculate water 
flows and identify potential flood zones. The DEM is obtained from relevant sources such as the 
USGS or platforms providing LIDAR data. DEM processing includes data smoothing, error 
correction, and gap filling to represent the terrain accurately. Terrain analysis calculates slopes, 
flow directions, and other characteristics for modeling water flow and flood zones. All elevation 
values in this model are stored in meters relative to the WGS84 EGM96 geoid. This geoid is based 
on the WGS84 ellipsoid, with coefficients computed from a global database of 30-minute mean 
free-air gravity anomalies and data obtained from satellites and direct altimetry measurements. 

Loading of climatic indicators includes data on precipitation, temperature, humidity, wind 
speed, and other climatic factors that may influence the likelihood and extent of floods. These data 
are usually obtained from meteorological stations or climate models. For the study in the Dubai 
region, data from four meteorological stations were selected, significantly contributing to the 
flooding analysis in this area. These stations include Dubai, Sharjah, Al Ain, and Jebel Ali, as 
precipitation data from these stations are critical for regional flood modeling. Hydrological 
indicators include information about rivers, lakes, reservoirs, and other water bodies. They contain 
data on water levels, flow velocity, water volume, and other characteristics of flood dynamics.  



Optical images from Sentinel-2 or Landsat-8,9 satellites before and after the flood are 
downloaded from the Copernicus Open Access Hub platform [16]. After downloading, the images 
undergo preprocessing, including radiometric and atmospheric corrections. These corrections 
eliminate distortions such as atmospheric effects, solar illumination, and other factors during 
image capture and transmission from space. Radiometric correction ensures that the data 
correspond to real physical quantities by converting pixels' digital numbers (DN) into reflectance 
values. This process includes sensor effect correction and instrument calibration [17]:  

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  
𝐿்ை

𝐸௦௨ ∙ cos(𝜃) ∙ 𝑑ଶ
 , (1) 

 
where 𝐿்ை is the top-of-atmosphere radiance; 𝐸௦௨ is the spectral solar constant; 𝜃 is the solar 

zenith angle; 𝑑 is the Earth-Sun distance in astronomical units. 
Atmospheric correction removes the effects of light scattering and absorption in the 

atmosphere, significantly improving image quality for further analysis. 
The study proposes using the Dark Object Subtraction (DOS) method, which assumes that the 

darkest objects in the image (usually water or shadows) have zero reflectance, and any non-zero 
value results from atmospheric scattering [17]: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  𝐷𝑁 − 𝐷𝑁 , (2) 

where 𝐷𝑁 is the minimum DN value in the image. 
The next stage involves the creation of a structured geodatabase (GDB) within the QGIS 

environment, which ensures data integrity and efficient information storage. This process includes 
defining tables and fields and importing source raster data, climatic and hydrographic data, and 
digital elevation model data [18]. To maintain data integrity, logical relationships between tables 
are established. Within this stage, the data are prepared for further analysis of the relationships 
between descriptive features and target labels. After the geodatabase is created, the data are 
optimized and indexed to enhance performance and access speed, essential for accurately 
identifying flooded areas. 

The second step focuses on the automated pixel-level segmentation of flooded areas using a 
deep neural network architecture. The process begins with forming labeled samples from satellite 
images captured before and after the flood. These samples consist of image patches sized 321x321 
pixels. Each pixel within these patches is assigned to one of three classes according to expert 
labeling: water area, which includes permanent water bodies like rivers, lakes, and reservoirs that 
existed before the flood and are not its consequence; flooded area, denoting temporarily inundated 
regions which appeared due to the flooding event; and land, indicating areas not covered by water 
both before and after the flooding event. These labeled samples are strategically divided into 
training and testing datasets in a 70% to 30% ratio. The neural network is trained using the training 
dataset. Throughout the training process, the model updates its internal parameters (weights and 
biases) through backpropagation, employing the Stochastic Gradient Descent optimizer to reduce 
the loss function, which measures the discrepancy between the model’s predictions and the 
reference annotations.  

The U-Net architecture was selected to address the segmentation task due to its capability for 
high-precision pixel-level segmentation [19, 20], which is crucial for accurately identifying flooded 
areas. The input to the U-Net is formed from multichannel data, including satellite imagery 
captured before and after the flood and DEM and hydrographic indicators, as described in step 1. 
This integrated input tensor has a size of 321x321 pixels. The U-Net architecture comprises a 
feature encoding block, a feature sealing assembly, and a feature decoding block. The feature 
encoding block includes several levels, each employing successive two-layer convolutional 
operations. It enables the network to extract hierarchical features from the image, ranging from 
low-level features (such as edges and textures) to high-level features (such as spatial-spectral 
characteristics of flooded areas).  



The input layer accepts images of size: 

𝐻 × 𝑊 × 𝐶, (3) 

where H is height; W is width; C is the number of bands. 
The convolution layer applies filters to extract features: 

𝑌,, =   𝑋ା,ା ∙ 𝑊,, + 𝑏

,

, (4) 

where X is the input data; W is the filter weights; b is the offset; Y is the output features. 
After each series of convolutional layers, a max-pooling operation is applied, which reduces the 

spatial resolution of the feature maps while preserving the most significant features. This process 
enables the model to effectively capture contextual details indicating flooded areas while reducing 
computational load. 

Max-pooling reduces the dimensionality of the feature maps: 

𝑌,, =  𝑚𝑎𝑥𝑋௦(,),௦(,),, (5) 

where s is the size of the summation window. 
The smoothing layer converts multidimensional data into a one-dimensional vector. 
The dense layer uses an activation function for training: 

𝑌 =  𝑓 ቌ 𝑊



∙ 𝑋 + 𝑏ቍ, (6) 

where f is the activation function. 
An intermediate layer is positioned between the encoding and decoding modules. This layer 

delivers a highly condensed yet informative encoding of the extracted features. It comprises two 
convolutional operations with five filters, enabling the model to emphasize the most significant 
and abstract features related to flooded areas before restoring spatial information. The Feature 
Decoding Block is responsible for gradually recovering the image’s spatial resolution to its initial 
dimensions. It comprises a series of upsampling layers employing bilinear interpolation, followed 
by convolutional layers that expand the spatial size of the feature maps. The extracted features are 
merged at every decoding stage with matching high-resolution features transferred directly from 
the corresponding encoding stage through skip connections. This feedback mechanism allows the 
model to preserve the overall structure and fine details of flooded areas, which is crucial for 
accurate boundary detection [21]. 

In the final layer of the decoding block, a convolution with a single filter and the Softmax 
activation function is applied. This function transforms the output values into probabilities 
representing the likelihood that each pixel belongs to one of the three defined classes: "water area," 
"flooded area," or "land." As a result, the output of the U-Net generates a segmentation mask in 
which each image pixel is classified according to its most probable state. The neural network 
comprehensively analyzes spatial and temporal changes between pre- and post-flood satellite 
images while integrating topographic data (DEM) and hydrological/climatic factors. It learns to 
identify spectral and textural features that indicate the presence of temporary water (flooded area), 
distinguishing it from water features and land. The architecture with encoding/decoding blocks 
and skip connections enables the model to detect high-level contextual features (e.g., large flooded 
areas, their shape, and relation to topography) and fine details (e.g., narrow flooded streets or small 
inundated patches). 

4. Experiment 

The United Arab Emirates is a country located on the Arabian Peninsula, known for its arid desert 
climate. In April 2024, the country was affected by a robust system of slow-moving storms that led 



to significant rainfall, exceeding the annual average within just a few days. It resulted in flash 
floods in the eastern regions, causing road inundation and disruptions to the transportation 
infrastructure. Landsat-8 satellite images taken before (Fig. 2a) and after (Fig. 2b) the flood were 
used to analyze the impact of the flood on the region. The pre-flood images, taken in early April 
2024, were used to determine the baseline state of the area. Following the storms, the images 
acquired on April 19, 2024, enabled the assessment of the extent of flooding and its impact on 
infrastructure. 

 
a) 

 
b) 

Figure 2: Satellite images from the Landsat 8-9 spacecraft synthesized into R-G-B channels: a) 18 
March 2024; b) 19 April 2024. 

 
This study conducted a quantitative assessment to evaluate the effectiveness of the proposed 

deep learning-based approach for pixel-wise segmentation of flooded areas. To train the model, 
specialized training samples of flooded zones were created using multi-temporal satellite images 
from Sentinel-2 and Landsat-8/9, following a preprocessing stage. The dataset comprises 1,043 
images. Of these, 730 patches were allocated for training, while 313 patches were used for model 
testing. The data preparation process involved exporting the constructed training samples (pairs of 
"image + segmentation mask") in a format compatible with the selected neural network 
architecture. Key export parameters included the raster image from which the samples were 
derived; the size of each training patch, set to 256×256 pixels; the stride distance for the subsequent 
image, fixed at 321 pixels, which controls the degree of overlap when generating chips from large 
input images; the metadata format indicating the category of classified tiles; and the image format, 
chosen as TIFF to preserve high quality and multi-band information. Several hyperparameters were 
adjusted during the training of the U-Net model. The maximum number of training epochs ranged 
from 25, 50, and 75 to 100, allowing an investigation into the effect of training duration on model 
convergence and performance. The batch size, defining the number of samples processed 
simultaneously per iteration, was fixed at eight based on the available hardware resources. The 
input patch size fed into the neural network was 321×321 pixels. The training was conducted using 
the QGIS geospatial platform integrated with the PyTorch library. Model parameters were 
initialized with random values drawn from a standard normal distribution. The number of training 
samples used for each epoch configuration is provided in Table 1. 

The output data from the training process included detailed information about the resulting 
model, such as the learning rate (which controls the magnitude of updates to the weight 
coefficients), the loss function values during both training and validation phases (indicating the 
model's fit to the data), and accuracy — the average proportion of correct predictions on the 
validation samples. Table 2 presents the evaluation metrics for the segmentation model's 
performance on the 'Flood area' class under various training configurations, including Precision, 
Recall, F1-score, mIoU, and Pixel Accuracy. 

To visually assess the effectiveness of the proposed approach to satellite image segmentation, 
binary masks (Fig. 3) were obtained and formed by a neural network, which reflects spatial changes 
in the state of the territory before and after the flood event. In these masks, pixels corresponding to 



water bodies (including permanent water areas) and flood zones are 1, while pixels of dry land are 
marked with 0. 

 

 
a) 

 
b) 

Figure 3: Binary mask by a neural network: a) before flooding; b) after flooding. 
 

Figure 3a shows the initial state of the territory, where permanent water areas are highlighted 
in white and land areas are shown in black. This mask represents the initial state of the territory, 
where permanent water areas (such as rivers, lakes, etc.) exist before the flood event are 
highlighted in white. The black regions correspond to unflooded land surfaces. This image serves 
as a baseline for comparing and identifying newly flooded areas. Figure 3b displays two categories: 
unflooded areas (marked in black) and flooded areas (marked in white). Comparing this with Figure 
3a allows visual identification of new areas covered by water due to the flood. The white regions in 
this mask indicate territories that were land before the event but became flooded afterward. 
Correspondingly, the black areas represent land that remained unflooded. It is important to note 
that this mask specifically emphasizes temporary flooded zones, distinguishing them from 
permanent water bodies. This distinction is achieved through the neural network’s ability to 
analyze multi-temporal data and detect changes between the “before” and “after” states. 

The results of the neural network classification of Landsat-9 satellite image pixels obtained 
using U-Net are presented in Figure 4 for a more detailed and multi-class analysis. This step 
demonstrates the outcome of pixel segmentation, where the model successfully distinguishes three 
categories: land, permanent water bodies, and temporarily flooded areas. Comparative analysis of 
Fig. 4a and Fig.4b highlights the effectiveness of the developed neural network model in detecting 
flood zones. The model accurately differentiates permanent water bodies from temporary flooding, 
critical for precise flood mapping. Using multi-temporal satellite images (before and after the 
event) combined with the U-Net architecture enables the identification of dynamic surface changes 
indicative of floodwater presence. The obtained results confirm the capability of the proposed 
approach to generate clear and informative masks for flood zone detection and that they can be 
applied for operational monitoring and impact assessment. 

To quantitatively evaluate and compare the segmentation results of multi-temporal satellite 
images obtained using the proposed architecture, along with alternative architectures (FCNN, U-
Net, DeepLabv3, and BASNet), the following metrics were employed [19, 22]: Pixel Accuracy (PA), 
Precision, F1-score, Recall, and mean Intersection over Union (mIoU). For a more detailed 
evaluation of the recognition accuracy for specific land cover classes (water bodies, flooded areas, 
and land), the Dice Similarity Coefficient was applied. This metric is commonly used in semantic 
segmentation tasks to quantify the overlap between the predicted mask and the ground truth label. 
The Dice coefficient ranges from 0 to 1, where 1 signifies complete mask overlap, and 0 indicates 



no overlap. The metrics above were computed based on segmentation outcomes produced by the 
model on the test dataset. Generally, higher values of these metrics correspond to improved 
segmentation performance [22]: 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 , 

(7) 

 
where A is the set of pixels predicted by the model; B is the set of pixels in the reference mask; 

|𝐴 ∩ 𝐵| denotes the number of elements in both sets. 
 

 
a) 

 
b) 

Figure 4: Neural network classification of Landsat 9 satellite imagery: a) before the flood on 18 
March 2024; b) after the flood on 19 April 2024. 

 
An essential step in ensuring reliable validation of segmentation results obtained using neural 

network models was the creation of ground truth masks. In this study, the authors manually 
generated these masks based on visual interpretation of satellite images captured before and after 
flooding. The process involved expert knowledge and specialized geographic information system 
tools. The resulting ground truth masks served as an objective "truth" for comparison with the 
model's predicted segmentation masks, allowing validation of its performance and assessment of 
the consistency between predictions and the actual state of the Earth's surface. 

5. Results and Discussion 

Table 1 shows the distribution of the number of samples used at each training stage. As the number 
of epochs increases, the training sample volume also grows, directly affecting the classification 
quality. When the number of epochs rises from 25 to 100, there is a significant increase in the 
number of samples used, resulting in a direct improvement in model accuracy. Specifically, at 25 
epochs, the accuracy is only 82%, and the F1 score is 53%, indicating a low balance between 
classification correctness and the completeness of flood zone detection. The most balanced results 
are achieved at 50 and 75 epochs, with F1 scores of 78% and 73%, respectively. However, the highest 
values for all three metrics: accuracy (94%), recall (92%), and F1 score (93%) were recorded at 100 
training epochs based on 1036 samples. These results highlight the importance of sufficient 
training data to achieve high classification quality and demonstrate a direct relationship between 
the number of training epochs, sample size, and model performance metrics. 



Table 1 
Evaluation of the performance of the proposed approach for flood zone segmentation by different 
learning parameters 

Number of 
training epochs 

Number of 
samples 

Accuracy Recall F1 score 

25 256 82 40 53 
50 566 81 78 78 
75 716 74 72 73 
100 1036 94 92 93 

 
The segmentation models’ performance for flood zone detection was evaluated using a Landsat 

9 satellite image. Five architectures were tested for comparative analysis: FCNN, U-Net, 
DeepLabv3, BASNet, and the proposed model. The summarized results are presented in Table 2. 
The U-Net model showed the lowest performance, with an F1 score of 62% and mIoU of only 45%, 
indicating a limited ability to delineate flood zone boundaries accurately. The FCNN model 
demonstrated better performance, but its F1 score remained at 66%, with a mIoU of 49.3%. 
DeepLabv3 achieved higher metrics, with an F1 score of 69.2% and a mIoU of 53%, reflecting 
improved capability for detailed segmentation. Even better results were obtained using the BASNet 
architecture, which achieved an F1 score of 78% and a mIoU of 64%, significantly outperforming the 
previous approaches. The proposed model reached the highest values across all metrics: precision 
of 89.5%, recall of 85.0%, F1 score of 82.0%, mean IoU of 69.5%, and PA of 92.8%. 

Table 2 
Metrics for evaluating the Landsat 9 satellite image segmentation model 

Architectures Precision (%) Recall (%) F1-score (%) mIoU (%) PA(%) 
FCNN 72.5 68.1 66.0 49.3 85.2 
U-Net 70.8 65.5 62.0 45.0 83.5 
DeepLabv3 75.1 72.8 69.2 53.0 87.1 
BASNet 80.5 76.8 78.0 64.0 90.3 
Proposed 89.5 85.0 82.0 69.5 92.8 

 
Table 3 shows the Dice coefficients used to evaluate the accuracy of image segmentation in 

three categories: water area, flooded area, and land. All models were assessed under the same 
experimental conditions, and the average Dice score served as a generalized metric of the 
effectiveness of each architecture. All architectures demonstrated the highest Dice coefficient 
values during the segmentation of the ‘land’ category due to the dominance of this class in the 
images and its stable spectral-spatial characteristics. Segmentation of flooded areas remains the 
most resource-intensive task, which is explained by their temporary nature, high spatial-temporal 
variability, and spectral similarity to permanent water bodies, complicating their correct 
identification. The U-Net model showed the lowest results for the flooded area (62.0%), while 
DeepLabv3 and BASNet demonstrated higher accuracy — 69.2% and 78.0%, respectively. The 
proposed model showed the best results for the ‘Flooded Area’ class at 82.0%, indicating its high 
ability to detect temporary water objects. 
 
Table 3 
Dice coefficients (%) for segmentation of different land cover classes 

Architectures Water area  Flooded area Land Average 
Dice 

FCNN 88.2 66.0 92.5 82.2 
U-Net 87.5 62.0 91.8 80.4 



DeepLabv3 89.1 69.2 93.1 83.8 
BASNet 90.5 78.0 94.2 87.6 
Proposed 91.8 82.0 95.5 89.8 

 
Figure 5 shows the flooded areas from April 15 to April 19, 2024. The graph indicates that the 

flooded area gradually increased from 10.2 hectares on April 15 to 42.61 hectares on April 19. This 
growth in the flooded area resulted from intensified meteorological phenomena, particularly 
significant precipitation, contributing to the worsening flood.  

 

 
Figure 5: Change in Flooded in UAE, April 2024. 
 

6. Conclusions 

The study developed and experimentally evaluated an approach for pixel-wise segmenting flooded 
areas based on deep learning using multi-temporal satellite imagery. A unified model framework 
was proposed that integrates heterogeneous input data — pre- and post-flood satellite images, a 
digital elevation model (DEM), and hydrographic features. This integration enhanced the model's 
ability to accurately classify temporary water bodies, especially for the challenging "flooded area" 
class, which is difficult to detect due to its temporal variability and visual similarity to permanent 
water bodies. A comparative analysis of the performance of various deep learning architectures, 
including FCNN, U-Net, DeepLabv3, BASNet, and the proposed model, was conducted. 
Quantitative assessment of segmentation effectiveness on satellite images, performed using metrics 
(Precision, Recall, F1-score, mIoU, PA, and Dice), demonstrated the advantage of the proposed 
approach in semantic segmentation tasks, particularly for the class "flooded area," which is the 
most challenging to recognize due to its temporal variability and visual similarity to other water 
bodies (Precision 89.5%, Recall 85.0%, F1-score 82.0%, mIoU 69.5%, and PA 92.8%). The proposed 
model achieved the highest precision, recall, and consistency values in delineating flood 
boundaries, as confirmed by the Dice coefficient of 82% for the "flooded area" class and an average 
of 89.8%. Creating ground truth masks based on visual interpretation of multi-temporal satellite 
images and expert annotation enabled objective validation of model performance. Visual analysis 
of the segmentation results demonstrated a high level of spatial agreement between predicted 
masks and reference annotations. The model effectively identifies different land cover categories, 
including land, permanent water bodies, and newly formed flooded areas, which is crucial for 
operational flood event mapping. The proposed flood zone detection approach can be used for 
further analysis, flood risk management strategy development, public information dissemination, 
and infrastructure planning. 
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